用户名: 密码: 验证码:
外源NO对低温胁迫下小麦果聚糖合成代谢及其基因表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温是影响作物生长发育的重要环境因子之一,作物如何应对低温一直是世界性的研究课题。本文采用溶液培养法,选用两种不同冬春性的小麦品种(弱春性品种偃展4110,半冬性品种周麦18)作为试验材料,研究了不同浓度外源一氧化氮(NO)供体硝普钠(SNP)对4°C低温胁迫0h、24h、48h和96h,两种小麦幼苗的相对含水量(RWC)、叶绿素、可溶性糖、果聚糖等的含量以及果聚糖合成酶(FBEs)活性的影响,并应用荧光定量PCR(qRT-PCR)方法,探索两种小麦幼叶中FBEs基因表达的动态变化趋势。力求通过在低温胁迫下NO对小麦果聚糖合成代谢的生理及分子机理研究,为缓解小麦低温冷害研究提供一定的理论依据,为我国的粮食安全和食品安全做出一定的努力。本研究的主要结果如下:
     1.低温胁迫下,两种小麦幼叶中的可溶性糖含量、叶绿素a/b值均表现不同程度的上升,叶绿素a和b、类胡萝卜素含量呈现下降趋势,周麦18中RWC明显下降。外源NO能够诱导低温胁迫下两种小麦幼叶果糖、葡萄糖、低聚果糖(DP3)、可溶性总糖、叶绿素a和b以及类胡萝卜素的含量,使周麦18中蔗糖和高聚果糖(DP≥4)的含量出现一定的上升,并降低两种小麦幼叶的RWC,从而保证幼苗的正常生长。
     2.低温胁迫下两种小麦幼叶中果聚糖(DP3和DP≥4)含量均有一定程度的上升。低浓度(0.075mmol·L~(-1))NO能够诱导两种小麦中果聚糖含量;而高浓度(0.125mmol·L~(-1))NO也能够显著诱导周麦18中果聚糖含量,却对偃展4110果聚糖含量表现出一定的抑制效应。说明适宜浓度的外源NO能够诱导低温胁迫下两种小麦幼叶中果聚糖含量,以抵抗外界低温环境,从而减轻低温损伤。
     3.低温胁迫下两种小麦幼叶中果聚糖:果聚糖-1-果糖基转移酶(1-FFT)活性均保持在很低的水平,显著低于FS(蔗糖:蔗糖-1-果糖基转移酶(1-SST)和蔗糖:果聚糖-6-果糖基转移酶(6-SFT))酶活性。高浓度NO大大诱导周麦18中FFT活性,以及偃展4110中FS活性,说明半冬性小麦品种的FFT酶活性以及弱春性小麦品种的FS酶活性受到高浓度NO的诱导,从而促使幼苗叶片中果聚糖的大量积累以抵制低温胁迫所造成的伤害。
     4.低温胁迫下两种小麦幼叶中FBEs基因的表达在转录水平得到提高。外源NO的施加也能够在此水平上对FBEs基因的表达量进行调节,主要表现在:除了周麦18中1-SST和6-SFT基因表达量受高浓度NO抑制外,1-FFT基因以及偃展4110中三种FBEs基因表达量均受到外源NO的诱导。说明外源NO能够在转录水平上对FBEs基因的表达量进行调节,适宜浓度的外源NO能够诱导低温胁迫下两种小麦幼叶中FBEs基因的表达。
     5.比较两个小麦品种,半冬性品种周麦18中,外源NO一方面诱导蔗糖的合成,为果聚糖的合成提供丰富的底物,另一方面诱导FFT基因大量表达,使FFT酶活性大大增加,高聚果糖得以在植株体内大量积累,从而增强植株对外界不良环境的抵抗力;而在弱春性品种中,蔗糖的合成却并未发现受外源NO的诱导,体内果聚糖自行合成的能力较差,却可以明显受低温诱导,且均表现与蔗糖水平显著相关。由此推断,果聚糖的合成可能取决于植物体内高水平的蔗糖浓度。
     目前关于外源NO通过诱导小麦体内果聚糖积累从而缓解植株冷害损伤的报道较少。本研究结论证明,施加适宜浓度的外源NO,可以通过诱导植株体内FBEs基因的表达,从而促进FBEs酶的活性,使果聚糖在幼叶中积累大量,保护幼苗少受或不受低温胁迫的伤害,提高冬小麦的抗寒性。
Low temperature is one of the most important environmental factors affecting plant growth anddevelopment, and the adaptability of plants to low temperature has been a worldwide research project. Thisstudy was to investigate the effect of exogenous nitric oxide (NO) on fructan anabolism and fructanbiosynthesic enzymes (FBEs) expression in seedlings leaves of two wheat (Triticum aestivum L.) cultivars,semi-winter wheat Zhoumai18and weak spring wheat Yanzhan4110, under4°C. The seedlings of twowheat cultivars were subjected to different concentrations of sodium nitroprussiate (SNP) for0,24,48, and96h. By the research on the molecular mechanism of NO effect on wheat resisting low temperature stress,we strive hard to make certain efforts to resolve this important issue of wheat chilling injuries, providing atheoretical basis for food security. The main findings are as follows:
     1. To chilling stress, the soluble sugar content and chlorophyll a/b ratio showed the certain extent risein seedlings leaves of the two wheat cultivars, chlorophyll a, b and carotenoid contents showed a downwardtrend, and RWC in Zhoumai18declined significantly. Exogenous NO could induce fructose, glucose, lowDP fructan, total soluble sugar, chlorophyll a, b and carotenoids contents in the two wheat cultivars, andsucrose and high DP fructan contents in Zhoumai18, and brought RWC down in the two wheat cultivars.
