用户名: 密码: 验证码:
二氧化氯与多环芳烃污染物的反应活性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃类化合物是环境中广泛存在的一类持久性有机污染物,具有水溶性低、稳定性强、生物降解能力差、致癌性强等特性,对环境和人类健康构成极大的威胁,引起环境科学家的极大关注,也一直是各国严格控制的污染物。目前,国内外对多环芳烃类污染物的处理技术主要有生物修复法、光解法、吸附法、氧化法和超声降解法等,但均处于研究的起步阶段,且这些技术尚不能应用到实际工程中。ClO_2是一种具有良好应用前景的优良消毒剂和强氧化剂,对水中的许多有机和无机污染物均具有较好的去除效果,而且几乎不与水中的有机物形成THMs等有机卤代物,在水处理中具有广阔的应用前景。本论文以ClO_2为氧化剂,系统地研究了其对多环芳烃类化合物的去除效果及二者之间的反应动力学,探讨了ClO_2氧化处理多环芳烃类污染物的可行性,为ClO_2处理实际污染水体中多环芳烃类污染物的应用奠定了理论基础。
     本文以萘、二氢苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽及苯并[a]芘等9种典型多环芳烃为模拟污染物,对ClO_2处理多环芳烃类污染物的效果进行了系统研究。结果表明,在同等反应条件下,ClO_2对9种多环芳烃的去除率有很大区别,处理效果最好的为二氢苊、蒽、苯并[a]蒽及苯并[a]芘等4种,去除率在90%以上;其次为芴、菲及芘,去除率在30~70%之间;处理效果最差的为萘和荧蒽,120min内的去除率不超过20%。以去除效果较好的二氢苊、蒽、芘、苯并[a]蒽和苯并[a]芘为代表,研究了影响多环芳烃去除效果的因素如ClO_2投量、反应时间和溶液pH等,结果表明ClO_2投量和反应时间对多环芳烃去除率的影响明显,而pH在3.2~9.7的范围内对其没有太大影响。确定出ClO_2氧化这5种多环芳烃的最佳工艺条件为:ClO_2投量分别为30、5、40、35和5mg/L,反应时间分别为90、30、120、120和30min,pH为7.2。最佳条件下这5种多环芳烃的最大去除率分别为96.0%、99.0%、62.8%、90.0%和99.5%。
     论文对ClO_2与模拟水体中二氢苊、蒽、芘、苯并[a]蒽和苯并[a]芘等5种多环芳烃类化合物的反应动力学进行了研究。结果表明,ClO_2和多环芳烃类化合物的反应级数对二者均为一级,总反应级数为二级。在pH6.8、反应温度20℃的条件下,ClO_2与芘、苯并[a]蒽、二氢苊、蒽和苯并[a]芘的反应速率常数分别为0.141、0.605、0.722、6.780和7.795 L/(mol·s),这与它们去除率的大小顺序一致。考察了溶液pH、ClO_2浓度和温度对ClO_2与蒽反应速率常数k的影响,结果表明k值受溶液pH和ClO_2浓度的影响不显著,但却随温度的增加而增大。
     论文对ClO_2氧化蒽的反应机理进行了研究。结果表明,在pH6.8、温度293K条件下,ClO_2与蒽的反应活化能为44.235 kJ / mol,表明ClO_2与蒽的反应为一吸热过程且在常规水处理条件下即可发生。通过GC-MS技术和红外光谱技术对ClO_2与蒽的反应产物进行了鉴定,结果表明反应的主要产物为9, 10-蒽醌。通过分析蒽与ClO_2的反应特性,在单电子转移理论的基础上,对ClO_2与蒽的反应机理进行了讨论,并提出了二者可能的反应途径。
     采用MOPAC软件中的AM1和PM3方法计算了9种多环芳烃的分子轨道能量和原子净电荷,通过比较各多环芳烃分子的最高占据分子轨道能量及其分子结构特点,阐述了它们与ClO_2之间反应活性的差别。并通过鉴定二氢苊、蒽、苯并[a]蒽和苯并[a]芘等4种多环芳烃与ClO_2反应生成的醌类产物,比较了各分子中形成羰基的位置与其所带原子净电荷之间的关系,结果表明这几种多环芳烃分子中反应活性最强的碳位均位于带负电荷较多的碳原子上。本研究将量子化学参数用于评价多环芳烃的反应活性并对其分子中的反应活性碳位进行了预测,是量子化学在描述多环芳烃性质方面的一个新的尝试。
     论文讨论了ClO_2处理实际生产废水中多环芳烃的影响因素。以某石化厂炼油废水的二沉池出水为研究对象,采用正交试验方法,对ClO_2处理其中残留多环芳烃污染物及COD的影响因素包括ClO_2投量、反应时间、温度、pH等进行了深入探讨。结果表明,经ClO_2处理后,二沉池出水中所含的多环芳烃及联苯类化合物得到有效去除,且COD值得到进一步的降低。试验所考察的各影响因素的主次顺序为:ClO_2投量→反应时间→温度→pH。最佳工艺参数为:ClO_2投量10mg/L,反应时间60min,pH6.9,温度20℃,此时多环芳烃及COD去除率分别达到64.55%和75.62%。本论文为ClO_2应用于处理水中的多环芳烃类化合物提供了科学依据,具有重要的理论意义和实际应用价值。
Polycyclic aromatic hydrocarbons (PAHs) represent an important group of persistent organic pollutants, which are known to be poor water-soluble, recalcitrant, microbial resistent and carcinogenic. PAHs have received considerable attention and been strictly controlled for its potential threat to environment and people’s health. Nowadays, removal technologies for PAHs mainly include bioremediation, photolysis, adsorption, oxidation and sonolysis et al., however these techniques could not be applied to practice because researches in this field were just underway. As a sort of excellent disinfectant and oxidant, chlorine dioxide (ClO2) has promising future for its excellent ability in removing both organic and inorganic contaminants without forming halo-substituted organics such as trihalogenmethane (THMs). The reactivity and mechanism of PAHs with ClO2 and the feasibility of ClO2 in oxidizing PAHs were studied systematically in this dissertation, which established the theoretical basis for the application of ClO2 in removing PAHs in practical wastewater.
