用户名: 密码: 验证码:
多羟基修饰的有机小分子空穴传输材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有机电致发光二极管(Organic light-emitting diodes, OLEDs)的发展,研究者们的注意力开始向低成本、大面积、易加工等方面转移。为了克服热蒸镀法制备OLED过程中面对的各种问题,溶液加工OLED器件开始引起人们重视。其核心是发光层由溶液法制备。由此,需要克服,在溶液加工过程中,发光层与相邻功能层间界面互溶的现象。
     本论文报道了一系列新型多羟基修饰的小分子空穴传输材料,探索了在弱极性、极性醇类溶剂中的溶解性与分子结构之间的关系,以及在“发光层经由溶液加工成膜”的正装OLED器件中的应用。具体内容如下:
     1.设计合成了三种多羟基化合物2OH-1、2OH-2和6OH。其中2OH-1分子具有两个羟基,但材料在极性溶剂,如甲醇,以及弱极性溶剂中,如甲苯,溶解度都较好,譬如在甲醇与甲苯中溶解度都超过20mg/mL。而2OH-2,在上述溶剂中溶解度都大幅度降低,如其在甲醇与甲苯中溶解度都小于1mg/mL。随后合成了6OH,相对于2OH-2增加羟基数目至6个,但在醇类溶剂中溶解性依然没有提高。
     2.在上述基础上,改变分子设计策略。在分子的外围侧基上引入羟基,设计合成了10OH,得到的化合物在甲醇、乙醇或异丙醇中的溶解度均大于50mg/mL,而在甲苯、对二甲苯或氯苯中溶解度小于0.1mg/mL。经过AFM以及吸收光谱测试发现,采用弱极性溶剂,如甲苯等洗涤不会其表面形貌或厚度产生明显影响。通过单空穴器件ITO/MoO_3(10nm)/10OH (130nm)/MoO_3(10nm)/Al (100nm)测得其空穴迁移率为4.6×10~(-6)cm~2V-1s~(-1)。而器件ITO/10OH (30nm)/P-PPV(80nm)/CsF(1.5nm)/Al(200nm),启亮电压仅有2.6V,最大电流效率为19.8cdA-1。
     3.为了减少空穴传输材料在可见光附近的吸收,设计化合物4OH与5OH。虽然二者结构类似,但溶解性相差很大。4OH溶解性与10OH类似;而5OH则不溶于醇类及弱极性溶剂。4OH的空穴迁移率可达1.5×10~(-7)cm~2V-1s~(-1)。
Organic light-emitting diodes (OLEDs) based on solution processing have beenreceiving increasing attention due to the possibility to afford low-cost, large-area and flexibledevices. Nevertheless, solution processing presents demanding challenges such as interlayermixing of adjacent functional layers. In this context, we report the synthesis of a new class ofmultihydroxylated small-molecule hole-transport compounds in an attempt to obtainalcohol-processable hole-transport materials that are compatible to the emitting layer, whichgenerally consists of hydrophobic material(s). The molecular structure propertiesrelationships such as on solubility in alcohol and weakly-polar solvents and hole-transportmobility are discussed. It is noteworthy that a compound with high solubility in alcoholsolvents whilst insoluble in weakly polar solvents was used as a hole-transport layer inbottom-anode OLEDs that consisted of a solution-processed thin polymer emitting layer,leading to promising device performance. The details as follows:
     1. Three multihydroxylated hole-transport molecules,2OH-1,2OH-2and6OH, havebeen synthesized.2OH-1is soluble in both alcohol and weakly polar solvents such as tolueneand xylenes, with a solubility of at least20mg/mL. Further attaching four triphenylaminogroups to the endgroups of2OH-1,2OH-2is obtained. However, the resulting solubility inalcohol and weakly polar solvents is severely reduced, less than ca.1mg/mL. The synthesisof6OH fails to improve solubility, especially in alcohol solvents.
     2. On the basis of the above work,10OH has been designed and synthesized with10hydroxyl groups in a molecule.10OH shows a high solubility in polar solvents whilst barelysoluble in weakly polar solvents. For instance, more than50mg of10OH facilely dissolves in1mL methanol, ethanol or2-propanol at room temperature, while0.1mg of the compound isinsoluble in1mL toluene, p-xylene, and chlorobenzene. Furthermore, this multihydroxylatedcompound is capable of affording uniform amorphous, smooth and transparent films,spin-cast from2-propanol with a high Tgof190°C. The resistance to weakly polar solventsuch as toluene of the resulting film is confirmed by AFM and UV-Vis absorption experiments.Hole mobility of10OH is4.6×10-6cm2V-1s~(-1)measured by fabricating single carrierhole-only device ITO/MoO_3(10nm)/10OH (130nm)/MoO_3(10nm)/Al (100nm).10OH isutilized as a hole-transport layer in OLED [ITO/10OH (30nm)/P-PPV (80nm)/CsF (1.5nm)/Al (200nm)] exhibited a maximal luminous efficiency (LEmax) as high as19.8cd A-1anda low turn-on voltage of2.6V.