     2. To chilling stress, fructans (including DP3and DP≥4) content have a certain degree of increase inseedlings leaves of the two wheat cultivars. Low concentration (0.075mmol·L~(-1)) of NO could inducefructans content in the two wheat cultivars; high concentration (0.125mmol·L~(-1)) of NO could also inducefructans content significantly in Zhoumai18, but showed some toxic effects to Yanzhan4110. It could bedemonstrated that the appropriate concentration of exogenous NO could induce fructans content in the twowheat cultivars under low temperature stress, resisting external low-temperature environment to reduce lowtemperature injury.
     3. To chilling stress, fructan: fructan1-fructosyltransferase (1-FFT, EC:2.4.1.100) activity remained ata significantly lower level than FS (including sucrose: sucrose1-fructosyltransferase (1-SST, EC:2.4.1.99)and sucrose: fructan6-fructosyltransferase (6-SFT, EC:2.4.1.10)) activity in seedlings leaves of the twowheat cultivars. High concentration of NO significantly induced FFT activity in Zhoumai18and FS activity in Yanzhan4110. It could be demonstrated that FFT activity in semi-winter wheat cultivar and FSactivity in weak spring wheat cultivar could be induced by high concentration of NO, contributing tofructan accumulation in seedling leaves to reduce low temperature injury.
     4. To chilling stress, FBEs gene expression at the transcriptional level was improved in seedlingsleaves of the two wheat cultivars. Exogenous NO could regulate the gene expression at this level infollowing ways: except that1-SST and6-SFT gene expression in Zhoumai18were inhibited by highconcentration of NO,1-FFT and Yanzhan4110’ three FBEs gene expression were all induced by exogenousNO. It could be demonstrated that exogenous NO could take part in regulate FBEs gene expression at thetranscriptional level, and the appropriate concentration of exogenous NO could induce FBEs geneexpression in the two wheat cultivars under low temperature stress.
     5. In Zhoumai18, exogenous NO induced the synthesis of sucrose which provided rich substrate forfructan synthesis, and induced FFT gene expression to promote FFT enzyme activity greatly, so that highDP fructans accumulated abundantly in plant to enhance the resistance to external adverse environment.However in Yanzhan4110, the ability of fructans generated internally was poor. Sucrose was not inducedby exogenous NO but low temperature, and was significantly associated with fructans content. Byinference, the synthesis of fructans may depend on high concentration of sucrose in wheat.
     There has been less reports on exogenous NO reduces chilling injuries by inducing the accumulationof fructans in wheat. It can be concluded from this study that the appropriate concentrations of exogenousNO will induce FBEs gene expression in plants to promote the activities of FBEs. Thus large amounts offructans are accumulated in young leaves, to make seedlings less susceptible to low temperature stress, andto improve the cold resistance of winter wheat.
引文
[1]蔡剑,姜东.气候变化对中国冬小麦生产的影响[J].农业环境科学学报,2011,3(9):1726-1733.
    [2]王永华,李金才,魏凤珍,尹钧,屈会娟,王成雨,郅胜军.小麦冻害类型与小麦受冻致死原因分析[J].安徽农业科学,2006,34(12):2789-2791.
    [3]李茂松,王道龙,钟秀丽,王春艳,苏常红,赵鹏,阎旭雨,吉田久.冬小麦霜冻害研究现状与展望[J].自然灾害学报,2005,14(4):72-78.
    [4]孙亚东,杨书运.2008年雪灾低温对越冬作物影响的分析[J].安徽农业科学,2008,36(14):5826-5827.
    [5] De Michele R., Vurro E., Rigo C., Costa A., Elviri L., Di Valentin M., Careri M., Zottini M., Di ToppiL.S., Lo Schiavo F.. Nitric oxide is involved in cadmium-induced programmed cell death inArabidopsis suspension cultures [J]. Plant Physiology,2009,150:217-228.
    [6] Delledonne M., Xia Y., Dixon R.A., Lamb C.. Nitric oxide functions as a signal in plant diseaseresistance [J]. Nature,1998,394:585-588.
    [7] Guo Y.Q., Tian Z.Y., Yan D.L., Zhang J., Qin P.. Effects of nitric oxide on salt stress tolerance inKosteletzkya virginica [J]. Life Science,2009,6:67-75.
    [8] Wendehenne D., Courtois C., Besson A., Gravot A., Buchwalter A., Pugin A., Lamotte O.. NO-basedsignaling in plants. In: Lamattina L., Polacco J.C., eds. Nitric oxide in plant growth, development andstress physiology [M]. Springer-Verlag, Berlin,2006,6:35-51.
    [9]王志敏.高等植物的果聚糖代谢[J].植物生理学通讯,2000,36(1):71-76.
    [10] Roberfroid M.B.. Inulin-type fructans: functional food ingredients [M]. CRC Press, Boca Raton,2005.
    [11] Roberfroid M.B.. Dietary fiber, inulin, and oligofiuctose: a review comparing their physiologicaleffects [J]. Critical Reviews in Food Science and Nutrition,1993,33(2):103-148.
    [12] Shiomi N.. Properties of fructosyltransferases involved in the synthesis of fructan in liliaceous plants[J]. Plant Physiology,1989,134:151-155.
    [13] Sims I.M., Pollock C.J., Horgan R.. Structural analysis of oligomeric fructans from excised leaves ofLolium temulentum [J]. Phytochemistry,1992,31:2989-2992.
    [14] Livingston D.P.Ⅲ, Chatterton N.J., Harrison P.A.. Structure and quantity of fructan oligomers in oat(Avena spp.)[J]. New Phytologist,1993,123(4):725-734.
    [15] Pollock C.J.. Fructans and the metabolism of sucrose in vascular plants [J]. New Phytologist,1986,104(1): l-24.
    [16] Morvan-Bertrand A., Boucaud J., Le Saos J., Prud’homme M.P.. Roles of the fructans from the leafsheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L.[J]. Planta,2001,213(1):109-120.