     The effects of chlorine dioxide (ClO2) on the degradation of nine typical PAHs including naphthalene (NPH), acenaphthene (ACE), fluorene (FLR), phenanthrene (PHN), anthracene (ANTH), fluoranthene (FLN), pyrene (PYR), benzo[a]anthracene (BaA) and benzo[a]pyrene (BaP) in aqueous solution were investigated systematically and the results showed that ClO2 has different removal ratio to these nine PAHs under identical conditions, with the best value above 90% for ACE, ANTH, BaA and BaP, and 30% to 70% for FLU, PHN and PYR, and less than 20% for NPH and FLN within 120min. Several factors included ClO2 dosage, reaction time and pH of solution influencing the removal ratio of ACE, ANTH, PYR, BaA and BaP have been studied by batch experiments. The results showed that the removal ratios of these PAHs were affected by the ClO2 dosage and reaction time instead of pH. The removal ratios of ACE, ANTH, PYR, BaA and BaP could reach to their maximum as approximately 96.0%、99.0%、62.8%、90.0% and 99.5% respectively under the conditions as follows: the ClO2 dosage 30, 5, 40, 35 and 5 mg/L, reaction time 90, 30, 120, 120 and 30 min, and pH 7.2.
     Kinetics about ACE, ANTH, PYR, BaA and BaP in simulated aqueous solution with ClO_2 were studied and the results showed that the reaction was pseudo-first order with respect to both PAHs and ClO_2, and the general reaction could be described as second order. Under the condition with pH and temperature of solution was 6.8 and 20℃, the reaction rate constants (k) was 0.141, 0.605, 0.722, 6.780 and 7.795L/(mol·s) for PYR, BaA, ACE, ANTH and BaP respectively, which has the same sequence with their removal ratios. The value of pH and concentration of ClO_2 have slight effects on the value of k, which however increased with the enhancement of temperature.
     ANTH was selected as the representative to study the reaction mechanism with ClO_2. The reaction activation energy was calculated as 44.235 kJ/mol, which revealed that the ANTH-ClO_2 reaction is an endothermic process and can occur under conventional water treatment conditions. The oxidation products formed in the ANTH-ClO_2 reaction were tentatively identified by gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrum (FTIR) and the results showed that the main product was 9,10-anthraquinone. Through analyzing the reaction properties of ClO_2 and ANTH, the mechanism of ANTH-ClO_2 reaction was discussed and the possible pathway was proposed based on the theory of single electron transfer (SET).
     AM1 (Austin model 1) and PM3 (parametrisation 3 of modified neglect of diatomic overlap) methods in MOPAC computation application were used to calculate the molecular orbital energy and net charges on each atom of these nine PAHs. Their different reactivity with ClO_2 was expatiated by comparing the HOMO (highest occupied molecular orbit) energy and structural proterties of each PAHs. Respective quinonoid compounds of ACE, ANTH, BaA and BaP oxidized by ClO_2 were identified and the relationship between the oxidation positions and atom net charge of PAHs were examined, the results revealed that the most reactive positions were in accord with carbons with highest neglect charges. Parameters of quantum chemistry were induced to evaluate the reactivity and predicting the oxidation positions of PAHs in this study, which is a new tempt for parameters of quantum chemistry in describing properties of PAHs.