     3. Subsequently, in order to reduce visible light absorption of the above10OHhole-transport compound,4OH and5OH have been synthesized. While4OH has a highsolubility in alcohol solvents,5OH is almost insoluble. Hole mobility of4OH, revealed by SCLC at low voltages, is1.5×10~(-7)cm~2V-1s~(-1).
引文
[1] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied PhysicsLetters,1987,51(12):913-915.
    [2] Pope M, Kallmann H P, Magnante P. Electroluminescence in Organic Crystals[J]. TheJournal of Chemical Physics,1963,38(8):2042-2043.
    [3] Chiang C, Fincher C, Park Y, et al. Electrical Conductivity in Doped Polyacetylene[J].Physical Review Letters,1977,39(17):1098-1101.
    [4] Partridge R H. Electroluminescence from polyvinylcarbazole films. IV.Electroluminescence using higher work function cathodes[J]. Polymer,1983,24(6):755-762.
    [5] Freeman D C, White C E. The Structure and Characteristics of the Fluorescent MetalChelates of o,o'-Dihydroxyazo Compounds[J]. Journal of the American ChemicalSociety,1956,78(12):2678-2682.
    [6] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based onconjugated polymers[J]. Nature,1990,347(6293):539-541.
    [7] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes[J].Applied Physics Letters,1991,58(18):1982-1984.
    [8] Huang J, Li C, Xia Y J, et al. Amorphous fluorescent organic emitters for efficientsolution-processed pure red electroluminescence: Synthesis, purification, morphology,solid-state photoluminescence, and device characterizations[J]. JOURNAL OFORGANIC CHEMISTRY,2007,72(22):8580-8583.
    [9] Zhao L, Zou J H, Huang J, et al. Asymmetrically9,10-disubstituted anthracenes assoluble and stable blue electroluminescent molecular glasses[J]. ORGANICELECTRONICS,2008,9(5):649-655.
    [10] Huang J, Qiao X F, Xia Y J, et al. A Dithienylbenzothiadiazole Pure Red MolecularEmitter with Electron Transport and Exciton Self-Confinement for Nondoped OrganicRed-Light-Emitting Diodes[J]. ADVANCED MATERIALS,2008,20(21):4172-4175.
    [11] Huang C, Zhen C G, Su S P, et al. High-efficiency solution processableelectrophosphorescent iridium complexes bearing polyphenylphenyl dendronligands[J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY,2009,694(9-10):1317-1324.
    [12] Yi Y, Yi Z, Qingguo H, et al. Solution-processable red-emission organic materialscontaining triphenylamine and benzothiodiazole units: synthesis and applications inorganic light-emitting diodes[J]. Journal of Physical Chemistry B,2009,113(22):7745-7752.
    [13] Wang J L, Zhou Y, Li Y F, et al. Solution-Processable Gradient Red-Emittingpi-Conjugated Dendrimers Based on Benzothiadiazole as Core: Synthesis,Characterization, and Device Performances[J]. JOURNAL OF ORGANICCHEMISTRY,2009,74(19):7449-7456.
    [14] Liu F, Tang C, Chen Q Q, et al. Pyrene functioned diarylfluorenes as efficient solutionprocessable light emitting molecular glass[J]. ORGANIC ELECTRONICS,2009,10(2):256-265.
    [15] Wang L, Jiang Y, Luo J, et al. Highly Efficient and Color-Stable Deep-Blue OrganicLight-Emitting Diodes Based on a Solution-Processible Dendrimer[J]. ADVANCEDMATERIALS,2009,21(47):4854-4858.
    [16] Huang J, Liu Q, Zou J H, et al. Electroluminescence and Laser Emission of SolublePure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole[J].ADVANCED FUNCTIONAL MATERIALS,2009,19(18):2978-2986.
    [17] Li Y, Li A Y, Li B X, et al. Asymmetrically4,7-Disubstituted Benzothiadiazoles asEfficient Non-doped Solution-Processable Green Fluorescent Emitters[J]. ORGANICLETTERS,2009,11(22):5318-5321.
    [18] Zhang M, Xue S F, Dong W Y, et al. Highly-efficient solution-processed OLEDsbased on new bipolar emitters[J]. CHEMICAL COMMUNICATIONS,2010,46(22):3923-3925.
    [19] Li Y, Li B X, Tan W Y, et al. Structure-properties relationships insolution-processable single-material molecular emitters for efficient green organiclight-emitting diodes[J]. ORGANIC ELECTRONICS,2012,13(6):1092-1099.
    [20] Tang S, Liu M R, Lu P, et al. A molecular glass for deep-blue organic light-emittingdiodes comprising a9,9'-spirobifluorene core and peripheral carbazole groups[J].Advanced Functional Materials,2007,17(15):2869-2877.
