用户名: 密码: 验证码:
外源一氧化氮对盐胁迫下棉苗主要形态和生理性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用室内控制条件下的水培方式,以鲁棉研28为试验材料,设置了三个试验:试验一研究外源一氧化氮(NO)供体硝普钠(SNP)对NaCl胁迫下不同处理时间棉苗生长生理的影响;试验二研究SNP对不同浓度NaCl胁迫下棉苗生长生理的影响;试验三研究不同浓度SNP对棉苗生长生理的影响。结果表明:
     1.随处理时间延长,100 mmol·L~(-1)NaCl严重抑制棉苗生长,株高和茎粗增长缓慢,出叶速度减慢,叶面积减小,子叶脱落早,部分叶片干枯脱落。SNP处理使盐胁迫下棉苗的株高、茎粗和叶面积均缩小,增长子叶生长时间,减轻叶片受伤害程度,延缓叶片衰老。50μmol·L~(-1)SNP处理的棉苗株高增长速率和出叶速度在处理18-25d时超过NaCl处理。
     2.随处理进程,100 mmol·L~(-1)NaCl胁迫下棉苗叶片叶绿素(a+b)含量表现为先增后降的趋势,与对照相比,仅在初期(5d)与对照相当,之后均极显著低于对照,叶绿素b降解速率大于叶绿素a,叶绿素a/b值增高,类胡萝卜素含量降低。本试验条件下,50μmol·L~(-1)SNP仅在处理初期增加叶片叶绿素(a+b)含量和类胡萝卜素含量,后期则无缓解效应;500μmol·L~(-1)SNP则显著提高NaCl胁迫下叶绿素水平,中后期叶绿素a/b略有增加。SNP处理缓解了NaCl胁迫引起的荧光参数Fv/Fm、ΦPSⅡ和qP的降低,其中50μmol·L~(-1)SNP处理效果显著,而对NPQ的降低无缓解效应,500μmol·L~(-1)SNP反而加剧其降低。表明外源NO对NaCl胁迫下棉苗叶片的叶绿素含量和荧光参数有改善效应,利于提高光合能力。
     3.随处理时间延长,100 mmol·L~(-1)NaCl处理前期棉苗叶片可溶性蛋白含量略高于对照,后期则极显著降低,MDA含量变化趋势与蛋白一致,脯氨酸含量则表现出高-低-高-低的趋势。SNP处理使NaCl胁迫下棉苗叶片可溶性蛋白含量水平基本恒定,对后期NaCl胁迫下叶片可溶性蛋白含量的下降起到缓解效应,叶片脯氨酸含量降低,500μmol·L~(-1)SNP处理下脯氨酸含量降低显著。处理25d时不同部位叶片可溶性蛋白、MDA和脯氨酸含量表现不同,SNP对NaCl胁迫下棉苗中、下部叶片的可溶性蛋白含量降低的缓解效应显著,上、下部叶片MDA含量显著降低,脯氨酸含量各部位均降低。可见,外源NO对NaCl胁迫下棉苗部分生理指标有调控效应。
     4.随NaCl胁迫时间进展,棉苗叶片的IAA含量前期(10d)高于对照56%,之后迅速下降;ABA含量前期(20d以前)高于对照64%,之后升高幅度降低,20d至25d高于对照7%-20%;ZR(细胞分裂素的一种)含量一直高于对照30%-50%;GA含量仅在处理15d时略低于对照,其余阶段均高于对照;激素间平衡被打破。50μmol·L~(-1)SNP处理下IAA含量呈先高后低变化,处理20d前降低盐胁迫下ABA含量,GA含量降低,ZR含量先降低后增高;高浓度SNP对IAA影响为先高后低变化,ABA含量略低于盐胁迫,GA含量降低,偶有升高,ZR含量忽高忽低,不稳定。低浓度SNP降低IAA/ABA比值,IAA/ZR与对照趋势相同,先低后高,ZR/ABA前期高于盐胁迫,25d时降低,GA/ABA先高后低。激素含量的变化,可能是导致外源NO对盐胁迫下棉苗体内其它各项生理指标变化的诱因。
     5.处理10d时,轻度盐胁迫受抑制程度轻于高盐胁迫,NaCl提高叶片相对含水量。SNP增加低盐胁迫下叶片比叶重,显著降低了盐胁迫下棉苗茎和根的相对含水量,对盐胁迫下棉苗生物量未有改观。
     6.处理10d时,SNP对低盐胁迫下棉苗叶片叶绿素含量下降无缓解效应,高盐胁迫下缓解效果显著,以50μmol·L~(-1)SNP效果最佳。轻度盐胁迫下,SNP对叶片荧光参数Fv/Fm的下降无缓解,缓解ΦPSⅡ的降低,qP降低,NPQ增加。表明试验二条件下,外源NO对棉苗叶片荧光参数的缓解效果不佳。
     7.处理10d时,随NaCl浓度增大,叶片可溶性蛋白含量、SOD活性、POD活性和CAT活性显著降低;SNP提高NaCl胁迫下棉苗叶片SOD活性,降低CAT活性;SNP提高高盐胁迫下POD活性,低盐胁迫下高浓度SNP降低POD活性。说明外源NO对盐胁迫下棉苗叶片的保护酶活性的降低有部分缓解效应。
     8. SNP对棉苗生长有浓度效应,200~1000μmol·L~(-1)SNP对棉苗生长表现出胁迫症状。50~1000μmol·L~(-1)SNP抑制棉苗节间伸长,此外,茎粗增长和叶面积扩展受抑,棉苗各器官含水量降低,叶柄、茎和侧根干物重显著下降。
     9.棉苗叶片叶绿素含量和Fv/Fm均与SNP浓度成反比,且叶绿素a降低幅度大于叶绿素b。叶绿素a/b值随SNP浓度的增加,表现为先升后降。200~1000μmol·L~(-1)SNP处理,棉苗叶片的叶绿素(a+b)含量、类胡萝卜素含量、叶绿素a/b值和Fv/Fm均显著降低。
     10. 200~1000μmol·L~(-1)SNP处理,棉苗叶片超氧阴离子产生速率、MDA和脯氨酸含量随SNP浓度增大而升高;可溶性蛋白含量降低;SOD活性升高;CAT活性降低,可见该浓度范围不利于棉花生长。POD活性变化不规律,50μmol·L~(-1)SNP处理下降,1000μmol·L~(-1)SNP处理升高,其它处理变化不显著。
As Lu mian yan 28 was the experimental material, and under the conditions of Hydroponic with interior control, three testing program, from which, were set: the first was studies on the effects of different treatment time of exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) on the growth and physiological changing of cotton seedlings under salt (NaCl) stress; and the second was studies on the effects of SNP on indexes above of cotton seedlings under different concentrations NaCl stress; the third one was to research the effects of SNP on the same indexes of cotton seedlings with no stress. The results show that:
     1. With the treatment time prolonged, the growth of cotton seedling was inhibited severely in the treatment of 100 mmol·L~(-1)NaCl. Growth on plant height, stem diameter and leaf emergence rate, were all slowed down. Meanwhile, leaf area decreased, cotyledon abscission became earlier, portion of the blade was withered and fade. For SNP treatment under salt stress, cotton seedling height, stem diameter and leaf area were reduced, cotyledon growth time increased, thus making blade damage degree reduced and , leaf senescence delayed. The growth rate of height and the speed of blade appeared of cotton seedling under 50μmol·L~(-1)SNP processing 18-25d in NaCl stress exceeded that in the treatment of only NaCl.
     2. With the treatment process, chlorophyll (a+b) content of cotton seedling leaf under 100 mmol·L~(-1)NaCl was first increased and then decreased. Comparing with the conrol, only in the initial time (5d) there is no difference, the value of NaCl treatment were significantly lower; the degradation rate of chlorophyll b is higher than the chlorophyll a, chlorophyll a/b ratio increased, and carotenoids content reduced. Under the condition of this experiment, the chlorophyll (a+b) content was increased in the early phase of processing, and then no alleviate effect appeared by 50μmol·L~(-1)SNP under NaCl stress; the chlorophyll content of cotton seedling leaf under NaCl stress increased obviously, and chlorophyll a/b ratio increased slightly in the late phase by 500μmol·L~(-1)SNP. SNP, especially for the concentration of 50μmol·L~(-1)effect better, alleviated NaCl stress, would decreased the fluorescence parameters Fv/Fm,ΦPSⅡand qP. However, the NPQ decreased without remission effect; insteadly, 500μmol·L~(-1)SNP aggravate its reduction. This demonstrated that exogenous nitric oxide alleviated the cotton seedling`s chlorophyll content and chlorophyll fluorescence parameters reducing caused by NaCl stress, which is beneficial to improve the photosynthetic capacity.
     3. In the early time with the 100 mmol·L~(-1)NaCl, soluble protein content of cotton seedling leaf is slightly higher than that of the control, while the latter was decreased significantly; MDA content changing trend was in accorded with trend of protein; proline content showed a high - low - high - low trend. However, soluble protein content level of cotton seedling with SNP treatment under NaCl stress leaf was constant on the whole, and the decreasing effect caused by NaCl stress on the late was alleviated by SNP. The proline content in leaves of cotton seedling under NaCl stress were reduced by SNP, especially for 500μmol·L~(-1)SNP. At processing 25d, the soluble protein, MDA and proline content in leaves of different parts of the cotton seedling were different: decreasing effect of soluble protein contents in middle and lower leaves of cotton seedling under NaCl were alleviated sifnificantly by SNP; MDA content in top and lower leaves of cotton seedling under NaCl stress was decreased by SNP; proline content all parts are reduced. Thus it can be seen, exogenous nitric oxide have a regulatory effect on some physiological indexes of cotton seedling under NaCl stress.