     Orthogonal experiment was used to discuss detailedly the influence factors as ClO_2 dosage, reaction time, temperature and pH in removing the residual PAHs and COD in secondary effluent from petroleum refinery by ClO_2 in this chapter. Results showed that after treated by ClO_2, the PAHs and biphenyl in secondary effluent were removed effectively and COD value was reduced further. Sequence of the influence factors investigated in the experiment is: ClO_2 dosage > reaction time > temperature > pH. The optimal parameters were as follows: ClO_2 dosage 10mg/L, reaction time 60min, pH 6.9 and temperature 20℃, under which the removal ratios of PAHs and COD were 64.55% and 75.62%, respectively. Work of this dissertation has great theoretical and practical value as it provided enough scientific basis for the application of ClO_2 in removing PAHs from aqueous solution.
引文
1 胡家会, 张永忠. 持久性有机污染物(POPs)的研究进展. 科技导报. 2006, 24(7): 27~29
    2 楚敬杰, 张世秋, 许小梅. 《斯德哥尔摩公约》的实施进展及相关国际活动研究. 安全与环境学报, 2004, 4(增刊): 58
    3 黄君礼. 新型水处理剂-ClO2技术及其应用.化学工业出版社. 2002: 13~22
    4 C.Y. Chang. The Formation and Control of Disinfection By-products using Chlorine Dioxide. Chemosphere. 2000, 43:1181~1186
    5 G. Gordon, B. Bubnis. Environmentally Friendly Methods of Water Disinfection: The Chemistry of Alternative Disinfectants. Progress in Nuclear Energy. 2000,17(1): 37~40
    6 W. Schmidt, U. Bohme, F. Sacher, et al. Minimization of Desinfection By-products Formation in Water Purification Process using Chlorine Dioxide-Case Studies. Ozone Sci Eng. 2000, (2): 215~226
    7 J. ?wietlik, A. D?browska, U. Raczyk-Stanis?awiak, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research. 2004, 38: 547~558.
    8 J. ?wietlik, U. Raczyk-Stanis?awiak, S. Bi?ozor, et al. Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon. Water Research. 2002, 36: 2328~2336.
    9 邓丽, 黄君礼, 赵振业. 二氧化氯对有机染料脱色效果的研究. 环境化学. 2001,20(1): 59~64
    10 周明耀. 环境有机污染与致癌物质. 四川大学出版社,1990: 62~103
    11 王连生. 有机污染化学. 高等教育出版社, 2002:
    12 刘淑琴, 王鹏. 环境中的多环芳烃与致癌性. 山东师大学报(自然科学版). 1995,10(4): 435~440
    13 占新华, 周立祥. 多环芳烃在土壤-植物系统中的环境行为. 生态环境. 2003,12(4): 487~492
    14 S.V. Kakareka, T.I. Kukharchyk and V.S. Khomich. Study of PAH emission from the solid fuels combustion in residential furnaces. Environmental Pollution. 2005, 133: 383~387.
    15 H.H. Yanga, L.T. H, H.C. Liua, et al. Polycyclic aromatic hydrocarbon emissions from motorcycles. Atmospheric Environment. 2005,39: 17~25
    16 K.M. Lehto, E. Vuorimaa and H. Lemmetyinen. Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescene. Journal of Photochemistry and Photobiology A: Chemistry. 2000, 136: 53~60
    17 S.P. Wu, S. Tao, Z. H. Zhang, et al. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China. Atmospheric Environment. 2005, 39: 7420~7432
    18 史坚, 黄成臣, 徐鸿等. 杭州市大气总悬浮颗粒物中多环芳烃的 HPLC 分析. 环境化学. 2003, 22(6): 629~630
    19 H.B.Zhang, Y.M. Luo, M.H. Wong, et al. Distributions and Concentrations of PAHs in Hong Kong Soils. Environmental Pollution. 2006,141: 107~114
    20 L. Tang, X.Y. Tang, Y.G. Zhu, et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International. 2005,31: 822 ~ 828
    21 R.A. Doong, Y.T. Lin. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research, 2004, 38: 1733~1744
    22 S.R. Amaraneni. Distribution of pesticides, PAHs and heavy metals in prawn ponds near Kolleru lake wetland, India. Environment International. 2006, 32: 294~302
    23 曲健, 解天民. 生物组织样品中微量多环芳烃的测定. 中国环境监测. 2004, 20(2): 25~27
    24 M.J. Smith, T.H. Flowers, H.J. Duncan, et al. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environmental Pollution. 2006, 141: 519~525
    25 王文兴, 束勇辉, 李金化. 煤烟粒子中 PAHs 光化学降解的动力学. 中国环境科学. 1997, 17(3): 97~102
    26 包贞, 潘志彦, 杨晔等. 环境中多环芳烃的分布及降解. 浙江工业大学学报. 2003, 31(5): 528~533
    27 郭楚玲, 哈里德, 郑天凌等. 海洋微生物对多环芳烃的降解. 台湾海峡.2001, 20(1): 43~47
    28 李军, 张干, 祁士华等. 多环芳烃在城市湖泊气-水界面上的交换. 湖泊科学. 2004, 16(3): 238~244.