    [21] Huang J S, Watanabe T, Ueno K, et al. Highly efficient red-emission polymerphosphorescent light-emitting diodes based on two noveltris(1-phenylisoquinolinato-C2,N)iridium(III) derivatives[J]. ADVANCEDMATERIALS,2007,19(5):739-743.
    [22] Wu H B, Huang F, Mo Y Q, et al. Efficient electron injection from a bilayer cathodeconsisting of aluminum and alcohol-/water-soluble conjugated polymers[J].ADVANCED MATERIALS,2004,16(20):1826-1830.
    [23] Inaoka S, Roitman D B, Advincula R C. Cross-linked polyfluorene polymer precursors:Electrodeposition, PLED device characterization, and two-site co-deposition withpoly(vinylcarbazole)[J]. CHEMISTRY OF MATERIALS,2005,17(26):6781-6789.
    [24] Yang R Q, Wu H B, Cao Y, et al. Control of cationic conjugated polymer performancein light emitting diodes by choice of counterion[J]. JOURNAL OF THE AMERICANCHEMICAL SOCIETY,2006,128(45):14422-14423.
    [25] Yang X H, Muller D C, Neher D, et al. Highly efficient polymericelectrophosphorescent diodes[J]. ADVANCED MATERIALS,2006,18(7):948-954.
    [26] Shi W, Wang L, Huang F, et al. Anionic triphenylamine-and fluorene-basedconjugated polyelectrolyte as a hole-transporting material for polymer light-emittingdiodes[J]. POLYMER INTERNATIONAL,2009,58(4):373-379.
    [27] Liu G, Li A Y, An D, et al. An Ionic Molecular Glass as Electron Injection Layer forEfficient Polymer Light-Emitting Diode[J]. MACROMOLECULAR RAPIDCOMMUNICATIONS,2009,30(17):1484-1491.
    [28] Liu G, Li Y H, Tan W Y, et al. Alcohol-Processable Organic Amorphous Electrolytesas an Effective Electron-Injection Layer for Organic Light-Emitting Diodes[J].CHEMISTRY-AN ASIAN JOURNAL,2012,7(9):2126-2132.
    [29] Elschner A, Bruder F, Heuer H W, et al. PEDT/PSS for efficient hole-injection inhybrid organic light-emitting diodes[J]. SYNTHETIC METALS,2000,111:139-143.
    [30] Elschner A, Heuer H W, Jonas F, et al. Gallium complexes in three-layer organicelectroluminescent devices[J]. ADVANCED MATERIALS,2001,13(23):1811-1814.
    [31] Huang F, Hou L T, Wu H B, et al. High-efficiency, environment-friendlyelectroluminescent polymers with stable high work function metal as a cathode:Green-and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutralprecursors[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2004,126(31):9845-9853.
    [32] Huang F, Wu H B, Wang D, et al. Novel electroluminescent conjugatedpolyelectrolytes based on polyfluorene[J]. CHEMISTRY OF MATERIALS,2004,16(4):708-716.
    [33] Zhou G, Geng Y H, Cheng Y X, et al. Efficient blue electroluminescence from neutralalcohol-soluble polyfluorenes with aluminum cathode[J]. APPLIED PHYSICSLETTERS,2006,89(23350123):233501.
    [34] Niu X D, Qin C J, Zhang B H, et al. Efficient multilayer white polymer light-emittingdiodes with aluminum cathodes[J]. APPLIED PHYSICS LETTERS,2007,90(20351320):203513.
    [35] Veinot J, Marks T J. Toward the ideal organic light-emitting diode. The versatility andutility of interfacial tailoring by cross-linked siloxane interlayers[J]. ACCOUNTS OFCHEMICAL RESEARCH,2005,38(8):632-643.
    [36] Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interfacial electronicstructures at organic metal and organic organic interfaces[J]. ADVANCEDMATERIALS,1999,11(8):605-625.
    [37] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugatedpolymers[J]. Nature,1999,397(6715):121-128.
    [38] Braun S, Salaneck W R, Fahlman M. Energy-Level Alignment at Organic/Metal andOrganic/Organic Interfaces[J]. ADVANCED MATERIALS,2009,21(14-15):1450-1472.
    [39] Van Slyke S A, Chen C H, Tang C W, et al. Organic electroluminescent devices withimproved stability[J]. Applied Physics Letters,1996,69(15):2160-2162.
    [40] Tadayyon S M, Grandin H M, Griffiths K, et al. CuPc buffer layer role in OLEDperformance: a study of the interfacial band energies[J]. ORGANIC ELECTRONICS,2004,5(4):157-166.
    [41] Cui J, Huang Q L, Veinot J, et al. Anode interfacial engineering approaches toenhancing anode/hole transport layer interfacial stability and charge injectionefficiency in organic light-emitting diodes[J]. LANGMUIR,2002,18(25):9958-9970.
