用户名: 密码: 验证码:
复杂条件下颗粒物料管道水力输送机理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长距离管道输送和深海采矿等实际工程条件为研究背景,系统总结分析了前人的研究成果,通过自行设计的管道输送模拟试验系统对复杂空间形态、复杂组成物料两种复杂条件下的速度问题、浓度问题和阻力损失问题进行了研究。本文的研究工作不仅有助于长距离高浓度管道输送技术的发展,而且对固液两相流体力学理论的完善和发展亦会产生一定的推动作用。研究成果包括:
     (1)基于前人的研究成果,通过试验研究对固体粗颗粒在复杂空间形态管道中的运动状态进行了探讨。根据本文的研究条件,粗颗粒在复杂空间形态管道中的运动状态表现出不同的特点:对于水平管道,滑动推移是其主要运动形式;对于倾斜管道,滑动推移和悬移是其主要的运动形式。同时,粗颗粒出现悬移运动要求极高的输送速度,属于一种高能耗的运动方式,而滚动推移是低流速状态下出现的不稳定态,颗粒介于运动与静止之间,且管道输送量小,经济效益较差。因此最终确定滑动推移是粗颗粒管道输送的主要运动形式。
     (2)从粗颗粒受力的角度分析了其在复杂空间形态管道中的运动状态与颗粒受力的关系,得出颗粒的运动形态与颗粒粒径、固液两相的密度以及管道倾角等物理量有关。基于试验结果,提出粗颗粒在复杂空间形态管道中安全输送的临界条件为粗颗粒由滚动推移向滑动推移转变时的条件,通常以临界流速表征,并提出了粗颗粒在复杂空间形态管道中临界流速的计算公式,可为管道输送系统参数设计提供依据。
     (3)针对复杂组成物料的流变特性问题,通过研究粉煤灰、水煤浆(中国)Ⅰ等非粘性颗粒在不同体积浓度条件下剪切速率与切应力的关系,三种物料在各浓度条件下均符合宾汉体的流变特征,可用宾汉体的流变方程给予描述。同时,针对影响流变特性最敏感的两个因子,分别得到了浓度和粒径对屈服应力和粘度系数的影响规律,提出了临界浓度和相对粘度系数的计算公式。
     (4)临界浓度是判定浆体向膏体转变的重要标准,当浓度低于这一临界浓度,流变参数随浓度的变化不大,而高于这一临界浓度,流变参数随着浓度的增加急剧增加。基于此,浆体是指体积浓度低于临界浓度,试验物料的屈服应力和粘度系数变化极小,且物料具有极好的流动性,而其可塑性较差;膏体是指体积浓度高于临界浓度,试验物料的屈服应力和粘度系数急剧增加,且物料可塑性越来越强,而流动性越来越差,呈现牙膏状的特点。对于产生这一现象的原因,本文从颗粒表面的物理化学性质、颗粒间摩擦碰撞以及颗粒与水分的相互作用等微观角度进行了分析和验证。
     (5)本文采用自行设计的管道输送模拟系统,研究了水平管道中水力坡度与平均流速、体积浓度、颗粒粒径等因素的关系,并基于能量理论,考虑颗粒间的相互碰撞作用,提出了水平管道中粗颗粒水力坡度的计算公式;同时,基于前人的研究成果,分析了倾斜管道水力坡度的变化规律,重点研究了倾角的影响,认为当固液两相流的流向与水平面夹角为正时,水力坡度随着管道倾角的增大而增大,当流向与水平面的夹角为负时,水力坡度随着倾角的增加而减小,且相同角度的情况下,水力坡度因角度的正负而对称,并提出了不同角度下水力坡度的计算公式。
     对于上述提出的各经验计算公式,本文通过实测数据和计算结果的对比和分析,误差均小于10%。
This thesis took the long distance pipeline transportation and the deep sea mining as a background, basing on the systematical analysis of the previous achievements designed a pipe transport system for experiments concentrated on the velocity, concentration and friction loss under three complex conditions, such as complex space form, complex fluid properties and complex granular composition especially the coarse particles. This research can not only contribute to the development of the technology of long distance pipeline transportation, but also promote to perfect and develop the theory of hydromechanics. The achievements are the following:
     (1) Based on the previous achievements, we discussed the coarse particles move patterns in the pipes of complex space forms through experiments. As the results of this research, the motion state of the coarse particles in pipes of complex space forms are:1) to horizontal pipes, bed-lead is the major flow,2) to inclined pipes, bed-lead and suspension are the major forms. The suspension of coarse granule requires an extremely high flow velocity that needs high energy consumption. While, rolling flow is an unstable state between movement and static under low velocity that conveying capacity and efficient are low. Therefore, sliding flow is the main form of coarse particles pipe conveyance.