    29 石璇, 杨宇, 徐福留等. 天津地区地表水中多环芳烃的生态风险. 环境科学学报. 2004, 24(4): 619~624
    30 R.M. Vilanova, P. Fernández, C. Martínez, et al. Polycyclic aromatic hydrocarbons in remote mountain lake waters. Water Research. 2001, 35(16): 3916~3926
    31 M. Murakamia, F. Nakajimab and H. Furumai. Modelling of runoff behaviour of particle-bound polycyclic aromatic hydrocarbons (PAHs) from roads and roofs. Water Research. 2004, 38: 4475~4483
    32 李志萍, 陈肖刚, 陈爱玖等. 环境中的多环芳烃及其生物恢复技术.世界地质. 2002,21(4): 358~363
    33 E.Manoli, C. Samara. Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends in Analytical Chemistry. 1999,18(6): 417~428
    34 A. Menzies, B. Potockib and J. Santodonato. Exposure to carcinogenic PAHs in the environment. Environmental Science Technology. 1992, 26: 1278
    35 李咏梅, 王郁, 林逢凯等. 多环芳烃在天然水体中的自净机理研究-沉积物对多环芳烃的吸附过程模拟. 中国环境科学. 1997,17(3): 208~211
    36 朱必凤, 邓少平, 林志红. 芳烃羟化酶与鲫鱼组织富集多环芳烃和代谢释放的关系. 中国环境科学. 1996, 16(1): 38~41
    37 罗雪梅, 刘昌明, 何孟常. 土壤与沉积物对多环芳烃类有机物的吸附作用. 生态环境. 2004, 13(3): 394~398
    38 G. Upal, W.T. Jeffrey. Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediments. Environmental Science Technology. 2001, 35(17): 3468~3475
    39 B. Xing. The effect of the quality of soil organic matter on sorption of naphthalene. Chemosphere. 1997, 35: 633~642
    40 A.M. Mastral, T. García, M.S. Callén, et al. Influence of sorbent characteristics on the adsorption of PAC II. Adsorption of PAH with different numbers of rings. Fuel Processing Technology. 2002, 77–78: 365~372
    41 占新华, 周立祥. 多环芳烃在土壤-植物系统中的环境行为. 生态环境.2003, 12(4): 487~492
    42 杨若明. 环境中有毒有害化学物质的污染和监测. 中央民族大学出版社. 2001: 178
    43 周文敏, 傅德黔, 孙崇光. 水中优先控制污染物黑名单. 中国监测, 1990, 6(4): 1~3
    44 蹇兴超. 多环芳烃(PAH)的污染. 环境保护,1995, 10:31~33
    45 段小丽, 魏复盛. 苯并(a)芘的环境污染、健康危害及研究热点问题. 世界科技研究与发展. 2001, 24(1): 11~17
    46 莫里林 R.T,博伊德 R. N 著. 有机化学:(下册). 复旦大学有机化学教研室译. 北京:科学出版社. 1992: 1084~1085
    47 袁彦华, 孙连军, 郭秀兰. 多环芳烃化合物环境污染研究. 环境与健康杂志, 1999, 16 (3): 182~185
    48 J.P. Andrew, C. Daniel and M.H. Thomas. Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by nocardic erythropolis. Water Environment Research, 1998, 70(1): 351~355
    49 陈宝梁, 马战宇, 朱利中. 表面活性剂对苊的增溶作用及应用初探. 环境化学. 2003, 22(1): 53~58
    50 L. Lei, A.P. Khodadoust, M.T. Suidana, et al. Biodegradation of sediment- bound PAHs in field-contaminated sediment. Water Research, 2005, 39: 349~361
    51 S.H. Yu, L. Ke, Y.S. Wong, et al. Tam. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments. Environment International. 2005, 31: 149~154
    52 孙铁珩, 宋玉芳, 许华夏等. 植物法生物修复 PAHs 和矿物油污染土壤的调控研究. 应用生态学报. 1999, 10(2): 225~229
    53 J.L. Schoor, L.A. Light and S.C. Mccutcheon. Phyremedaition of organic and nutrient contaminants. Environmental Science Technolgy. 1995, 29: 318~323
    54 马文漪, 杨柳燕. 环境生物工程. 南京:南京大学出版社,1998.125
    55 E.Torries, I. Bustos-Jamies and S.L. Borgne. Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B: Environmental. 2003, 46: 1~15
    56 A. Majcherczyk, C. Johannes and A. Hüttermann. Oxidation of Polycyclic Aromatic Hydrocarbons (PAH) by Laccase of Trametes Versicolor. EnzymeMicrobial Technology. 1998, 22(5): 335~341