    [42] Mori T, Mitsuoka T, Ishii M, et al. improving the thermal stability of organiclight-emitting diodes by using a modi f ed phthalocyanine layer[J]. APPLIEDPHYSICS LETTERS,2002,80:3895.
    [43] Pfeiffer M, Leo K, Zhou X, et al. Doped organic semiconductors: Physics andapplication in light emitting diodes[J]. ORGANIC ELECTRONICS,2003,4(2-3):89-103.
    [44] Blochwitz J, Pfeiffer M, Fritz T, et al. Low voltage organic light emitting diodesfeaturing doped phthalocyanine as hole transport material[J]. APPLIED PHYSICSLETTERS,1998,73(6):729-731.
    [45] Ren X F, Alleyne B D, Djurovich P I, et al. Organometallic complexes ashole-transporting materials in organic light-emitting diodes[J]. INORGANICCHEMISTRY,2004,43(5):1697-1707.
    [46] Seo E T, Nelson R F, Fritsch J M, et al. Anodic Oxidation Pathways of AromaticAmines. Electrochemical and Electron Paramagnetic Resonance Studies[J]. Journal ofthe American Chemical Society,1966,88(15):3498-3503.
    [47] Lin B C, Cheng C P, Lao Z P M. Reorganization Energies in the Transports of Holesand Electrons in Organic Amines in Organic Electroluminescence Studied by DensityFunctional Theory[J]. The Journal of Physical Chemistry A,2003,107(26):5241-5251.
    [48] B ssler H. Charge transport in random organic photoconductors[J]. AdvancedMaterials,1993,5(9):662-665.
    [49] Stolka M, Yanus J F, Pai D M. Hole transport in solid solutions of a diamine inpolycarbonate[J]. The Journal of Physical Chemistry,1984,88(20):4707-4714.
    [50] Adachi C, Nagai K, Tamoto N. Molecular design of hole transport materials forobtaining high durability in organic electroluminescent diodes[J]. Applied PhysicsLetters,1995,66(20):2679-2681.
    [51] Shirota Y, Kobata T, Noma N. Starburst molecules for amorphous molecular materials.4,4',4"-Tris(N,N-diphenylamino)triphenylamine and4,4',4"-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine.[J]. Chemistry Letters,1989,18(7):1145-1148.
    [52] Shirota Y, Okumoto K, Inada H. Thermally stable organic light-emitting diodes usingnew families of hole-transporting amorphous molecular materials[J]. Synthetic Metals,2000,111-112:387-391.
    [53] Okumoto K, Shirota Y. New Hole-Transporting Amorphous Molecular Materials withHigh Glass-Transition Temperatures for Organic Light-Emitting Diodes.[J].Chemistry Letters,2000,29(9):1034-1035.
    [54] Shirota Y, Kuwabara Y, Okuda D, et al. Starburst molecules based on π-electronsystems as materials for organic electroluminescent devices[J]. Journal ofLuminescence,1997,72-74:985-991.
    [55] Shirota Y, Kuwabara Y, Inada H, et al. Multilayered organic electroluminescentdevice using a novel starburst molecule,4,4',4''-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material[J].Applied Physics Letters,1994,65(7):807-809.
    [56] Antoniadis H, Giebeler C, Bradley D D C, et al. Charge injection from indium tinoxide into a starburst amine and its implications for organic light-emitting diodes:Organic Light-Emitting Materials and Devices II,1998[C].1998/12/16.
    [57] Giebeler C, Antoniadis H. Space-charge-limited charge injection from indium tinoxide into a starburst amine and its implications for organic light-emitting diodes[J].Applied Physics Letters,1998,72(19):2448-2450.
    [58] Giebeler C, Antoniadis H, Bradley D D C, et al. Influence of the hole transport layeron the performance of organic light-emitting diodes [J]. Applied Physics Letters,1999,85(1):81-98.
    [59] Huang J, Pfeiffer M, Werner A, et al. Low-voltage organic electroluminescent devicesusing pin structures[J]. Applied Physics Letters,2002,80(1):139-141.
    [60] Zhou X, Pfeiffer M, Blochwitz J, et al. Very-low-operating-voltage organiclight-emitting diodes using a p-doped amorphous hole injection layer[J]. AppliedPhysics Letters,2001,78(4):410-412.
    [61] Tao S L, Peng Z K, Zhang X H, et al. Highly Efficient Non-Doped Blue OrganicLight-Emitting Diodes Based on Fluorene Derivatives with High Thermal Stability[J].Advanced Functional Materials,2005,12(10):1716-1721.
    [62] Hung L S, Chen C H. Recent progress of molecular organic electroluminescentmaterials and devices[J]. Materials Science and Engineering: R: Reports,2002,39(5-6):143-222.