    [17] Hincha D.K., Zuther E., Heyer A.G.. The preservation of liposomes by raffinose familyoligosaccharides during drying is mediated by effects on fusion and lipid phase transitions [J].Biochimica et Biophysica Acta-Biomembranes,2003,1612(2):172-177.
    [18] Le Roy K., Vergauwen R., Cammaer V., Yoshida M., Kawakami A., Van Laere A., Van den Ende W..Fructan1-exohydrolase is associated with flower opening in Campanula rapunculoides [J]. FunctionalPlant Biology,2007,34(11):972-983.
    [19] Hincha D.K., Hellwege E.M., Heyer A.G., Crowe J.H.. Plant fructans stabilize phosphatidylcholineliposomes during freezing-drying [J]. European Journal of Biochemistry,2000,267:535-540.
    [20] Smart D.R., Chatterton N.J., Bugbee B.. The influence of elevated CO2on non-structural carbohydratedistribution and fructan accumulation in wheat canopies [J]. Plant Cell Environment,1994,17(4):435-442.
    [21] Frossard R., Stadelmann F.X., Niederhauer J.. Effects of different heavy metals on fructan, sugar, andstarch content of ryegrass [J]. Journal of Plant Physiology,1989,134:180-183.
    [22] Albrecht G., Kammerer S., Praznik W., Wiedenroth E.M.. Fructan content of wheat seedlings (Triticumaestivum L.) under hypoxia and following re-aeration [J]. New Phytologist,1993,123:471-476.
    [23] Hendry G.F., Wallace R.K.. The origin, distribution and evolutionary significance of fructans. In:Suzuki M., Chatterton N.J., eds. Science and technology of fructans [M]. Boca Raton, Fla: CRC Press,1993,120-139.
    [24] De Roover J., Vandenbranden K., Van Laere A., Van den Ende W.. Drought induces fructan synthesisand1-SST (sucrose: sucrose1-fructosyltransferase) in roots and leaves of chicory seedlings(Cichorium intybus L.)[J]. Planta,2000,210:808-814.
    [25] Valluru R., Van den Ende W.. Plant fructans in stress environments: emerging concepts and futureprospects [J]. Journal of Experimental Botany,2008,59:2905-2916.
    [26] Li H.J., Yang A.F., Zhang X.C., Gao F., Zhang J.R.. Improving freezing tolerance of transgenictobacco expressing sucrose: sucrose1-fructosyltransferase gene from Lactuca sativa [J]. Plant CellTissue and Organ Culture,2007,89:37-48.
    [27] Ritsema T., Smeekens S.. Engineering fructan metabolism in plants [J]. Journal of Plant Physiology,2003,160:811-820.
    [28] Huynh B.L., Wallwork H., Stangoulis J.C., Graham R.D., Willsmore K.L., Olson S., Mather D.E..Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.)[J]. Theoreticaland Applied Genetics,2008,117:701-709.
    [29] Wang C.W., Van den Ende W., Tillberg J.-E.. Fructan accumulation induced by nitrogen deficiency inbarley leaves correlates with the level of sucrose: fructan6-fructosyltransferase mRNA [J]. Planta,2000,211:701-707.
    [30] Kawakami A., Yoshida M.. Molecular characterization of sucrose: sucrose1-fructosyltransferase andsucrose: fructan6-fructosyltransferase associated with fructan accumulation in winter wheat duringcold hardening [J]. Bioscience, Biotechnology, and Biochemistry,2002,66:2297-2305.
    [31] Nagaraj V.J., Altenbach D., Galati V., Lüscher M., Meyer A.D., Boller T., Wiemken A.. Distinctregulation of sucrose: sucrose1-fructosyltransferase (1-SST) and sucrose: fructan6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves:1-SST as thepacemaker [J]. New Phytologist,2004,161(3):735-748.
    [32] Lewis D.H.. Nomenclature and diagrammatic representation of oligomeric fructans: a paper fordiscussion [J]. New Phytologist,1993,124:583-594.
    [33] Vijn I., Smeekens S.. Fructan: more than a reserve carbohydrate?[J] Plant Physiology,1999,120:351-359.
    [34] Kawakami A., Yoshida M.. Fructan:fructan1-fructosyltransferase, a key enzyme for biosynthesis ofgraminan oligomers in hardened wheat [J]. Planta,2005,223:90-104.
    [35] Van den Ende W., Yoshida M., Clerens S., Vergauwen R., Kawakami A.. Cloning, characterization andfunctional analysis of novel6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum L.)[J].New Phytologist,2005,166:917-932.
    [36] Zuther E., Kwart M., Willmitzer L., Heyer A.G.. Expression of a yeast-derived invertase in companioncells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrosetransport [J]. Planta,2004,218:759-766.
    [37] Sturm A.. Invertases. Primary structures, functions, and roles in plant development and sucrosepartitioning [J]. Plant Physiology,1999,121:1-7.
    [38] Gao X., She M.Y., Yin G.X., Yu Y., Qiao W.H., Du L.P., Ye X.G.. Cloning and characterization ofgenes coding for fructan biosynthesis enzymes (FBEs) in Triticeae plants [J]. Agricultural Sciences inChina,2010,9:313-324.
    [39] Van den Ende W., Clerens S., Vergauwen R., Van Riet L., Van Laere A., Yoshida M., Kawakami A..Fructan1-exohydrolase: β (2,1) trimmers during graminan biosynthesis in stems of wheat (Triticumaestivum L.): Purification, characterization, mass mapping and cloning of two1-FEH isoforms [J].Plant Physiology,2003,131:621-631.
    [40] Suzuki M.. Fructans in crop production and preservation. In: Suzuki M., Chtterton N.J., eds. Scienceand technology of fructans [M]. Boca Raton Fla: CRC Press,1993,227-247.