     4. With the NaCl treatment time prolonged, IAA content of cotton seedling leaf in the early stage (10d) was higher as much as 56% than that of the control, and followed by a rapid decline; ABA content in the early stage (20d) was higher as much as 64% than that of the control, then the increase (ranged from 7% to 20% higher than that of the control) of ABA content decrease; ZR (one kind of cytokinin) content has been 30%-50% higher than that of the control; GA content were almost always higher than that of the control, but only at 15d when it slightly lower than the control; hormone balance was broken. In the treatment of 50μmol·L~(-1)SNP, IAA content showed increasing then decreasing trend; The content of ABA and GA decreased during the treatment of 20 days; ZR content first decreased and then increased. High concentration of SNP affect IAA content with the first tall hind low change; ABA content slightly lower than that of the salt stress; GA content decreased, but rised occasionally; ZR content was fluctuated and unstable. Low concentrations of SNP lower IAA / ABA ratio, IAA/ZR with the same trend- lower after the first high to the control. In early time, ZR/ABA was higher than salt stress, and decreased at 25d; GA/ABA first tall hind low. Changes in hormone content may be the caused of exogenous nitric oxide on cotton seedling under salt stress in other various physiological changes the incentive.
     5. In the treatment of 10 days, the degree of cotton seedling inhibited under mild salt stress was lighter than that under high salt stress, the leaf relative water content was improved by NaCl stress. With SNP treatment, the specific leaf weight of cotton seedling under NaCl stress was increased, the relative moisture content of shoot and root of cotton seedling under NaCl stress was decreased significantly, while the biomass has not changed.
     6. In the treatment of 10 days, no remission effect of SNP on chlorophyll content of cotton seedling under salt stress decreased. But obvious relief effect under high salt stress, especially 50μmol·L~(-1)SNP effect is best. Under mild salt stress, SNP effected on chlorophyll fluorescence parameters Fv / Fm decline without relief, but alleviatedΦPSⅡdecreased, qP decreased and NPQ increases. It suggested that exogenous nitric oxide on cotton seedling chlorophyll fluorescence parameters effect of poor relief in the second scheme condition.
     7. In the treatment of 10 days, Soluble protion content, SOD activity, POD activity and CAT activity of cotton seedling leaf was significantly decreased with the increasing of NaCl concentration; SNP increased SOD activity of cotton seedling under NaCl stress leaf, reduce the activity of CAT; POD activity was improved by SNP under high concentration NaCl, and was reduced by high concentration SNP under mild NaCl stress. This indicated that exogenous nitric oxide partially alleviates the lower activity of protective enzymes caused by NaCl stress.
     8 SNP showed concentration effect on the growth of cotton seedling. Stress symptoms would appear on cotton seedling under 200~1000μmol·L~(-1)SNP. Internode enlongation, stem diameter growth and blade expansion of cotton seedling was inhibited, cotton seedling organs moisture content is reduced, and dry weight of leaf, stem and root decreased significantly with 50~1000μmol·L~(-1)SNP.
     9 leaf chlorophyll content and Fv/Fm of cotton seedling were inversely to SNP concentrations, and chlorophyll a showed larger reduction amplitude than chlorophyll b. Chlorophyll a/b values increased with along SNP concentration, taking on rising and then descending performance. For 200 to 1000μmol·L~(-1)SNP treatment, the content of chlorophyll (a+b) and carotenoid, chlorophyll a/b and Fv/Fm of cotton seedling were all reduced significantly.
     10. Superoxide anion production rate, MDA and proline content, and the activity of SOD of cotton seedling leaf increased; soluble protein content and CAT activity decreased with the SNP concentration change from 200 to 1000μmol·L~(-1). So, the concentration range is not conductive to the growth of cotton. The POD activity change is various, which reduced under 50μmol·L~(-1)SNP processing and increased under 1000μmol·L~(-1)SNP. Meanwhile, other treatments did not change significantly.
引文
[1]李付广,李秀兰,李凤莲,等.盐胁迫对陆地棉愈伤组织的影响[J].棉花学报, 1994, 6(1): 37-40.
    [2]周桃华. NaCl胁迫对棉子萌发及幼苗生长的影响[J].中国棉花, 1995, 22(4): 11-12.
    [3]陈国安.钠对棉花生长及钾钠吸收的影响[J].土壤, 1992, 24(4): 201-204.
    [4]贾玉珍,朱禧月,唐予迪,等.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报, 1987, 21(1): 30-41.
    [5] Levitt J. Responses of Plants to Environmental Stress (2ed.), 1980.
    [6] Sharma S K et al. Saline Environment and Plant Growth. [J]. Agro Botanical Publishers (India), 1986.
    [7]罗宾主编(陈恺元等译).棉花生理学[M].上海科技出版社, 1983.