    [63] Tao S, Lee C S, Lee S, et al. Efficient blue and white organic light-emitting devicesbased on a single bipolar emitter[J]. Applied Physics Letters,2007,91(1):13507-13509.
    [64] Li Z H, Wong M S, Fukutani H, et al. Synthesis and light-emitting properties ofbipolar oligofluorenes containing triarylamine and1,2,4-triazole moieties.[J]. Organicletters,2006,8(19):4271-4274.
    [65] Ando S, Nishida J, Fujiwara E, et al. Novel p-and n-Type Organic Semiconductorswith an Anthracene Unit[J]. Chemistry of Materials,2005,17(6):1261-1264.
    [66] Crouch D J, Skabara P J, Heeney M, et al. Hexyl-substituted oligothiophenes with acentral tetrafluorophenylene unit: crystal engineering of planar structures for p-typeorganic semiconductors.[J]. Chemical communications,2005,17(6):1465-1467.
    [67] Facchetti A, Yoon M, Stern C L, et al. Building blocks for n-type organic electronics:regiochemically modulated inversion of majority carrier sign inperfluoroarene-modified polythiophene semiconductors.[J]. Angewandte Chemie,2003,42(33):3900-3903.
    [68] Jin Y, Kim J, Lee S, et al. Novel Electroluminescent Polymers with Fluoro Groups inVinylene Units[J]. Macromolecules,2004,37(18):6711-6715.
    [69] Crouch D J, Skabara P J, Lohr J E, et al. Thiophene and Selenophene CopolymersIncorporating Fluorinated Phenylene Units in the Main Chain: Synthesis,Characterization, and Application in Organic Field-Effect Transistors[J]. Chemistry ofMaterials,2005,17(26):6567-6578.
    [70] Tao S, Li L, Yu J, et al. Bipolar Molecule as an Excellent Hole-Transporter forOrganic-Light Emitting Devices[J]. Chemistry of Materials,2009,21(7):1284-1287.
    [71] Li Z, Wu Z, Jiao B, et al. Novel2,4-difluorophenyl-functionalized arylamine ashole-injecting/hole-transporting layers in organic light-emitting devices[J]. ChemicalPhysics Letters,2010,527:36-41.
    [72] Li Z, Wu Z, Fu W, et al. Versatile Fluorinated Derivatives of Triphenylamine asHole-Transporters and Blue-Violet Emitters in Organic Light-Emitting Devices[J].The Journal of Physical Chemistry C,2012,116(38):20504-20512.
    [73] Zhang Q, Hu Y F, Cheng Y X, et al. Carbazole-based hole-transporting materials forelectroluminescent devices[J]. Synthetic Metals,2003,137(1-3):1111-1112.
    [74] Zhang Q, Chen J, Cheng Y, et al. Novel hole-transporting materials based on1,4-bis(carbazolyl)benzene for organic light-emitting devices[J]. Journal of MaterialsChemistry,2004,14(5):895-900.
    [75] Li J, Ma C, Tang J, et al. Novel Starburst Molecule as a Hole Injecting andTransporting Material for Organic Light-Emitting Devices[J]. Chemistry of Materials,2005,17(3):615-619.
    [76] Li J, Liu D, Li Y, et al. A High Tg Carbazole-Based Hole-Transporting Material forOrganic Light-Emitting Devices[J]. Chemistry of Materials,2005,17(5):1208-1212.
    [77] Shen J Y, Lee C Y, Huang T, et al. High Tg blue emitting materials forelectroluminescent devices[J]. Journal of Materials Chemistry,2005,15(25):2455-2463.
    [78] Wu Y, Li Y, Gardner S, et al. Indolo[3,2-b]carbazole-based thin-film transistors withhigh mobility and stability.[J]. Journal of the American Chemical Society,2005,127(2):614-618.
    [79] Li Y, Wu Y, Gardner S, et al. Novel Peripherally Substituted Indolo[3,2-b]carbazolesfor High-Mobility Organic Thin-Film Transistors[J]. Advanced Materials,2005,17(7):849-853.
    [80] Zhao H, Tao X, Wang F, et al. Structure and electronic properties oftriphenylamine-substituted indolo[3,2-b]carbazole derivatives as hole-transportingmaterials for organic light-emitting diodes[J]. Chemical Physics Letters,2007,439(1-3):132-137.
    [81] Zhao H, Tao X, Wang P, et al. Effect of substituents on the properties ofindolo[3,2-b]carbazole-based hole-transporting materials[J]. Chemical Physics Letters,2007,8(6):673-682.
    [82] He Q, Lin H, Weng Y, et al. A Hole-Transporting Material with ControllableMorphology Containing Binaphthyl and Triphenylamine Chromophores[J]. AdvancedFunctional Materials,2006,16(10):1343-1348.
    [83] Lee J Y, Park J, Min S, et al. A thermally stable hole injection material for use inorganic light-emitting diodes[J]. Thin Solid Films,2007,515(20-21):7726-7731.