    57 M.J. Angove, M.B. Fernandes and J. Ikhsan. The sorption of anthracene onto goethite and kaolinite in the presence of some benzene carboxylic Acids. Journal of Colloid and Interface Science. 2002, 247: 282~289
    58 P. ?imko, P. ?imon and V. Khunová. Removal of polycyclic aromatic hydrocarbons from water by migration into polyethylene. Food Chemistry. 1999,64: 157~161
    59 H. Gaboriau, A. Saada. Influence of heavy organic pollutants of anthropic origin on PAH retention by kaolinite. Chemosphere. 2001,44: 1633~1639
    60 J. Chen, S. Chen. Removal of polycyclic aromatic hydrocarbons by low-density polyethylene from liquid model and roasted meat. Food Chemistry. 2005, 90: 461~469
    61 T.B. Boving, W. Zhang. Removal of aqueous-phase polynuclear aromatic hydrocarbons using aspen wood fibers. Chemosphere. 2004,54: 831~839
    62 J. Sabaté, J.M. Bayona and A.M Solanas. Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere. 2001, 44: 119~124
    63 K.M. Lehto, E. Vuorimaa and H. Lemmetyinen. Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence. Journal of Photochemistry and Photobiology A: Chemistry. 2000, 136: 53~60
    64 B.D.Lee, M. Hosomi and A. Murakami. Fenton oxidation with ethanol to degrade anthracene into biodegradable 9, 10-anthraquinon: a pretreatment method for anthracene-contaminated soil. Water Science Technology. 1998, 38(7): 91~97
    65 B.W. Bogan, V. Trbovic and J.R. Paterek. Inclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils. Chemosphere. 2003, 50: 15~21
    66 K. Nam, W. Rodriguez and J. J. Kukor. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere. 2001, 45: 11~20
    67 A. Kornmüller, M. Cuno and U. Wiesmann. Selective ozonation of polycyclic aromatic hydrocarbons in oil/water emulsions. Water Science Technology. 1997, 35(4): 57~64
    68 S.J. Masten, S.H.R. Davies. Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. Journal of Contaminant Hydrology. 1997, 28: 327~335
    69 A. Bernal-Martínez, H. Carrère, D. Patureau, et al. Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochemistry 2005, 40: 3244~3250
    70 Y. J. An, E. R. Carraway. PAH degradation by UV/H2O2 in perfluorinated surfactant solutions. Water Research. 2002, 36: 309~314
    71 F. J. Rivas, F. J. Beltrán and B. Acedo. Chemical and photochemical degradation of acenaphthylene. Intermdeiate identification. Journal of Hazardous Materials. 2000, B75: 89~98
    72 C. Little, M. J. Hepher and M. El-Sharif. The sono-degradation of phenanthrene in an aqueous environment. Ultrasonics. 2002, 40: 667~674
    73 E. Psillakis, G. Goula, N. Kalogerakis, et al. Degradation of polycyclic aromatic hydrocarbons in aqueous solution by ultrasonic irradiation. Journal of Hazardous Materials. 2004, B108: 95~102
    74 Z. Laughrey, E. Bear, R. Jones, et al. Tarr. Aqueous sonolytic decomposition of polycyclic aromatic hydrocarbons in the presence of additional dissolved species. Ultrosonics Sonochemistry. 2001, 8: 353~357
    75 J. E. Taylor, B. B. Cook and M. A. Tarr. Dissolved organic matter inhibition of sonochemical degradation of aqueous polycyclic aromatic hydrocarbons. Ultrosonics Sonochemistry. 1999, 6:175~183
    76 黄君礼, 李绍峰, 崔崇威. 饮用水消毒剂ClO2的研究进展. 哈尔滨建筑大 学学报. 2001, 34(5): 39~43