    [8]叶武威,刘金定.氯化钠和食用盐对棉花种子萌发的影响[J].中国棉花, 1994, 21(3): 14-15.
    [9]刘国强,鲁黎明.棉花品种资源耐盐性鉴定研究[J].作物品种资源, 1993, (2): 21-22.
    [10]谢得意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花, 2000, 27(9): 12-13.
    [11]孙小芳,郑青松,刘友良.盐胁迫下不同基因型棉花萌发生长和离子吸收特性[J].棉花学报, 2001, 13(3): 134-137.
    [12] Gouia H, Ghorbal MH, Touraine B. Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton [J]. Plant Physiol, 1994(105): 1409-1418.
    [13]唐明星,陈晓铃,成少华,等. NaCl胁迫对棉花苗期生理特性的影响[J].现代农业科技, 2009, (20): 33,43.
    [14] Ahmad S, Khan N, Iqbal M Z, et al. Salt tolerance of cotton (Gossypium hirsutumL.) [J]. Asian J Plant Sci, 2002, 1(6): 715-719.
    [15] Longenecker D E. The influence of high sodium in soil upon fruiting and shedding, boll characteristics, fibre porperties and yields of two cotton species [J]. Soil Sci., 1974, 118: 387-396
    [16] Longenecker D E. The influence of soil solinity upon fruiting and shedding, boll characteristics, fibre porperties and yields of two cotton species [J]. Soil Sci., 1973, 115: 294-302.
    [17] Razzouk S. Effects of salinity on cotton yield and quality. Field Crop Res., 1991, 26: 305-314.
    [18] Cramer G R,Lauchli A, Epstein E. Effects of NaCl and CaCl2 on ionactivities in complex nutrient and root growth of cotton [J]. Plant Physiology, 1986(81): 792-797.
    [19]王素平,郭世荣,李璟,等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J]. 2006, 17(10): 1883-1888.
    [20]周玲玲,孟亚利,王友华,等.盐胁迫对棉田土壤微生物数量与酶活性的影响[J].水土保持学报, 2010, 24(2): 241-246.
    [21] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation [J].New Phytol. 1993, 125: 27-58.
    [22] Ssiram P K, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants [J]. Current Sci, 2004, 86(3): 407-421.
    [23]高雁,娄恺,李春.盐分胁迫下棉花幼苗对外源甜菜碱的生理响应[J].农业工程学报, 2011, 27(S1): 244-248.
    [24]陈翠霞,于元杰,王洪钢,等.棉花耐盐变异体的RAPD分析及抗盐生理研究[J].作物学报, 1999, 25(5): 643-646.
    [25]刘金定,朱召勇,樊宝香.棉花品种在不同浓度盐胁迫下的生理表现[J].中国棉花, 1995, 22(9): 16-17.
    [26]辛承松,董合忠,孔祥强,等.棉花不同类型品种苗期耐盐性差异研究[J].中国农学通报, 2011, 27(05): 180-185.
    [27]沈法富,尹承佾,高凤珍,等.多效唑浸种提高棉花幼苗的耐盐性效应[J].中国棉花, 1996, 23(5): 9-11.
    [28]张国伟,张雷,唐明星,等.土壤盐分对棉花功能叶气体交换参数和叶绿素荧光参数日变化的影响[J].应用生态学报, 2011, 22(7): 1771-1781.
    [29] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 33: 317-345
    [30]辛承松,唐薇,王洪征,等.鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应[J].棉花学报, 2002, 14(2): 108-112.
    [31]李付广,李风莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响[J].河北农业大学学报, 1994, 17(3): 52-55.
    [32] GOSSET D R, Millhollon E P, Lucas MC. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivar of cotton [J]. Crop Sci, 1994, 34: 706-714.
    [33]辛承松,董合忠,唐薇,等.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报, 2005, 17(5): 309-313.
    [34] Hufton C A, Besford RT, Wellburn RA. Effects of NO (+NO2) pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter CO2 enrichment [J]. New Phytol, 1996, 133: 495-501.
    [35] Durner J, Klessig DF. Nitric oxide as a signal in plants [J]. Current Opinion in Plant Biology,,1999, 2: 369-374.
    [36] Delledonne M, Xia Y, Dixon RA, et al. Nitric oxide functions as a signal in plant disease resistance [J]. Nature, 1998, 394: 585-588.
    [37] Durner J, Wendehemme D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose [J]. Proceedings of the National Academy of Sciences of USA, 1998, 95: 10328-10333.
    [38]张显忠,曹洪林. NO、NOS的性质及检测方法[J].陕西医学检验, 1997, 12(4): 62-64.
    [39]田茂友,金作衡.一氧化氮的性质及其生理学作用[J].四川生理科学杂志, 2006, 28(3): 121-122.
    [40] Wojtaszek P. Nitric oxide in plants: to NO or not.Phytochemistry, 2000, 54: 1-4.