     (2) We analysed the previous results and proposed that the critical flow velocity of fine particles is homogeneous slurry. The states of flows and the stresses of coarse particles in different pipes were also studied. It can be concluded that the state of particles movement is relative to the grade, the density of solid-liquid and the inclination of pipes. The experiments proved that the critical condition of safe transport of coarse particles in different pipes is the same as the condition of the transfer from rolling to sliding, usually marked by critical velocity, and computational equations of coarse particles in complex space forms were also proposed in this part that can be reference for the pipe transport system parameters design.
     (3) To consider the point of the fine particles fluid properties, we researched the relationship between shearing rate and shearing stress of the different sizes of fly ash, pulverized coal I (China) under different mass concentrations. It is concluded that, in the study area of our research, the flow curves reveals that all of the three materials have the rheological properties of Binghan body and can be described by the Binghan body rheological equation.
     (4) We concluded that criticle concentration is the most important criterion to define slurry transfers to paste. When the concentration is lower than this critical concentration, rheological parameter lightly changes, but it will change much sharply when higher than the critical concentration. Thus, Slurry is defined that when the volumetric concentration is lower than the criticle concentration, the yield stress and viscosity coefficient of experimental materials change hardly, and it is more mobilizable but poorer plasticity and when it's higher, the yield stress and viscosity coefficient of experimental materials change sharply, poorer mobility but more plastic like toothpaste, which is defined as Paste. We analysed the reasons from the perspectives of the physical and chemical features of the superficial of the particles, collision between the particles and the interaction between particle and water.
     (5) The relationship among the hydraulic gradient, mean velocity, and volumetric concentration and particle size in the horizontal pipes were studied through the self-design pipe transport system. And taking collision into consideration, computational formulations of coarse hydraulic gradient in horizontal pipes were worked out basing on the theory of energy. Meanwhile, we also analysed the change rules of the hydraulic gradient of inclined pipes, and found that the hydraulic gradient increases with the rise of the angle value, or vice versa of the decrease situation, and the values of the hydraulic gradient are symmetrical horizontal lines, then further established an equation for different angles calculation.
     The errors of the new experimental data and the results from the computational equations of the critical velocity, the hydraulic gradient, and evaluation of the parameters of grain size, mean velocity and volume concentration proposed in this thesis are all lower than20%that in the acceptable range.
引文
[1]姜圣才,成秉任,温春莲.浆体管道输送技术在冶金矿山的应用前景[J].水力采煤与管道运输,2011,2:1-3.
    [2]王绍周等.粒状物料的浆体管道输送[M].北京:海洋出版社,1998.
    [3]邹伟生,袁海燕,罗绍卓.长距离管道输送发展现状及在矿山的应用前景[J].金属材料与冶金工程,2009,37(1):57-60.
    [4]侯晖昌.管道矿浆高浓度输送若干问题分析[J].泥沙研究,1981.4:50-61.
    [5]瓦斯普等.固体物料的浆体管道输送[M].黄河水利委员会译,北京:水利电力出版社,1980.
    [6]Wasp E.J.,Kenny J.P.,Gandhi R.L.Solid-Liquid flow:pipeline transportation[J].Trans. Tech.Publications,1977,1(4):224.
    [7]费祥俊.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1994.
    [8]车跃光.尖山长距离铁精矿管线的设计与建设[J].矿冶工程,2005,25(12):42-45.
    [9]高延君中国的磷精矿浆体管道输送[M].第二届中日浆体输送技术交流会论文集,1998.
    [10]Durand R.The Hydraulic Transportation of Coal and Other Materials in Pipes[M]. London: Collog of National Coal Board,1952:123-130.
    [11]Ni F,Zhao L,Matousek V.,et al.Tow-phase flow of highly concentrated slurry in a pipeline[J].J.Hydrodynamics Ser B,2004,16(3):325-331.