    [41]成善汉,谢从华,柳俊.高等植物果聚糖研究进展[J].植物学通报,2002,19(3):280-289.
    [42] Van der Meer I.M., Koops A.J., Hakkert J.C., Van Tunen A.J.. Cloning of the fructan biosynthesispathway of Jerusalem artichoke [J]. The Plant Journal,1998,15(4):489-500.
    [43] Van den Ende W., Mighiels A., Van Wonterghem D., Vergauwen R., Van Laere A.. Cloning,developmental, and tissue-specific expression of sucrose: sucrose1-fructosyl transferase fromTaraxacum officinale. Fructan localization in roots [J]. Plant Physiology,2000,123:71-79.
    [44] Wei J.Z., Chatterton N.J.. Fructan biosynthesis and fructosyltransferase evolution: the expression ofthe6-SFT (sucrose: fructan6-fructosyltransferase) gene in crested wheatgrass (Agropyron cristatum)[J]. Journal of Plant Physiology,2001,158:1203-1213.
    [45] Wei J.Z., Chatterton N.J., Harrison P.A., Wang R.R.-C., Larson S.R.. Characterization of fructanbiosynthesis in big bluegrass (Poa secunda)[J]. Journal of Plant Physiology,2002,159(7):705-715.
    [46]高翔,佘茂云,殷桂香,于洋,别晓敏,杜丽璞,徐惠君,叶兴国.小麦果聚糖合成基因6-SFT克隆和功能验证[J].科技导报,2009,27(23):70-75.
    [47] Kawakami A., Yoshida M., Van den Ende W.. Molecular cloning and functional analysis of a novel6&1-FEH from wheat (Triticum aestivum L.) preferentially degrading small graminans like bifurcose[J]. Gene,2005,358:93-101.
    [48] Hellwege E.M., Czapla S., Jahnke A., Willmitzer L., Heyer A.G.. Transgenic potato (Solanumtuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globeartichoke (Cynara scolymus) roots [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2000,97:8699-8704.
    [49] Claessens G., Van Laere A., De Proft M.. Purification and properties of an inulinase from chicory roots(Cichorium intybus L.)[J]. Journal of Plant Physiology,1990,136:35-39.
    [50] De Roover J., De Winter M., Van Laere A., Timmermans J.W., Van den Ende W.. Purification andproperties of a second fructan exohydrolase from the roots of Cichorium intybus L.[J]. PhysiologiaPlantarum,1999, l06:28-34.
    [51] Max S.P., N sberger J., Frehner M.. Hydrolysis of fructan in grasses: a β-(2-6)-linkage-specificfructan-β-fructosidase from stubble of lolium perenne [J]. New Phytologist,1997,135:279-290.
    [52] Max S.P., N sberger J., Frehner M.. Seasonal variation of fructan-β-fructosidase (FEH) activity andcharacterization of a β-(2-1)-linkage-specific FEH from tubers of Jerusalem artichoke (Helianthustuberosus)[J]. New Phytologist,1997,135:267-273.
    [53] Henson C.A., Livingstone D.P.Ⅲ. Purification and characterization of an oat fructan exohydrolase thatpreferentially hydrolyzes β-2,6-fructans [J]. Plant Physiology,1996,110:639-644.
    [54] Henson C.A., Livingstone D.P.Ⅲ. Characterization of a fructan exohyrolase purified from barleystems that hydrolyzes multiple fructofuranosidic linkage [J]. Plant Physiology and Biochemistry,1998,36:715-720.
    [55] Van den Ende W., Michiels A., Van Wonterghem D., Clerens S., De Roover J., Van Laere A..Defoliation induces fructan1-exohydrolase Ⅱ in witloof chicory roots. Cloning and purification oftwo isoforms, fructan1-exohydrolase Ⅱa and fructan1-exohydrolase Ⅱb. Mass fingerprint of thefructan1-exohydrolase Ⅱ enzymes [J]. Plant Physiology,2001,126:1186-1195.
    [56] Wendehenne D., Pugin A., Klessig D.F., Durner J.. Nitric oxide: comparative synthesis and signalingin animal and plant cells [J]. Trends in Plant Science,2001,6(4):177-183.
    [57] St hr C., Ullrich W.R.. Generation and possible roles of NO in plant roots and their apoplastic space[J]. Journal of Experimental Botany,2002,53(379):2293-2303.
    [58] Chandok M.R., Ytterberg A.J., Van Wijk K.J., Klessig D.F.. The pathogen-inducible nitric oxidesynthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex [J]. Cell,2003,113(4):469-482.
    [59] Beligni M.V., Lamattina L.. Nitric oxide stimulates seed germination and de-etiolation, and inhibitshypocotyl elongation, three light-inducible responses in plants [J]. Planta,2000,210:215-221.
    [60] Zhang H., Shen W.V., Xu L.L.. Effects of nitric oxide on the germination of wheat seeds and itsreactive oxygen species metabolisms under osmotic stress [J]. Journal of Integrative Plant Biology,2003,45(8):901-905.
    [61] Beligni M.V., Lamattina L.. Nitric oxide in plants: the history is just beginning [J]. Plant CellEnvironment,2001,24:267-278.
    [62] Anderson L., Mansfield T.A.. The effects of nitric oxide pollution on the growth of tomato [J].Environmental Pollution,1979,20:113-121.
    [63] Hufton C.A., Besford R.T., Wellburn A.R.. Effects of NO (+NO2) pollution on growth, nitratereductase activities and associated protein contents in glasshouse lettuce grown hydroponicalIy inwinter CO2enrichment [J]. New Phytologist,1996,133:495-501.
    [64] Leshem Y.Y., Haramaty E.. The characterisation and contrasting effects of the nitric oxide free radicalin vegetative stress and senescence of Pisum sativum Linn. foliage [J]. Journal of Plant Physiology,1996,148:258-263.