    [41]王迎伟.一氧化氮与肾脏疾病[J].徐州医学院学报, 1999, 19(2): 169.
    [42]陈红焱,宋松泉.植物一氧化氮生物学的研究进展[J].植物学通报, 2005, 22(6): 723-737.
    [43] Neill S J, Desikan R, Hancock J T. Nitric oxide signaling in plants [J]. New Phytology, 2003, 159(1): 11-35.
    [44] Yamasaki H, Sakihama Y. Simultaneous Production of nitric oxide and Peroxynitrite by Plant nitrate reductase: in vitro evidence for the NR-dependent formation [J]. FEBS Lett, 2000, 468(1): 89-92.
    [45] Cooney R V,Harwood P J,Custer L J, et al. Light-mediated conversion of nitrogen dioxide to nitrie oxide by carotenoids [J]. Envirkon Health PersPect, 1994, 102: 460-462.
    [46] Marletta M A. Nitric oxide synthase structure and mechanism [J]. J Biol Chem, 1993, 268: 12231-12234.
    [47] Cueto M, Hernandez-Perera O, Martin R, et al. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus [J]. FEBS Lett, 1996, 398(2-3): 159-164.
    [48] Ninneman H, Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in phototcondition of Neurospora crassa [J]. Phototchem Photobiol, 1996, 64: 393-398.
    [49] Ribeiro EA Jr, Cunha FQ, Tamashiro WMSC, et al. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells [J]. FEBS Lett, 1999, 445: 283-286.
    [50] Barroso JB, Corpas FJ, Carteras A, et al. Localization of nitric-ox-ide synthase in plant peroxisomes [J]. J Biol Chem, 1999, 274(51): 36729-36733.
    [51] Pedroso MC, Magalhaes JR, Durzan D. Nitric oxide induces cell death inTaxuscells [J].Plant Sci, 2000, 157(2): 173-180.
    [52] Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: New features of an old enzyme [J].Trends Plant Science, 1999, 4(4): 128-129.
    [53] Corpas FJ, Barroso JB, Carreras A, et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006, 224: 246-254.
    [54] Tian QY, Sun DH, Zhao MG, et al. Inhibition of nitric oxide synthase(NOS) underlies aluminum‐ induced inhibition of root elongation in Hibiscus moscheutos [J]. New Phytologist, 2007, 174: 322-331.
    [55] Bright J, Desikan R, Hancock JT, et al. ABA‐ induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J]. The Plant Journal, 2006, 45: 113-122.
    [56] Xu MJ, Dong JF. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells [J].Science in China Series C: Life Sciences, 2007, 50: 799-807.
    [57] Dordas C, Rivoal J, Hill RD. Plant haemoglobins, nitric oxide and hypoxic stress [J]. Annals of Botany, 2003, 91: 173-178.
    [58] Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plant nitratereductase in vivo and in vitro [J].Journal of Experimental Botany, 2002, 53: 103-110.
    [59] Harrison R. Structure and function of xanthine oxidoreductase: where are we now? [J]. Free Radical Biology and Medicine, 2002, 33: 774-797.
    [60] Beligni MV, LamattinaL. Nitric oxide in plants: the history is just beginning [J]. Plant Cell Environ, 2001, 24: 267-278.
    [61] Caroa, Puntarulo S. Nitric oxide generation by soybean embryonic axes. Possible effect on mitochondrial function [J]. Free Radic Res, 1999, 31(sup): 205-212.
    [62] Beligni M V, Lamattima L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J]. Planta, 2000, 210: 215-221.
    [63] KOPYRAM, GWOZDZ EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus [J]. Physiology and Biochemistry, 2003, 41: 1011-1017.
    [64]王俊红. NO及SA信号分子诱导植物抗逆调控基因的动态研究[D].兰州:甘肃农业大学, 2007.
    [65]张少颖,任小林,程顺昌,等.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响[J].植物生理学通论, 2004, 40(3): 309-310.
    [66]杨亚平,田春娥,姜孝成,等.外源一氧化氮(NO)供体对水稻种子萌发和幼苗生长的影响[J].种子, 2008, 27(6): 18-21.
    [67]章玉平,黄碧仟.外源NO供体硝普钠浸种对3种草花种子萌发的影响[J].安徽农业科学, 2008, 36(20): 8460-8461.
    [68] Klepper L A. Nitric oxide emission from soybean leaves during in vivo nitrate reductase assays [J].Plant Physiol., 1987, 85: 96-99.
    [69] Giba Z, Grubisic D, Todorovic S, et al. Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of Empress tree seeds [J]. Plant Growth Res., 1998, 26: 175-181.
    [70] LESHEM Y Y, HARAMATY E.The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. Foliage [J]. Journal of Plant Physiology, 1996, 148: 258-263.