    [12]Sommerfeld M.Modeling of Particle-Wall Collisions in Confined Gas-Particle Flows[J].Int. J. Multiphase Flow,1998,18:905-926.
    [13]路展民,杨秀芝.垂直管湍流液—固流中大颗粒的相对速度[J].力学学报,1999,31(1):29-36.
    [14]Yan X.,Shi Q.,Hou M.,et al.Effects of Air on the Segregation of Particles in a Shaken Granular Bed[J].Physical Review Letters,2003,91(1):1-4.
    [15]栗苏文,夏建新,曹斌.颗粒流动特殊现象探析[J].泥沙研究,2005,6:65-69.
    [16]Campbell C.S.Granular Material Mlows -An overview[J].Powder Technology,2006, 162:208-229.
    [17]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [18]夏建新,倪晋仁,黄家桢.粗颗粒物料在垂直管流中的滞留效应[J].矿冶工程,2002,22(3):37-40.
    [19]Li H.M.,McCarthy J J.Cohesive Particle Mixing and Segregation Under Shear[J]. Powder Technology,2006,164:58-64.
    [20]Frimpong S.,Szymanski J.Oil Sands Slurry and Waste Recycling Mechanics in a Flexible Pipeline System[J].Resources, Conservation and Recycling,2003,39:33-50.
    [21]黄玉诚,孙恒虎.尾砂作骨料的似膏体料浆流变特性实验研究[J].金属矿山,2003,6:8-1.
    [22]Kesimal A.,Ercikdi B.The Effect of Deslining by Sedimentation on Paste Backfill Performance[J].Minerals Engineering,2003,16:1009-1011.
    [23]孙东坡,王二平,严军等.高浓度泥浆输送管道阻力及输送能力研究[J].水利学报,2004,9:1-8.
    [24]Engelmann H.E.Vertical Hydraulic Lifting of Large-Size Particles a Contribution to Marine Mining[C].Offshore technology conference, Houston, May,1978.
    [25]Asakura K.,Asari T.,Nakajima I.Simulation of Solid-Liquid Flows in Vertical Pipe by a Collision Model[J].Powder Technology,1997,145(4):201-209.
    [26]Han Wenliaang,Wang Guangqian,Wu BaoSheng,etc.Water Hammer in Coarse-Grained Solid-Liquid Flows in Hydraulic Hoisting for Ocean Mining[J].Trans. Nonferrous Met. Soc. China,2002,12 (3):508-513.
    [27]Xia Jianxin,Ni Jinren,Mendoza C.Hydraulic Lifting of Manganese Nodules Through a Riser[J]. Journal of Offshore Mechanics & Arctic Engineering,ASME,2004,2:72-78.
    [28]李畅,夏建新.深海矿产资源开发水力提升系统参数预测及优化[J].矿冶工程,2007,4:23-27.
    [29]金子桥,吕宪俊,胡术刚等.膏体充填料浆水力坡度研究进展[J].金属矿山,2009,11:35-37.
    [30]毛旭锋,夏建新.复杂地形下高浓度浆体管道充填阻力试验研究[J].矿冶工程,2007,27(4):35-38.
    [31]陈光国,阳宁,唐达生等.垂直管道颗粒及颗粒群沉降运动规律研究[J].泥沙研究,2010,4:16-21.
    [32]Xia Jianxin,Huang Jiazhen.Additional Pressure Losses of Solid-Liquid Flow in an Oscillating Pipeline[J]. Journal of Hydrodynamics,2002,B(1):75-80.
    [33]林愉,黄以细,林群.洁净煤柱的试验研究和性能分析[J].中国矿业,2006,15(6):84-90.
    [34]董长银,张琪,张松亭.水平井砾石充填过程中的变质量流[J].科学技术与工程,2005,5(2):69-72.
    [35]Thomas D.G.Transport characteristics of suspensions:part VI,minimum transport velocity for large particle size suspensions in round horizontal pipes[J].AICHE Journal, 1962,8(3):373-378.
    [36]Durand R.The hydraulic transportation of coal and solid materials in pipes[C].Colloq of National Coal Board,London,1952:39-52.
    [37]Graf W.H.,Robinson M.,Yucel O.The critical deposit velocity for solid-liquid mixtures[C].Ist Int Conf on Hyd. Transport of Solids in pipes,BHRA Fluid Engng. Cranfield,U.K:1970.