    [65]何虎翼,何龙飞,黎晓峰,顾明华.铝胁迫下硝普钠对黑麦和小麦根尖细胞壁铝吸附的影响[J].广西农业生物科学,2007,26(3):235-239.
    [66] Tu J., Shen W.B., Xu L.L.. Regulation of nitric oxide on the aging process of wheat leaves [J]. ActaBotanica Sinica,2003,45(9):1055-1062.
    [67] Leshem Y.Y., Wills R.B.H., Ku V.V.V.. Evidence for the function of the free radical gas-nitric oxide(NO center dot)-as an endogenous maturation and senescence regulating factor in higher plants [J].Plant Physiology and Biochemistry,1998,36:825-833.
    [68] Magalhaes J.R., Monte D.C., Durzan D.. Nitric oxide and ethylene emission in Arabidopsis thaliana[J]. Physiology and Molecular Biology of Plants,2000,6:117-127.
    [69] Mishina T.E., Lamb C., Zeier J.. Expression of a nitric oxide degrading enzyme induces a senescenceprogramme in Arabidopsis [J]. Plant, Cell and Environment,2007,30(1):39-52.
    [70] Zhang L.G., Wang Y.D., Zhao L.Q., Shi S.Y., Zhang L.X.. Involvement of nitric oxide inlight-mediated greening of barley seedlings [J]. Journal of Plant Physiology,2006,163(8):818-826.
    [71]肖强,陈娟,吴飞华,郑海雷.外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响[J].作物学报,2008,34(10):1849-1853.
    [72]王凤华,陈双臣,李春花,曹耀鹏,刘保国.外源NO供体对甘蓝根系和叶片光合特性的影响[J].北方园艺,2010,24:1-3.
    [73]邵瑞鑫.外源NO对水分亏缺下小麦叶片光合能力的调控效应[D].西北农林科技大学,2008.
    [74]邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度效应[J].生态学报,2008a,1:302-309.
    [75]邵瑞鑫,上官周平.外源一氧化氮供体SNP对受旱小麦光合色素含量和PSⅡ光能利用能力的影响[J].作物学报,2008b,34(5):818-822.
    [76] Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T.. Hydrogen peroxide and nitric oxide assignalling molecules in plants [J]. Journal of Experimental Botany,2002,53(372):1237-1247.
    [77] Leshem Y.. Nitric oxide in plants [M]. London, UK: Kluwer Academic Publishers,2001.
    [78] Guan Y.J., Hu J., Wang X.J., Shao C.X.. Seed priming with chitosan improves maize germination andseedling growth in relation to physiological changes under low temperature stress [J]. Journal ofZhejiang University Science B,2009,10(6):427-433.
    [79] El-Saht H.M.. Responses to chilling stress in French bean seedlings: antioxidant compounds [J].Biologia Plantarum,1998,41:395-402.
    [80] Lee S.H., Singh A.P., Chung G.C., Kim Y.S., Kong I.B.. Chilling root temperature causes rapidultrastructural changes in cortical cells of cucumber (Cucumis sativus L.) root tips [J]. Journal ofExperimental Botany,2002,53:2225-2237.
    [81] Beck E.H., Fettig S., Knake C., Hartig K., Bhattarai T.. Specific and unspecific responses of plants tocold and drought stress [J]. Journal of Biosciences,2007,32(3):501-510.
    [82]徐洪雷,于广建.一氧化氮(NO)对黄瓜低温胁迫的缓解作用[J].东北农业大学学报,2007,38(5):606-608.
    [83]马向丽,魏小红,龙瑞军,崔文娟,万引琳.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报,2005,25(6):1269-1274.
    [84] Lamattina L., Beligni M.V., Garcia-Mata C.. Method of enhancing the metabolic function and thegrowing conditions of plants and seeds [J]. United States Patent6242384,2001.
    [85] Neill S.J., Desikan R., Clarke A.. Nitric oxide is a novel component of abscisic acid signalling instomatal guard cells [J]. Plant Physiology,2002,128:13-16.
    [86] Mishra S.K., Subrahmanyam D., Singhal G.S.. Interactionship between salt and light stress on theprimary process of photosynthesis [J]. Journal of Plant Physiology,1991,138:92-96.
    [87]曲小菲,吕淑敏,王林华,梁书荣,刘魏魏,赵会杰.不同抗旱性小麦品种对干旱胁迫的响应及NO的调节作用[J].安徽农业科学,2010,38(19):10001-10003,10025.
    [88] Mata C.G., Lamattina L.. Nitric oxide induces stomatal closure and enhances the adaptive plantresponses against drought stress [J]. Plant Physiology,2001,126(3):1196-1204.
    [89] Desikan R., Cheung M.K., Bright J.. ABA, hrdrogen peroxide and nitric oxide signalling in stomatalguard cells [J]. Journal of Experimental Botany,2004,55:205-212.
    [90] Jiang M., Zhang J.. Involvement of plasma membrane NADPH oxidase in abscisic acid-and waterstress-induced antioxidant defense in leaves of maize seedlings [J]. Planta,2002,215:1022-1030.
    [91] Zheng C.F., Jiang D., Liu F.L., Dai T.B., Liu W.C., Jing Q., Cao W.X.. Exogenous nitric oxideimproves seed germination in wheat against mitochondrial oxidative damage induced by high salinity[J]. Environmental and Experimental Botany,2009,67:222-227.
    [92]陈明,沈文彪,阮海华,徐朗莱.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响[J].植物生理与分子生物学学报,2004,30(5):569-576.
    [93] Zhao L.Q., Zhang F., Guo J.K., Yang Y.L., Li B.B., Zhang L.X.. Nitric oxide functions as a signal insalt resistance in the calluses from two ecotypes of reed [J]. Plant Physiology,2004,134(2):849-857.