    [71]熊杰,符冠富,杨永杰,等.一氧化氮在植物根系圣战发育过程中的作用进展[J].华中农业大学学报, 2011, 30(3): 375-393.
    [72]李想.一氧化氮(NO)对水稻萌发、生长及相关机理的研究[D].北京:首都师范大学, 2005.
    [73]曹冰.一氧化氮在绿豆侧根发生过程中的作用研究[D].西安:陕西师范大学, 2005.
    [74] He Y, Tang RH, Hao Y, et al . Nitric oxide represses the Arabidopsis floral transition [J]. Science, 2004, 305: 1968-1971.
    [75] Crawford NM, Guo FQ. New insights into nitric oxide metabolism and regulatory functions [J]. Trends in Plant Science, 2005, 10: 195-200.
    [76] Leshem Y Y, Pinchasov Y. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening ofstrawberriesFragaria anannasa (Duch.) and avocados Persea americana Mill [J].J.Exp. Bot., 2000, 51(349): 1471-1473.
    [77]任小林,张少颖,于建娜.一氧化氮与植物成熟衰老的关系[J].西北植物学报, 2004, 24(1): 167-171.
    [78]程顺昌,任小林,饶景萍,等.一氧化氮(NO)对采后青椒某些生理生化特性与品质的影响[J].植物生理学通讯, 2005, 41(3): 322-324.
    [79]朱树华,周杰,束怀瑞.一氧化氮对草莓果实衰老的影响[J].园艺学报, 2005, 32(4): 589-593.
    [80]朱树华,孙丽娜,周杰.一氧化氮对猕猴桃果实营养品质和活性氧代谢的影响[J].果树学报, 2009, 26(3): 334-339.
    [81]张爱玲,贺军民.一氧化氮在光延缓小麦叶片衰老中的作用[J].西北植物学报, 2009, 29(3): 0512-0517.
    [82]史庆华,赖齐贤,朱祝军,等.一氧化氮在植物中的生理功能[J].细胞生物学杂志, 2005, 27: 39-42.
    [83]张兰,张彬彬,戚哲民.一氧化氮在植物体内的产生及其生物学功能[J].滨州学院学报, 2006, 22(6): 62-66.
    [84] Couvea CM C P, Souza J F, Magalhaes A C N, et al. NO-releasing substances that induce growth elongation in maize root segments [J]. Plant Growth Rugul, 1997, 21: 183-187.
    [85] Pagnussat G C, Simontacchim, Puntarul S, et al. Nitric oxide is required for root organo genesis [J]. Plant Physiol, 2002, 129: 954-856.
    [86] Scherer G F E, Holk A. NO donors mimic and NO inhibit or inhibit cytokinin action in beta lain accumulation in Amoranthus candatus [J]. Plant Growth Regul. 2000, 32: 345-350.
    [87]齐秀东.一氧化氮在植物体内的生理作用研究进展(综述)[J].河北科技师范学院学报, 2008, 22(3): 17-22.
    [88] Neill SJ, Desikan R, Clarke Aet al. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells [J]. Plant Physiol, 2002, 128(1): 13-16.
    [89] Cooney R V, Harwood P J, Custer I J, et al. Light mediated conversion of nitrogen dioxide to nitric oxide by carotenoids [J].Environ.Health Persp, 1994, 102: 460-462.
    [90] Leshem Y Y, Wills R B H. Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce [J]. Biologia Plantarum, 1998, 41: 110-117.
    [91] Leshem Y Y, Wills R B H, KU V V V. Evidence for the function of the free radical gas-nitric oxide(NO) as an en-dogenousmaturation and senescence regulating factor in higher plant [J]. Plant Physiol Biochem, 1998, 36: 825-833.
    [92] Tun N N, Holk A, Scherer G F E. Rapid increase of NO release in plant cell cultures induced by cytokinin [J]. FEBS Lett, 2001, 509(2): 174-176.
    [93] Leshem Y Y, Wills R, Ku V. Applications of nitric oxide (NO) for postharvest control [J]. ActaHort, ISHS, 2001, 553: 571-575.
    [94] Delledonne M, Xia YJ, Dixon RA, et al. Nitric oxide functions as a signal in plant diseaseresistance [J]. Nature, 1998, 394: 585-588.
    [95] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP_ribose [J]. Proc NatlAcad Sci USA, 1998, 95: 10328-10333.
    [96] Klessig D F, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense [J]. Proc NatlAcad Sci USA, 2000, 97: 8849-8855.
    [97] Durner J, Klessig D F. Nitric oxide as a signal in plants [J]. Current Opinion in Plant Biology, 1999, 2: 369-374.
    [98] Garcia-Mata C, LamattinaL. Niric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [J]. Plant Physiol, 2001, 126(3): 1196-1204.
    [99]赵翔,王棚涛,闻玉,等.外源NO提高小麦幼苗抗旱性的生理机制[J].西北植物学报, 2008, 28(10): 2028-2034.