    77 贺启环, 黄志明. 二氧化氯的生产应用和标准化. 化工标准化与质量监督. 1999, 5: 17~21
    78 J.L.Huang, L.Wang and N.Q.Ren. Disinfection Effect of Chlorine Dioxide on Bacteria in Water. Water Research. 1997,31(3): 607~613
    79 G.A. Gagnona, J.L. Randa, K.C. O’Learyb, et al. Disinfectant efficacy of chlorite and chlorine dioxide indrinking water biofilms. Water Research. 2005, 39: 1809~1917
    80 N. Singh, R.K. Singh, A.K. Bhunia, et al. Efficacy of Chlorine Dioxide, Ozone, and Thyme Essential Oil or a Sequential Washing in KillingEscherichia coli O157:H7 on Lettuce and Baby Carrots. Lebenamittel Wissenschaft and Technologie. 2002, 35(8): 720~729
    81 K.M. Ruffell, J.L. Rennecker and B.J. Mari?as. Inactivation of Cryptosporidium Parvum Oocysts with Chlorine Dioxide. Wat. Res. 2000,34(3): 868~876
    82 田卫, 李军, 李新华. 二氧化氯(ClO2)对苹果表面金黄色葡萄球菌 杀菌规律的研究. 食品研究与开发. 2006,127(1): 145~149
    83 邓金花, 吴清平, 阙绍辉等. 二氧化氯对小球藻杀灭效果的试验观察. 中国消毒学杂志. 2005,22(3): 282~283
    84 C.P. Chauret, C. Radziminski, M. LePuil, et al. Chlorine Dioxide Inactivation of Cryptosporidium Parvum Oocysts and Bacterial Spore Indicators. Appl Environ Microbiol. 2001, (7): 2993~3001
    85 武海霞, 黄廷林, 陈千皎等. 二氧化氯灭活供水系统中摇蚊幼虫的实验研究. 西安建筑科技大学学报(自然科学版). 2006,38(1): 42~46
    86 谭伟, 杜金华. 二氧化氯在鲜食“巨峰”葡萄表面对大肠杆菌杀灭效果的研究. 中国食物与营养. 2006(2): 32~34
    87 C. Radziminski, L. Ballantyne and J. Hodson. Disinfection of Bacillus Subtilis Spores with Chlorine Dioxide: a Bench-Scale and Pilot-Scale Study. Water Research. 2002,36(6): 1629~1639
    88 王新为, 李劲松, 金敏等. SARS 冠状病毒的抵抗力研究. 环境与健康杂志. 2004,21(2): 67~71
    89 S.Y. Lee, G. I. Dancer, S.S Chang, et al. Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on apple surfaces. International Journal of Food Microbiology. 2006,108: 364~368
    90 W.R.Weissinger, L.R.Beuchat. Comparison of Aqueous Chemical Treatments to Eliminate Salmonella on Alfalfa Seeds. Journal of Food Protection. 2000, (3): 1475~1482
    91 A.C. Elia, V. Anastasi and A.J.M. D?rr. Hepatic antioxidant enzymes and total glutathione of Cyprinuscarpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere. 2006,64: 1633~1641
    92 王丽. 二氧化氯应用中纯度、形体及致突变研究. 哈尔滨工业大学博士后研究工作报告. 2001:25
    93 黄君礼, 王学风, 赵国华等. 二氧化氯对水中无机污染物的去除效果研究. 环境化学. 1996, 15(10): 82~90
    94 A. Katz, N. Narkis. Removal of Chlorine Dioxide Disinfection By-products by Ferrous Salts. Water Research. 2001, 35(1): 101~108
    95 K.H. Park, H.I. Kim and R.P. Das. Selective acid leaching of nickel and cobalt from precipitated manganese hydroxide in the presence of chlorine dioxide. Hydrometallurgy. 2005, 78: 271~277
    96 宋怀俊, 韩绿霞, 李玉等. 二氧化氯处理农药厂含硫化物废水的研究. 浙江化工. 2005, 36(2): 38~40
    97 D.S. Jina, B.R. Deshwalb, Y.S. Parkc, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. Journal of Hazardous Materials. 2006, B135: 412~417
    98 J.R.Parga, D.L.Cocke. Oxidation of Cyanide in a Hydrocyclone Reactor by Chlorine Dioxide. Desalination. 2001,140(3): 289~296
    99 汪吉章, 蔡忠林, 岳丽君等. 二氧化氯销毁氰化物的应用研究. 环境污染治理技术与设备. 2006, 7(2): 134~136
    100 施阳, 蒋谦. 二氧化氯处理含铁氰化物废水的研究. 环境污染治理技术与设备. 2003, 12(4): 56~58
    101 曹瑞钰, 叶辉, 张克勤. 二氧化氯的产生、氧化和消毒作用. 化工标准化与质量监督. 1999, 10: 17~21