    [94]阮海华,沈文飚,叶茂炳.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报,2001,46(23):1993-1997.
    [95]段培,王芳,王宝山. NO供体SNP浸种显著缓解盐胁迫对小麦幼苗的氧化损伤[J].菏泽学院学报,2006,28(5):93-97.
    [96]樊怀福,郭世荣,焦彦生,张润花,李娟.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].生态学报,2007,27(2):546-553.
    [97] A.-H.-Mackerness S., John C.F., Jordan B., Thomas B.. Early signaling components in ultraviolet-Bresponses: distinct roles for different reactive oxygen species and nitric oxide [J]. FEBS Letters,2001,489:237-242.
    [98] Shi S., Wang G., Wang Y.D., Zhang L.G., Zhang L.X.. Protective effect of nit ric oxide againstoxidative stress under ultraviolet-B radiation [J]. Nitric Oxide,2005,13(1):1-9.
    [99] Zhang M., An L., Feng H., Chen T., Chen K., Liu Y., Tang H., Chang J., Wang X.. The cascademechanisms of nitric oxide as a second messenger of ultraviolet B in inhibiting mesocotyl elongations[J]. Photochemistry and Photobiology,2003,77(2):219-225.
    [100] An L.Z., Liu Y.H., Zhang M.X.. Effects of nitric oxide on growth of maize seedling leaves in thepresence or absence of ultraviolet-b radiation [J]. Journal of Plant Physiology,2005,162(3):317-326.
    [101] Kopyra M., Gwó d E.. Nitric oxide stimulates seed germination and counteracts the inhibitory effectof heavy metals and salinity on root growth of Lupinus luteus [J]. Plant Physiol Bioch,2003,441:1011-1017.
    [102] Hsu Y.T., Kao C.H.. Cadmium toxicity is reduced by nitric oxide in rice leaves [J]. Plant GrowthRegul,2004,42:227-238.
    [103] Laspina N.V., Groppa M.D., Tomaro M.L., Benavides M.P.. Nitric oxide protects sunflower leavesagainst Cd-induced oxidative stress [J]. Plant Science,2005,169:323-330.
    [104] Singh H.P., Batish D.R., Kaur G., Arora K., Kohli R.K.. Nitric oxide (as sodium nitroprusside)supplementation ameliorates Cd toxicity in hydroponically grown wheat roots [J]. Environmental andExperimental Botany,2008,63:158-167.
    [105] Wang Y.S., Yang Z.M.. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in theroots of Cassia tora L.[J]. Plant and Cell Physiology,2005,46:1915-1923.
    [106] Tian Q.Y., Sun D.H., Zhao M.G., Zhang W.H.. Inhibition of nitric oxide synthase (NOS) underliesaluminum-induced inhibition of root elongation in Hibiscus moscheutos [J]. New Phytologist,2007,174:322-331.
    [107]詹洁,王天菊,何虎翼,李创珍,何龙飞.硝普钠缓解花生铝毒害作用和影响AhSAG和AhBI-1基因表达[J].作物学报,2011,37(3):459-468.
    [108] Andrea F.P., Graciela L.S., Horacio G.P.. Fructan metabolism in two species of Bromus subjected tochilling and water stress [J]. New Phytologist,1997,136(1):123-129.
    [109]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,184-185,195-197,261-263.
    [110]候福林.植物生理学实验教程[M].北京:科学出版社,2004,91.
    [111]姜东,陶勤南,曹卫星.渍水对小麦节间水溶性碳水化合物积累与再分配的影响[J].作物学报,2002,28(2):230-234.
    [112] Cairns J., Winters A., Pollock C.J.. Fructan biosynthesis in excised leaves of Lolium temulentum L.Ⅲ. A comparison of the in vitro properties of fructosyl transferase activities with the characteristics ofin vivo fructan accumulation [J]. New Phytologist,1989,112:343-352.
    [113] Housley T.L., Volenec J.J.. Fructan content and synthesis in leaf tissues of Festuca arundinaceal [J].Plant Physiology,1988,86:1247-1251.
    [114] Beligni M.V., Lamattina L.. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygenspecies in plant tissues [J]. Planta,1999,208:337-344.
    [115] Crowe J.H., Hoeksta F.A., Crowe L.M.. Anhydrobiosis [J]. Annual Review of Physiology,1992,54:579-599.
    [116] Hodgers D.M., Andrews C.J., Johnson D.A., Hamilton R.I.. Antioxident enzymes and compoundresponses to chilling stress and their combining abilities in differentially sensitive maize hybrids [J].Crop Science,1997,37:857-863.
    [117] Tajima K., Amemiya A., Kabaki N.. Physiological study of growth inhibition in rice plant as affectedby low temperature. Ⅱ. Physiological mechanism and varietal differences in chilling injury in riceplant [J]. Bulletin of National Institute of Agricultural Science,1983, D34,69-111.
    [118]宋海星.冬小麦越冬期间生理指标的变化及抗寒剂对其影响[J].沈阳农业大学学报,1999,30(6):631-632.
    [119]李世成,牛俊义,盖玥.零上低温处理对不同甘蓝型油菜品种抗寒性的影响[J].干旱地区农业研究,2007,25(6):40-43.
    [120]盖玥,牛俊义,孙万仓,王鹤龄,朱田田.降温处理对白菜型油菜品种抗寒生理指标的影响[J].甘肃农业大学学报,2005,40(2):182-185.
    [121] Neill S.J., Desikan R., Clarke A.. Hydrogen peroxide and nitric oxide as signalling molecules inplants [J]. Journal of Experimental Botany,2002,53: l237-1242.
    [122] Vranova E., Inze D., Van Breusegem F.. Signal transduction during oxidative stress [J]. Journal ofExperimental Botany,2002,53:1227-1236.