    [100]相昆,李宪利,王晓芳,等.水分胁迫下外源NO对核桃叶绿素荧光的影响[J].果树学报, 2006, 23(4): 616-619.
    [101]姜义宝,杨玉荣,郑秋红.外源一氧化氮对干旱胁迫下苜蓿幼苗抗氧化酶活性和叶绿素荧光特性的影响[J].干旱地区农业研究, 2008, 26(2): 65-68.
    [102]邵瑞鑫,上官周平.外源一氧化氮供体SNP对受旱小麦光合色素含量和PSⅡ光能利用能力的影响[J].作物学报, 2008, 34(5): 818-822.
    [103]曹慧,王孝威,邹岩梅,等.外源NO对干旱胁迫下平邑甜茶幼苗叶绿素荧光参数和光合速率的影响[J].园艺学报, 2011, 38(4): 613-620.
    [104]吴嘉,杨红玉,罗燕芹,等. SNP对干旱胁迫下拟南芥的生理影响[J].西北农业学报, 2010, 19(12): 94-97.
    [105]邱宗波,李金亭,郭君丽.外源一氧化氮对干旱胁迫小麦幼苗生长和生理特性的影响[J].安徽农业科学, 2008, 36(17): 7095-7097.
    [106]王宪叶.外源一氧化氮缓解旱害小麦幼苗的氧化伤害与促进侧根生长的研究[D].南京:南京农业大学, 2006.
    [107]赵丽.一氧化氮对干旱胁迫下两种生态型芦苇愈伤组织的生理作用机制研究[D].兰州:兰州大学, 2007.
    [108]李慧,张倩,王金科,等.外源NO对干旱胁迫下小麦幼苗抗氧化酶活性的影响[J].江西农业学报, 2010, 22(12): 1-3.
    [109]王俊红,魏小红,龙瑞军,等.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的影响[J].甘肃农业大学学报, 2008, 43(1): 77-81.
    [110]闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响[J].作物学报, 2008, 34(2): 344-348.
    [111]马向丽,魏小红,龙瑞军,等.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报, 2005, 25(6): 1269-1274.
    [112]徐洪雷,于广建.一氧化氮(NO)对黄瓜低温胁迫的缓解作用[J].东北农业大学学报, 2007, 38(5): 606-608.
    [113]徐洪雷.一氧化氮对黄瓜盐胁迫及低温胁迫缓解作用的研究[D].哈尔滨:东北农业大学,2006.
    [114]吴锦程,陈伟健,蔡丽琴,等.外源NO对低温胁迫下枇杷幼苗抗氧化能力的影响[J].林业科学, 2010, 46(9): 73-78.
    [115]汤红玲,李江,陈惠萍.外源一氧化氮对香蕉幼苗抗冷性的影响[J].西北植物学报, 2010, 30(10): 2028-2033.
    [116]吴雁斌,王一航,张武,等.低温下硝普钠对马铃薯试管苗生理指标的影响[J].湖南农业科学, 2010, (13): 41-43.
    [117]樊怀福,杜长霞,朱祝军.外源NO对低温胁迫下皇姑幼苗生长、叶片膜脂过氧化和光合作用的影响[J].浙江农业学报, 2011, 23(3): 538-542.
    [118]宋丽莉.两种生态型芦苇愈伤组织对高温胁迫的生理响应及信号转导[D].兰州:兰州大学, 2006.
    [119]杨伟,陈发棣,陈素梅,等.一氧化氮对高温胁迫下菊花生理特性的影响[J].南京农业大学学报, 2011, 34(1): 41-45.
    [120]阮海华,沈文飚,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报, 2001, 46: 1993-1997.
    [121]吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗生理影响[J].中国农业科学, 2006, 39(3): 575-581.
    [122] Ruan HH, Shen W B, Ye M B, et al. Protective effects of nitric oxide on salt stress-induced oxidative damages to wheat (Triticum aestivumL) leaves[J]. Chin Sci Bull, 2002, 47: 677-681.
    [123] Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice [J]. Plant Sci, 2002, 163: 515-523.
    [124]樊怀福,李娟,郭世荣,等.外源NO对NaCl胁迫下黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响[J].西北植物学报, 2007, 27(8): 1611-1618.
    [125] Zhao L Q, Zhang F, Guo J K, et al. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed [J]. Plant Physiology, 2004, 134: 849-857.
    [126]刘开力,韩航如,徐颖洁,等.外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用[J].中国水稻科学, 2005, 19(4): 333-337.
    [127]吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗叶片氧化损伤的保护效应[J].江苏农业学报, 2006, 22(3): 276-280.
    [128]孙锋.一氧化氮和亚甲基蓝对盐胁迫抗虫棉根系的抗氧化能力的影响[J].棉花学报, 2009, 21(4): 313-318.