    [84] Wei B, Liu J, Zhang Y, et al. Stable, Glassy, and Versatile Binaphthalene DerivativesCapable of Efficient Hole Transport, Hosting, and Deep-Blue Light Emission[J].Advanced Functional Materials,2010,20(15):2448-2458.
    [85] Gao J, Heeger A J, Lee J Y, et al. Soluble polypyrrole as the transparent anode inpolymer light-emitting diodes[J]. Synthetic Metals,1996,82(3):221-223.
    [86] Jonas F, Schrader L. Conductive modifications of polymers with polypyrroles andpolythiophenes[J]. Synthetic Metals,1991,41(3):831-836.
    [87] Yang Y, Heeger A J. Polyaniline as a transparent electrode for polymer light-emittingdiodes: Lower operating voltage and higher efficiency[J]. Applied Physics Letters,1994,64(10):1245-1247.
    [88] Yang Y, Westerweele E, Zhang C, et al. Enhanced performance of polymerlight-emitting diodes using high-surface area polyaniline network electrodes[J].Journal of Applied Physics,1995,77(2):694-698.
    [89] Cao Y, Treacy G M, Smith P, et al. Solution-cast films of polyaniline: Optical-qualitytransparent electrodes[J]. Applied Physics Letters,1992,60(22):2711-2713.
    [90] Huh D H, Chae M, Bae W J, et al. A soluble self-doped conducting polyaniline graftcopolymer as a hole injection layer in polymer light-emitting diodes[J]. Polymer,2007,46(25):7236-7240.
    [91] Carter S A, Angelopoulos M, Karg S, et al. Polymeric anodes for improved polymerlight-emitting diode performance[J]. APPLIED PHYSICS LETTERS,1997,70(16):2067-2069.
    [92] Lee T W, Zaumseil J, Kim S H, et al. High-efficiency soft-contact-laminated polymerlight-emitting devices with patterned electrodes[J]. ADVANCED MATERIALS,2004,16(22):2040-2045.
    [93] Kim J S, Friend R H, Grizzi I, et al. Spin-cast thin semiconducting polymer interlayerfor improving device efficiency of polymer light-emitting diodes[J]. APPLIEDPHYSICS LETTERS,2005,87(2):23506.
    [94] Park J, Kwon Y, Lee T. Layer-by-layer spin self-assembled hole injection layerscontaining a perfluorinated ionomer for efficient polymer light-emitting diodes[J].MACROMOLECULAR RAPID COMMUNICATIONS,2007,28(12):1366-1372.
    [95] Elschner A, Bruder F, Heuer H W, et al. PEDT/PSS for efficient hole-injection inhybrid organic light-emitting diodes[J]. Synthetic Metals,2000,111-112:139-143.
    [96] Wu S, Han S, Zheng Y, et al. pH-neutral PEDOT:PSS as hole injection layer inpolymer light emitting diodes[J]. Organic Electronics,2011,12(3):504-508.
    [97] Groenendaal L, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and ItsDerivatives: Past, Present, and Future[J]. Advanced Materials,2000,12(7):481-494.
    [98] Ni J, Yan H, Wang A, et al. MOCVD-derived highly transparent, conductive zinc-andtin-doped indium oxide thin films: precursor synthesis, metastable phase film growthand characterization, and application as anodes in polymer light-emitting diodes.[J].Journal of the American Chemical Society,2005,127(15):5613-5624.
    [99] Yan H, Lee P, Armstrong N R, et al. High-performance hole-transport layers forpolymer light-emitting diodes. Implementation of organosiloxane cross-linkingchemistry in polymeric electroluminescent devices.[J]. Journal of the AmericanChemical Society,2005,127(9):3172-3183.
    [100] Wong K W, Yip H L, Luo Y, et al. Blocking reactions between indium-tin oxide andpoly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assemblymonolayer[J]. Applied Physics Letters,2002,80(15):2788-2790.
    [101] de Jong M P, van IJzendoorn L J, de Voigt M J A. Stability of the interface betweenindium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) inpolymer light-emitting diodes[J]. Applied Physics Letters,2000,77(14):2255-2257.
    [102] Pingree L S C, MacLeod B A, Ginger D S. The Changing Face of PEDOT:PSS Films:Substrate, Bias, and Processing Effects on Vertical Charge Transport[J]. Journal ofPhysical Chemistry C,2008,112(21):7922-7927.
    [103] Kemerink M, Timpanaro S, de Kok M M, et al. Three-Dimensional Inhomogeneitiesin PEDOT:PSS Films[J]. The Journal of Physical Chemistry B,2004,108(49):18820-18825.
    [104] Lee T, Park J, Kwon Y, et al. Spin-assembled nanolayer of a hyperbranched polymeron the anode in organic light-emitting diodes: the mechanism of hole injection andelectron blocking.[J]. Langmuir,2008,24(21):12704-12709.