    [123] Beligni M.V., Lamattina L.. Is nitric oxide toxic or protective?[J]. Trends in Plant Sciences,1999,4:299.
    [124] Boveris A.D., Galatro A., Puntarulo S.. Effect of nitric oxide and plant antioxidants on microsomalcontent of lipid radicals [J]. Biological Research,2000,33:159-165.
    [125] Zhang Y.Y., Liu Y.L.. Source and function of nitric oxide in plants [J]. Acta BotanicaBoreali-Occidentalia Sinica,2004,24(5):921-929.
    [126]王晶,徐志英,盛云燕.低温对绿萝幼苗叶片氮素及叶绿素含量的影响[J].林业科学,2011,15:208-209.
    [127] Baker N.R., Rosenqvist E.. Applications of chlorophyll fluorescence can improve crop productionstrategies: an examination of future possibilities [J]. Journal of Experimental Botany,2004,55:1607-1621.
    [128]陆新华,孙光明,叶春海.低温胁迫对菠萝幼苗膜透性、丙二醛和叶绿素含量的影响[J].安徽农业科学,2010,38(16):8374-8375,8411.
    [129]宋祥春,赵惠新,苗玉青,李冠.低温对两种沙冬青幼苗光合生理指标的影响[J].新疆大学学报(自然科学版),2009,26(3):342-346.
    [130]和红云,薛琳,田丽萍,陈远良.低温胁迫对甜瓜幼苗叶绿素含量及荧光参数的影响[J].北方园艺,2008,4:13-16.
    [131]敬岩,孙宝腾,符建荣.一氧化氮改善铁胁迫玉米光合组织结构及其活性[J].植物营养与肥料学报,2007,13(5):809-815.
    [132]施溯筠.紫外线B作用下一氧化氮对红芸豆氧化胁迫的抗氧化作用及其信号转导机制[D].兰州大学,2005.
    [133]葛才林.水稻(Oryza sativa L.)和小麦(Tritivum aestivum L.)的重金属毒害与耐性的分子机理研究[D].浙江大学,2007:36.
    [134]王淼,李秋荣,付士磊,肖冬梅,董百丽.一氧化氮对杨树耐旱性的影响[J].应用生态学报,2005,16(5):805-810.
    [135]付士磊,何兴元,陈玮,吴红. NO对不同耐旱性杨树光合作用的影响[J].辽宁工程技术大学学报,2007,26(2):308-311.
    [136] Bohnert H.J., Nelson D.E., Jensen R.G.. Adaptations to environmental stresses [J]. The Plant Cell,1995,7:1099-1111.
    [137] Couée I., Sulmon C., Gouesbet G., Amrani A.E.. Involvement of soluble sugars in reactive oxygenspecies balance and responses to oxidative stress in plants [J]. Journal of Experimental Botany,2006,57:449-459.
    [138] Morgan J.M.. Osmoregulation and water stress in higher plants [J]. Annual Review of PlantPhysiology,1984,35:259-319.
    [139]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,8-29,35-45.
    [140]姚远,闵义,胡新文,李开绵,郭建春.低温胁迫对木薯幼苗叶片转化酶及可溶性糖含量的影响[J].热带作物学报,2010,31(4):556-560.
    [141]徐传保,戴庆敏.低温胁迫对竹子3种渗透调节物质的影响[J].河南农业科学,2011,40(1):127-130.
    [142]王孝宣,李树德,东惠茹,高振华,戴善书.番茄品种耐寒性与ABA和可溶性糖含量的关系[J].园艺学报,1998,25(1):56-60.
    [143]袁淑珍,栗淑媛,乔辰.低温胁迫对螺旋藻体内可溶性糖含量的影响[J].中国农学通报,2008,24(5):113-116.
    [144]赵博生,毕红卫.重金属对植物细胞的毒害作用研究进展[J].淄博学院学报,1999,1(1):86-88.
    [145]李合生,孟庆伟,夏凯,梁宗锁,宋克敏.现代植物生理学[M].北京:高等教育出版社,2000,391-435.
    [146] Suzuki M., Nass H.G.. Fructan in winter wheat, triticale, and fall rye cultivars of varying coldhardiness [J]. Canadian Journal of Botany,1988,66:1723-1726.
    [147] Kawakami A., Sato Y., Yoshida M.. Genetic engineering of rice capable of synthesizing fructans andenhancing chilling tolerance [J]. Journal of Experimental Botany,2008,59(4):793-802.
    [148] Tognetti J.A., Calderon P.L., Pontis H.G.. Fructan metabolism: reversal of cold acclimation [J].Journal of Plant Physiology,1989,14:232-234.
    [149] Beligni M.V., Fath A., Bethke P.C., Lamattinal L., Jones R.L.. Nitric oxide acts as an antioxidant anddelays programmed cell death in barley aleurone layers [J]. Plant Physiology,2002,129:1642-1650.
    [150] Zhang L.G., Zhou S., Xuan Y., Sun M., Zhao L.Q.. Protective effect of nitric oxide against oxidativedamage in Arabidopsis leaves under ultraviolet-B irradiation [J]. Journal of Plant Biology,2009,52(2):135-140.
    [151] Singh S.P., Singh Z., Swinny E.E.. Postharvest nitric oxide fumigation delays fruit ripening andalleviates chilling injury during cold storage of Japanese plums (Prunus salicina L.)[J]. PostharvestBiology and Technology,2009,53:101-108.
    [152] Zhu L.Q., Zhou J., Zhu S.H.. Effect of a combination of nitric oxide treatment and intermittentwarming on prevention of chilling injury of ‘Feicheng’ peach fruit during storage [J]. Food Chemistry,2010,121(1):165-170.