    [38]张兴荣.固液两相流管道输送临界不淤流速研究[J].管道运输,1996,1(2):7-15.
    [39]Abulnaga B.E.Slurry system hand book[M].New York:McGraw-Hill,2002.
    [40]Durand R.Basic relationships of the transportation of solids in pipes-experimental research[C].Prof.,Minnesota Int.Hydr.Conf.,1953:89-103.
    [41]Wasp E.J.,et al.Deposition Velocities,Transition Velocities and Spatial Distribation of solids in slurry pipelines[C].Ist Int. Conf on Hyd. Transport of Solids in pipes,BHRA Fluid Engng.Cranfield,U.K:1970.
    [42]Wasp E.J.,Kenny J.P.,Gandhi R.L.Solid-liquid flow slurry pipeline transportation[M]. Clausthal:Trans Tech Publications,1977.
    [43]Schiller R.E.,Herbich J.B.Sediment transport in pipes[M].In Handbook of Dredging, New York:McGraw-Hill,1991.
    [44]Zandi I.,Gavatos G.Heterogeneous flow of solids in pipelines[J].J.Hydr.Div.,1967, 93(3):145-159.
    [45]Babcock H.A.Heterageneous flow of heterogeneous solids[J].Paper 8,Advances in solid-liquid flow in pipes and applications, Zandi I.,ed.,Pergamon,New York,1971:125-148.
    [46]Larsen I.Discussion of heterogeneous flow of solids in pipelines.by Zandi I. and Gavatos G.Proc.[J].ASCE,1968,94(1):332-333.
    [47]Kokpinar M.A.,Gogus M.Critical velocity in slurry transporting horizontal pipelines[J]. J.Hydr.Engrg.,2001,127(9):763-771.
    [48]Metzmager A., Sadan A., Shelef M. Rapid computation of settling or rising velocity of spherical particles in fluid media[J].British Chemical Engrg,1964,227:478-483.
    [49]Cheng N.S.Simplified settling velocity formula for sediment particle [J].J.Hydr.Engrg., ASCE,1997,123(2):149-152.
    [50]Cheng N.S.Effect of concentration on settling velocity of sediment particles [J].J. Hydr.Engrg., ASCE,1997,123(8):728-731.
    [51]Yotsukura N.Some effects of bentonite suspensions on sand transport in a smooth 4inch pipe[D].Fort Collins,Colo:Colorado State University,1961.
    [52]Avci I.Experimentally determination of critical flow velocity in sediment carrying pipeline system.Tech.Rep.,Technical University,Istanbul,Turkey.
    [53]Hepy F.M.,Ahmad Z.,Kansal M.L.Critical velocity for slurry transport through pipeline[J].Dam Engineering,XIX,2008,3:169-184.
    [54]Swamee P.K.,Ojha C.S.P.Drag coefficient and fall velocity of nonspherical particles[J]. J. Hydr.Engrg.,Proc.ASCE,1997,117(5):660-667.
    [55]Oroskarl A.R., Turian R.M.The critical velocity in pipeline flow of slurries [J]. AIChE J., 1980,26(4):550-558.
    [56]Walton I.C.Eddy diffusivity of solid particles in a turbulent liquid flow in a horizontal pipe[J].AIChE.J.,1995,41(7):1815-1820.
    [57]Davies J.T.Calculation of critical velocities to maintain solids in suspension in horizontal pipes[J].Chem.Eng.Sci.,1987,42(7):1667-1670.
    [58]Subhash N.,Shah,David L.L.Critical velocity correlations for slurry transport with non-newtonian fluids[J].AIChE.J.,1991,37(6):863-870.
    [59]Sommerville D.R.Critical transport velocity in two-phase,horizontal pipe flow[J]. AIChE. J.,1991,37(2):274-276.
    [60]Rojas M.R., Saez A. E.Two-Layer Model for Horizontal Pipe Flow of Newtonian and Non-Newtonian Settling Dense Slurries[J].Ind.Eng.Chem.Res.,2012,51 (20):7095-7103.
    [61]Doron P., Barnea D.A three-layer model for solid-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow,1993,19(6):1029-1043.
    [62]Doron P.,Simkhis M., Barnea D. Flow of solid-liquid mixtures in inclined pipes[J]. International Journal of Multiphase Flow,1997,23 (2):313-323.