    [105] Huh D H, Chae M, Bae W J, et al. A soluble self-doped conducting polyaniline graftcopolymer as a hole injection layer in polymer light-emitting diodes[J]. Polymer,2007,48(25):7236-7240.
    [106] Shi W, Fan S, Huang F, et al. Synthesis of novel triphenylamine-based conjugatedpolyelectrolytes and their application as hole-transport layers in polymericlight-emitting diodes[J]. Journal of Materials Chemistry,2006,16(24):2387-2394.
    [107] Chu Y, Cheng C, Yen Y, et al. A New Supramolecular Hole Injection/TransportMaterial on Conducting Polymer for Application in Light-Emitting Diodes.[J].Advanced materials,2012,24:1894-1898.
    [108] Cheng C, Chu Y, Huang P, et al. Bioinspired hole-conducting polymers for applicationin organic light-emitting diodes[J]. Journal of Materials Chemistry,2012,22(35):18127-18131.
    [109] Shieh Y, Hsiao K. Thermal properties of silane-grafted water-crosslinkedpolyethylene[J]. Journal of Applied Polymer Science,1998,70(6):1075-1082.
    [110] Huang Q, Evmenenko G A, Dutta P, et al. Covalently bound hole-injectingnanostructures. Systematics of molecular architecture, thickness, saturation, andelectron-blocking characteristics on organic light-emitting diode luminance, turn-onvoltage, and quantum efficiency.[J]. Journal of the American Chemical Society,2005,127(29):10227-10242.
    [111] Cui J, Huang Q, Veinot J G C, et al. Interfacial Microstructure Function in OrganicLight-Emitting Diodes: Assembled Tetraaryldiamine and Copper PhthalocyanineInterlayers[J]. Advanced Materials,2002,14(8):565-569.
    [112] Huang Q, Evmenenko G, Dutta P, et al. Molecularly “Engineered” AnodeAdsorbates for Probing OLED Interfacial Structure Charge Injection/LuminanceRelationships: Large, Structure-Dependent Effects[J]. Journal Of The AmericanChemical Society,2003,125(48):14704-14705.
    [113] Cui J, Huang Q, Wang Q, et al. Nanoscale Covalent Self-Assembly Approach toEnhancing Anode/Hole-Transport Layer Interfacial Stability and Charge InjectionEfficiency in Organic Light-Emitting Diodes[J]. Langmuir,2001,17(7):2051-2054.
    [114] Huang F, Cheng Y, Zhang Y, et al. Crosslinkable hole-transporting materials forsolution processed polymer light-emitting diodes[J]. Journal of Materials Chemistry,2008,18(38):4495-4509.
    [115] Li W, Wang Q, Cui J, et al. Covalently Interlinked Organic LED Transport Layers viaSpin-Coating/Siloxane Condensation[J]. Advanced Materials,1999,11(9):730-734.
    [116] Yan H, Scott B J, Huang Q, et al. Enhanced Polymer Light-Emitting DiodePerformance Using a Crosslinked-Network Electron-Blocking Interlayer[J]. AdvancedMaterials,2004,16(21):1948-1953.
    [117] Lee S, Lyu Y, Lee S. The use of cross-linkable interlayers to improve deviceperformances in blue polymer light-emitting diodes[J]. Synthetic Metals,2006,156(16-17):1004-1009.
    [118] Paul G K, Mwaura J, Argun A A, et al. Cross-Linked Hyperbranched ArylaminePolymers as Hole-Transporting Materials for Polymer LEDs[J]. Macromolecules,2006,39(23):7789-7792.
    [119] Niu Y H, Munro A M, Cheng Y J, et al. Improved Performance from MultilayerQuantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum DotLayer[J]. Advanced Materials,2007,19(20):3371-3376.
    [120] Cheng Y, Liu M S, Zhang Y, et al. Thermally Cross-Linkable Hole-TransportingMaterials on Conducting Polymer: Synthesis, Characterization, and Applications forPolymer Light-Emitting Devices[J]. Chemistry of Materials,2008,20(2):413-422.
    [121] Lim B, Hwang J, Kim J Y, et al. Synthesis of a new cross-linkableperfluorocyclobutane-based hole-transport material.[J]. Organic letters,2006,8(21):4703-4706.
    [122] Bacher A, Erdelen C H, Paulus W, et al. Crosslinkable hole-transport materials forpreparation of multilayer organic light emitting devices by spin-coating[J].Macromolecular Rapid Communications,1999,20(4):224-228.
    [123] Jiang X Z, Liu S, Liu M S, et al. Perfluorocyclobutane-Based ArylamineHole-Transporting Materials for Organic and Polymer Light-Emitting Diodes[J].Advanced Functional Materials,2002,12(1112):745-751.
    [124] Bayerl M S, Braig T, Nuyken O, et al. Photo-Cross-Linked Triphenylenes as NovelInsoluble Hole Transport Materials in Organic LEDs[J]. Macromolecular RapidCommunications,1999,32(14):4551-4557.