    [153] Yang H.Q., Wu F.H., Cheng J.Y.. Reduced chilling injury in cucumber by nitric oxide and theantioxidant response [J]. Food Chemistry,2011,127(3):1237-1242.
    [154] Zaharah S.S., Singh Z.. Postharvest nitric oxide fumigation alleviates chilling injury, delays fruitripening and maintains quality in cold-stored ‘Kensington Pride’ mango [J]. Postharvest Biology andTechnology,2011,60(3):202-210.
    [155] Dean J., Harper J.. Nitric-oxide and nitrous-oxide production by soybean and winged bean during theinvivo nitrate reductase assay [J]. Plant Physiology,1986,82:718-723.
    [156] Van den Ende W., Van Laere A.. De-novo synthesis of fructans from sucrose in vitro by acombination of two purified enzymes (sucrose: sucrose1-fructosyltransferase and fructan: fructan1-fructosyltransferase) from chicory roots (Cichorium intybus L.)[J]. Planta,1996,200:335-342.
    [157] Pavis N., Boucaud J., Prud'Homme M.P.. Fructans and fructan-metabolizing enzymes in leaves ofLolium perenne [J]. New Phytologist,2001,150:97-109.
    [158] Klein D.. Quantification using real-time PCR technology: applications and limitations [J]. Trends inMolecular Medicine,2002,8(6):257-260.
    [159] McMaugh S.J.,Lyon B.R.. Real-time PCR quantitative RT-PCR assay of gene expression in plantroots during fungal pathogenesis [J].. Biotechniques,2003,34:982-986.
    [160] Chatterton N.J., Harrison P.A., Bennett J.H., Asay K.H.. Carbohydrate partitioning in185accessionsof Gramineae grown under warm and cool temperatures [J]. Journal of Plant Physiology,1989,134:169-179.
    [161] Xue G.P., McIntyre C.L., Jenkins C.L.D., Glassop D., Van Herwaarden A.F., Shorter R.. Moleculardissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulationin stems of wheat [J]. Plant Physiology,2008,146:441-454.
    [162] Lüscher M., Hochstrasser U., Vogel G., Aeschbacher R., Galati V., Nelson C.J., Boller T., WiemkenA.. Cloning and functional analysis of sucrose: sucrose1-fructosyltransferase from tall fescue [J].Plant Physiology,2000,124:1217-1227.
    [163]邹云锋.硒诱导产生ROS在MAPKs信号转导通路中的调节作用[D].华中科技大学,2007.
    [164]江元清,凌毅,赵武玲.真核mRNA的3’非翻译区转录后水平调控作用研究进展[J].植物学通报,2001,18(1):3-10.
    [165] Hernandez-Nistal J., Dopico B., Labrador E.. Cold and salt stress regulates the expression andactivity of a chickpea cytosolic Cu/Zn superoxide dismutase [J]. Plant Science,2002,163:507-514.
    [166] Wang W.X., Vinocur B., Shoseyov O., Altman A.. Role of plant heat-shock proteins and molecularchaperones in the abiotic stress response [J]. Trends in Plant Science,2004,9:244-252.
    [167] Labhart CH, N sberger J., Nelson C.J.. Photosynthesis and degree of polymerisation of fructanduring reproductive growth of meadow fescue at two temperatures and two photon fluxes [J]. Journalof Experimental Botany,1983,34:1037-1046.
    [168] Escalada J.A., Moss D.N.. Changes in nonstructural carbohydrate fractions of developing springwheat kernels [J]. Crop Science,1976,16:627-631.
    [169] Housley T.L., Pollock C.J.. Photosynthesis and carbohydrate metabolism in detached leaves ofLolium temulentum L [J]. New Phytologist,1985,99:499-507.
    [170] Wagner W., Keller F., Wiemken A.. Fructan metabolism in cereals: induction in leaves andcompartmentation in protoplasts and vacuoles [J]. Zeitschreft für Pflanzenphysiologie,1983,112:359-372.
    [171] Martínez-Noёl G., Nagaraj V.J., Calóa G., Wiemken A., Pontis H.G.. Sucrose regulated expression ofa Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat [J]. Plant Physiology andBiochemistry,2007,45:410-419.
    [172] Gallagher J.A., Cairns A.J., Turner L.B.. Fructan in temperate forage grasses: agronomy, physiologyand molecular biology. In: Shiomi N., Benkeblia N., Onodera S., eds. Recent advances infructo-oligosaccharides research [M]. Trivandrum, India: Research Signpost,2007,15-46.
    [173] Maleux K., Van den Ende W.. Levans in excised leaves of Dactylis glomerata: effects of temperature,light, sugars, and senescence [J]. Journal of plant biology,2007,50:671-680.
    [174] Nagaraj V.J., Riedl R., Boller T., Wiemken A., Meyer A.D.. Light and sugar regulation of the barleysucrose fructan6-fructosyltransferase promoter [J]. Journal of Plant Physiology,2001,158:1601-1607.
    [175] Müller J., Aeschbacher R.A., Sprenger N., Boller T., Wiemken A.. Disaccharide-mediated regulationof sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves [J]. PlantPhysiology,2000,123:265-273.
    [176] Marx S.P., Nosberger J., Frehner M.. Hydrolysis of fructan in grasses: a β-(2,6)-linkage specificfructan-β-fructosidase from stubble of Lolium perenne [J]. New Phytologist,1997,135:279-290.
    [177] Wagner W., Wiemken A.. Properties and subcellular localization of fructan hydrolase in the leaves ofbarley [J]. Journal of Plant Physiology,1986,123:429-439.
    [178] Hisano H., Kanazawa A., Kawakami A., Yoshida M., Shimamoto Y., Yamada T.. Transgenic perennialryegrass plants expressing wheat fructosyltransferase gene accumulate increased amounts of fructanand acquire increased tolerance on level of freezing [J]. Plant Science,2004,167:861-868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700