    102 邵瑞华, 董文魁, 沈骏等. 二氧化氯作为水处理剂的反应机理探讨. 山西科技. 2004, 1: 29~31
    103 黄君礼, 李绍峰, 崔崇威. 饮用水消毒剂ClO2的研究进展. 哈尔滨建筑大学学报. 2001, 34(5): 39~43
    104 J.R. Parga, S.S. Shukla and F.R. Carrillo-Pedroza. Destruction of Cyanide Waste Solutions using Chlorine Dioxide, ozone and titaniasol. Waste Management. 2003,23(2): 183~191
    105 陈莉荣, 杨曦, 张铁军等. 二氧化氯处理含氰农药废水的研究. 化工技术与开发. 2005, 34(6): 52~54
    106 F.J. Teltran, J.M. Encinar, J.F. Garcia-Araya, et al. Oxidation in Water of Styrene and Methylstyrenes with Chlorine Dioxide. An. Quim. 1992,88(1): 54~61
    107 M.M. Huber, S. Korhonen, T.A. Ternes, et al. Oxidation of pharmaceuticalsduring water treatment with chlorine dioxide. Water Research. 2005, 39: 3607~3617
    108 相会强. 二氧化氯在印染废水处理中的应用. 染料与染色. 2006, 43(3): 53~55
    109 谢春娟, 朱琨, 李剑. 二氧化氯氧化废水中苯胺及其中间产物研究. 兰州交通大学学报(自然科学版). 2006, 25(1): 65~68
    110 J. ?wietlik, E. Sikoraka. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Research. 2004, 38: 3791~3799
    111 J. ?wietlik, U.R. Stanislawiak and S. Bilozor. Effect of Oxidation with Chlorine Dioxide on the Adsorption of Natural Organic Matter on Granular Activated Carbon. Pol. J. Environ. 2002, (2): 435~439
    112 U.R. Stanislawiak, J.?wietlik and A.Dabrowska. Biodegradability of Organic By-Products After Natural Organic Matter Oxidation with ClO2-Case Study. Water Research. 2004, 38(4): 1044~1054
    113 金小元, 陈金龙, 李爱民等. 二氧化氯催化氧化处理含酚废水的研究. 离子交换与吸附. 2003,19(1): 61~66
    114 贺启环, 王琼, 方华. 二氧化氯催化氧化处理染料废水技术的研究. 化工标准·计量·质量. 2005.1: 24~28
    115 Z.Y. Zhao, J.D. Gu, X.J. Fan,et al. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. Journal of Hazardous Materials. 2006, B134: 60~66
    116 黄君礼, 李春兰, 王学风等. 二氧化氯对酚类化合物的去除效果研究. 环境化学. 1998,17(2): 174~179
    117 金小元, 陈金龙, 李爱民等. 二氧化氯催化氧化处理含酚废水的研究. 离子交换与吸附. 2003,19(1): 61~66
    118 李伟然, 胡国勤, 韩绿霞等. 二氧化氯对含酚和含硫化物工业废水处理的研究. 贵州化工. 2005, 30(6): 26~29
    119 范志云, 黄君礼, 王鹏等. 二氧化氯氧化水中苯胺的反应动力学及机理研究. 环境科学. 2004, 25(1): 95~98
    120 A.R. Abdrakhmanova, E.S. Suvorkina. Oxidation of Organic Compounds with Oxygen-containing Chlorine Compounds. Bashk. Khim. Zh. 2000,7(3):6~16
    121 A.V.Rutchin, S.A.Rubtsova and I.V.Loginova. Reactions of Chlorine Dioxide with Organic Compounds. Selective Oxidation of Sulfides to Sulfoxides by Chlorine Dioxide. Russ. Chem. Bull. 2001,50(3): 432~435
    122 A.Dabrowska, J.Swietlik and J.Nawrocki. Formation of Aldehydes upon ClO2 Disinfection. Water Research. 2003,37(5): 1161~1169
    123 K.L.Froese, A.Wolanski and S.E.Hrudey. Factors Governing Odorous Aldehyde Formation as Disinfection By-products in Drinking Water. Water Research. 1999,33(6): 1355~1364
    124 闫秀芬, 肖鹤鸣, 居学海等. 硝基芳烃对梨形四膜虫毒性的 QSAR 研究. 化学学报. 2006, 64(5): 375~380
    125 D. Walter, D. Neuhauser and R. Baer. Quantum interference in polycyclic hydrocarbon molecular wires. Chemical Physics. 2004,299: 139~145
    126 杨频, 高飞. 生物无机化学原理. 北京:科学出身出版社. 2002: 463~465
    127 马尧, 孙占学, 胡宝群. 环境化学中的 QSAR 研究方法. 四川化工. 2006, 9(2): 22~25
    128 文晟. 水体中多环芳烃的TiO2光催化降解研究. 中国科学院研究生院博士学位论文. 2002: 4
    129 D.M. Jerina, H. Yagi and R.E. Lehr. The bay-region theory of carcinogenesis by polycyclic aromatic hydrocarbons. In: Polycyclic Hydrocarbons and Cancer, Vol.1,Environment, Chemistry and Metabolism, H.V. Gelboin and P.O.P. Ts'o, Ed. Academic Press, NY. 1978:173~188