    [125] Müller D C, Braig T, Nothofer H, et al. Efficient Blue Organic Light-Emitting Diodeswith Graded Hole-Transport Layers[J]. ChemPhysChem,2000,1(4):207-211.
    [126] Schelter J, Mielke G F, K hnen A, et al. Novel non-conjugated main-chainhole-transporting polymers for organic electronics application.[J]. MacromolecularRapid Communications,2010,31(17):1560-1567.
    [127] Zacharias P, Gather M C, Rojahn M, et al. New crosslinkable hole conductors forblue-phosphorescent organic light-emitting diodes.[J]. Angewandte Chemie,2007,46(23):4388-4392.
    [128] Xia C, Advincula R C. Surface Grafting of Conjugated Polymers onto Self-assembledMonolayer Modified Conducting Substrates by Electrochemistry[J]. Chemistry ofMaterials,2001,13(5):1682-1691.
    [129] Chou M, Leung M, Su Y O, et al. Electropolymerization of Starburst Triarylaminesand Their Application to Electrochromism and Electroluminescence[J]. Chemistry ofMaterials,2004,16(4):654-661.
    [130] Baba A, Onishi K, Knoll W, et al. Investigating Work Function TunableHole-Injection/Transport Layers of Electrodeposited Polycarbazole Network ThinFilms[J]. The Journal of Physical Chemistry B,2004,108(49):18949-18955.
    [131] Inaoka S, Roitman D B, Advincula R C. Cross-Linked Polyfluorene PolymerPrecursors: Electrodeposition, PLED Device Characterization, and Two-SiteCo-deposition with Poly(vinylcarbazole)[J]. Chemistry of Materials,2005,17(26):6781-6789.
    [132] Gather M C, K hnen A, Falcou A, et al. Solution-Processed Full-Color PolymerOrganic Light-Emitting Diode Displays Fabricated by Direct Photolithography[J].Advanced Functional Materials,2007,17(2):191-200.
    [133] Gong X, Benmansour H, Bazan G C, et al. Red electrophosphorescence from a solublebinaphthol derivative as host and iridium complex as guest.[J]. The journal of physicalchemistry. B,2006,110(14):7344-7348.
    [134] Zhou G, Wong W, Yao B, et al. Triphenylamine-Dendronized Pure Red IridiumPhosphors with Superior OLED Efficiency/Color Purity Trade-Offs[J]. AngewandteChemie,2007,19(7):1167-1169.
    [135] Groenendaal L, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) and ItsDerivatives: Past, Present, and Future[J]. Advanced Materials,2000,12(7):481-494.
    [136] Lampert M A, Mark P. Current Injection in Solids[M]. New York: Academic Press,1970.
    [137] Kundu P, Justin Thomas K R, Lin J T, et al. High-Tg Carbazole Derivatives asBlue-Emitting Hole-Transporting Materials for Electroluminescent Devices [J].Advanced Functional Materials,2003,13(6):445-452.
    [138] Grigalevicius S, Blazys G, Ostrauskaite J, et al.3,6-Di(N-diphenylamino)-9-phenylcarbazole and its methyl-substituted derivative asnovel hole-transporting amorphous molecular materials[J]. Synthetic Metals,2002,128(2):127-131.
    [139] Thomas K R J, Lin J T, Tao Y T, et al. Novel Green Light-Emitting CarbazoleDerivatives: Potential Electroluminescent Materials[J]. Advanced Materials,2000,12(24):1949-1951.
    [140] Hu N, Xie S, Popovic Z D, et al. Novel high Tg hole-transport molecules based onindolo[3,2-b]carbazoles for organic light-emitting devices[J]. Synthetic Metals,2000,111-112(24):421-424.
    [141] Beginn C, Gra ulevi ius J V, Strohriegl P, et al. Synthesis ofpoly(9-hexyl-3,6-carbazolyleneethynylene) and its model compounds[J].Macromolecular Chemistry and Physics,1994,195(7):2353-2370.
    [142] B ssler H. Charge transport in random organic photoconductors[J]. AdvancedMaterials,1993,5(9):662-665.
    [143] Stolka M, Yanus J F, Pai D M. Hole transport in solid solutions of a diamine inpolycarbonate[J]. The Journal of Physical Chemistry,1984,88(20):4707-4714.
    [144] Chen C H, Shi J, Tang C W. Recent developments in molecular organicelectroluminescent materials[J]. Macromolecular Symposia,1998,125(1):1-48.
    [145] Yokoyama D, Sasabe H, Furukawa Y, et al. Molecular Stacking Induced byIntermolecular C-H···N Hydrogen Bonds Leading to High Carrier Mobility inVacuum-Deposited Organic Films[J]. Advanced Functional Materials,2011,21(8):1375-1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700