    [129]李源,魏小红,朱蕾,等.外源NO和H2O2对镉胁迫下蚕豆种子萌发及幼苗生长的保护效应[J].安徽农业科学, 2009, 37(11): 4942-4944, 4959.
    [130]于肇瑞,王丽娜,曹辰星,等.外源一氧化氮对镉胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].云南植物研究, 2009, 31(6): 486-492.
    [131]赵宝泉,万宇,杨世湖,等.外源NO供体硝普钠(SNP)对重金属Cd胁迫下水稻幼苗膜脂过氧化及抗氧化酶的影响[J].江苏农业学报, 2010, 26(3): 468-475.
    [132]刘建新,胡浩斌,王鑫.外源一氧化氮供体对镉胁迫下黑麦草幼苗活性氧代谢、光合作用和叶黄素循环的影响[J].环境科学学报, 2009, 29(3): 626-633.
    [133]肖强,杨曙,郑海雷.外源一氧化氮供体硝普钠对水稻叶片中由硒引起的脂质过氧化的调节作用[J].作物学报, 2011, 37(1): 177-181.
    [134]黄忠勤,杨峰,樊继德,等.一氧化氮对汞胁迫下小麦种子萌发及抗氧化代谢的影响[J].安徽农业科学, 2011, 39(9): 5161-5163.
    [135] Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methlviolgen hericides in potato plants. Nitric Oxide, 1999b, 3(3): 199-208.
    [136] Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite the ugly, the uglier and the not SO good: apersonal view ofrecent controversies. Free Radic Research, 1999, 31:651-669.
    [137]喻树迅,宋美珍,范术丽,等.短季棉早熟不早衰生化辅助育种技术研究[J].中国农业科学, 2005, 38(4): 664-670.
    [138]董合忠,王留明,赵洪亮,等.中国棉业科技进步30年——山东篇.中国棉花. 2009, 36(增刊): 12-17.
    [139]孙小芳,刘友良,陈沁.棉花耐盐性研究进展.棉花学报, 1998, 10(3): 118-124.
    [140]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000, 72-75.
    [141] Read S M, Northcote D H. Minimization of variation in the response to different protein of the Coomassic Blue G dye dinding: assay for Protein [J]. Analytical Biochemistry, 1981, 116: 53-64.
    [142]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000, 161-162.
    [143]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000, 64-67.
    [144]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000, 163-165.
    [145]华东师范大学.植物生理学实验指导[M].北京:人民教育出版社, 1980.
    [146]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000, 168-169.
    [147]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2002: 128-129.
    [148]郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社, 2007.
    [149]周述波,林伟,萧浪涛.植物激素对植物盐胁迫的调控[J].琼州大学学报, 2005, 12(2): 27-30.
    [150]廖祥儒,贺普超,朱新产.玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响[J].植物学报, 1997, 39(7): 641-646.
    [151]姚曼红,刘琳,曾幼玲.五大类传统植物激素对植物响应盐胁迫的调控[J].生物技术通报, 2011, 11: 1-6.
    [152]侯振安,李品方,龚元石.激素对植物耐盐性影响的研究现状与展望[J].石河子大学学报(自然科学版), 2000, 4(3): 239-245.
    [153]唐静,车永梅,侯丽霞,等. NO缓解玉米幼苗盐胁迫伤害的生理机制[J].西北植物学报, 2009, 29(10): 2007-2012.
    [154]孟艳艳.一氧化氮对棉花叶片衰老过程中抗氧化物酶及叶片蛋白质组的影响[D].北京:中国农业科学院, 2011.
    [155]刘开力,凌腾芳,刘志兵,等.外源NO供体SNP浸种对盐胁迫下水稻幼苗生长的影响[J].植物生理学通讯, 2004, 40(4): 419-422.
    [156]张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报, 2004, 30(4): 455-459.
    [157]肖强,陈娟,吴飞华,等.外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量及抗氧化酶的影响[J].作物学报. 2008, 34(10): 1849-1853.
    [158]刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗根生长抑制和氧化损伤的缓解效应[J].植物研究, 2008, 28(1), 7-12.
    [159]刘建新,王鑫,李博萍.外源一氧化氮供体对盐胁迫下多裂骆驼蓬幼苗光合作用和叶黄素循环的影响[J].中国沙漠, 2011, 31(1): 137-141.
    [160]郑春芳,姜东,戴延波,等.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响[J].生态学报, 2010, 30(5): 1174-1183.
    [161]张爱慧,朱士农,路双双,等.外源NO对NaCl胁迫下黄瓜幼苗活性氧代谢的影响[J].江西农业学报, 2011, 23(3): 8-10.
    [162]唐静.一氧化氮促进盐胁迫下玉米种子萌发和幼苗生长机制的研究[D].青岛:青岛农业大学, 2008.
    [163]雍山玉.外源一氧化氮(NO)对盐胁迫下辣椒种子萌发和幼苗生理特性的影响[D].兰州:甘肃农业大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700