    130 戴乾圜. 化学致癌剂及致癌机理的研究-多环芳烃致癌性能的定量分子轨道模型-“双区”理论. 中国科学. 1979: 964
    131 王连生, 汪小江. 多环芳烃的溶解度与双区理论. 中国科学 B 辑. 1988,9: 906
    132 钟飞, 李良超, 杨军等. 多环芳烃的致癌性与二阶对数连接性指数的相关性研究. 武汉纺织工学院学报. 1999,12(3): 21~24
    133 石灵娟, 周涵, 赵晓光. 多环芳烃结构和荧光强度的 QSAR 研究. 计算机与应用化学. 2004, 21(5): 773~776
    134 陈景文, 王帅杰, 邹善伟等. 不同量子化学算法在多环芳烃光解行为定量结构-性质关系(QSPR)中的应用. 中国环境科学. 1999, 19(2): 102~105
    135 B.D. Lee, M. Iso and M.Hosomi. Prediction of Fenton oxidation positions inpolycyclic aromatic hydrocarbons by Frontier electron density. Chemosphere. 2001, 42: 431~435
    136 黄君礼. 二氧化氯分析技术. 中国环境科学出版社. 2000: 21~30
    137 苏文斌, 朱若华, 强红等. 固相(微)萃取-室温磷光联用技术及其应用. 光谱学与光谱分析. 2004, 24(3): 270~273
    138 齐邦峰, 张会成, 陈立仁等. 萃取-紫外分光光度法测定微晶蜡中 3,4-苯并芘含量. 分析测试技术与仪器. 2003, 9(3): 169~172
    139 陈兆文, 周升如, 王少波. 水质中苯并[a]芘的毛细管气相色谱法分析. 舰船科学技术. 1994,3: 18~22
    140 吴启航, 麦碧娴. 沉积物中多环芳烃的气-质联用测定法. 广东轻工职业技术学院学报. 2004, 3(2): 1~4
    141 李岩, 张晓永, 徐瑞泽等. SPME/HPLC 对水中多环芳烃的定量分析. 环境化学. 2000, 19(4): 382~384
    142 王超英. SPME/HPLC 联用分析环境水样中五种多环芳烃. 贵州科学. 2004, 22(2): 19~23
    143 C.D. Knightes, C.A. Peters. Aqueous phase biodegradation kinetics of 10 PAHs compounds. Environmental engineering scienc. 2003, 20(3): 207~218
    144 Y. Zeng, P.K.A. Hong and D.A.Wavrek Chemical-biological treatment of pyrene. Water Research, 2000, 34 (4): 1157~1172
    145 崔崇威, 黄君礼. 二氧化氯与苯酚的单电子转移反应机理.环境化学. 2003, 22(6): 560~563
    146 范志云. 二氧化氯与水中苯胺类化合物反应动力学及其 QSAR 研究. 哈尔滨工业大学工学博士学位论文. 2004: 41~43
    147 崔崇威. 二氧化氯与酚类化合物的氧化动力学和定量构效关系研究. 哈工大工学博士学位论文. 2001: 39~68
    148 B.D. Lee, M. Hosomi and A. Murakami. Fenton oxidation with ethanol to degrade anthracene into biodegradable 9, 10-anthraquinon: a pretreatment method for anthracene-contaminated soil. Water Science Technology. 1998, 38(7): 91~97
    149 K.E. Hammel, B. Green and W.Z.Gai. Ring fission anthracene by a eukaryote. Pro. Natl. Acad. Sci. USA. 1991, 88: 10605~10608
    150 J.J. Yao, Z.H. Huang and S. J. Masten. The ozonation of benz[a]anthracene: pathway and product identification. Water Research.1998, 32(11): 3235~3244
    151 F.J. Rivas, F.J. Beltrán and B. Acedo. Chemical and photochemical degradation of acenaphthylene. Intermediate identification. Journal of hazardous materials. 2000, B75: 89~98
    152 F.K. Kawahara, B. Davila, S.R. Al-Abed, et al. Polycyclic aromatic hydrocarbons (PAH) release from soil during treatment with Fenton’s reagent. Chemosphere. 1995, 31(9): 4131~4142
    153 王丽, 黄君礼, 柳知非. 二氧化氯对蒽去除效果及反应机理研究. 青岛建筑工程学院学报. 2000, 21(4): 53~56
    154 唐立中, 陈尔廷. 前线轨道理论. 河南师大学报. 1982, 2: 84~97
    155 K. Hiruta, S. Tokita, T. Tachikawa, et al. Precise PPP molecular orbital calculation of the excitation energies of polycyclic aromatic hydrocarbons. Part 5: Spectroactive portion offluoranthene derivatives. Dyes and Pigments. 2000, 44: 123~129
    156 Stein S E, Brown R L. π-Electron properties of large condensed polyaromatic hydrocarbons. J Am Chem Soc, 1987,109: 3721~3729
    157 卢义程, 李天琪, 赵建夫. 湿式空气氧化法处理石油化工废水. 环境导报. 1999, 6: 15~17
    158 黄君礼. 水分析化学(第二版). 中国建筑工业出版社,1997:320-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700