    [63]Shook C.A.Pipelining solids:the design of short distance pipelines[J].Proc Symp on Pipeline Transport of solids.Toronto:Cana Soc Chem Engin,1969.
    [64]Turian R.M.,Yuan T.F.Flow of slurries in pipelines[J]. AIChEJ.,1977,23(3):232-243.
    [65]Turian R.M.,Hsu F.L.,Ma T.W.Estimation of the critical velocity in pipeline flow of slurries[J]. Powder Technology,1987,51(1):35-47.
    [66]郗夏楠,孙西欢,李永业等.管道水力输送临界流速研究进展综述[J].山西水利,2012,3:34-35,38.
    [67]李鹏程,韩文亮,田龙.高浓度管道输送参数计算模型的研究[J].金属矿山,2005,4:60-62,66.
    [68]Ahmad Z.,Azamathulla H.Md.Estimation of critical velocity for slurry transport through pipeline using ANFIS and GEP[J]. J. Pipeline Syst. Eng. Pract.,2012:1949-1190.
    [69]Lahiri S. K., Ghanta K. C.Artificial neural network model with parameter tuning assisted by genetic algorithm technique:study of critical velocity of slurry flow in pipeline[J]. Asia-Pacific Journal of Chemical Engineering,2010,5(5):763-777.
    [70]Changhee K., Mansoo L., Cheolheui H. Hydraulic transport of sand-water mixtures in pipelines Part I[J]. Experiment, Journal of Mechanical Science and Technology,2008, 22(12):2534-2541.
    [71]Hashimoto,H.,Noda,L.,Masuyama,T. and Kawshima,T,Influence of pipe inclination on deposit velocity[C]. BHRA.Proc. of the 6th Int. Conf. on the Hydraulic Transport of Solids in Pipes, Canterbury:BHRA Fluid Engineering,1980:231-244.
    [72]Wilson.K.C.Effect of solids concentration on deposit velocity[J].Jour.Pipelines. Elsevier,1986,5:251-257.
    [73]Over Bratland.Pipe Flow 2:Multi-phase Flow Assurance[M].New York:Springer,2009: 235-243.
    [74]费祥俊,王可钦,翟大潜等.长距离管道输送中浆体物理特性及输送参数的试验研究[J].水利学报,1984,11:15-25.
    [75]费祥俊.浆体管道的不淤流速研究[J].煤炭学报,1997,22(5):532-536.
    [76]费祥俊.浆体的物理特性与管道输送流速[J].管道技术与设备,2000,1:1-4,8.
    [77]邹履泰.两相流管道临界不淤流速的预估[J].武汉水利水电学院学报,1990,23(2-3):139-144.
    [78]王敬昌,陈天雷.浆体管道水力输送临界不淤流速的确定[J].有色矿冶,1991,3:19-23,50.
    [79]刘德忠.矿浆管道水力输送的试验研究[J].泥沙研究,1980,1:23-36.
    [80]刘德忠.矿浆管道水力输送的试验研究[J].泥沙研究,1983,4:85-88..
    [81]费祥俊.悬移质水沙挟沙能力与输沙特性[J].泥沙研究,2003,3:30-34.
    [82]丁宏达.浆体管道输送沉积临界流速的研究[J].油气储运,1985,4(1):1-8,27.
    [83]丁宏达.矿浆管道输送沉积临界流速公式探讨[J].油气储运,1989,8(1):1-5.
    [84]蔡保元,霍春燕,钱锐.固体物料水力管道最佳输送流速的确定[J].机械工程学报,2001,37(12):91-93.
    [85]许振良,孙宝铮.水平管内非均质流速度分布解析的新模型[J].水力采煤与管道运输,1998,4:34-40.
    [86]汪东.非均质流水平管道临界流速研究[J].矿冶工程,2008,28(4):20-22.
    [87]汪东,许振良,孟庆华.浆体管道输送临界流速的影响因素及计算分析[J].管道技术与设备,2004,6:1-2.
    [88]孟庆华,许振良.水平管道中堆积速度的确定[J].管道技术与设备,2005,6:3-4,21.
    [89]何成,王耀南,邹伟生等.矿浆管道输送流速仿人智能多模态控制研究[J].控制与决策,2012,27(2):295-298,303.
    [90]张英普,何武全,蔡明科等.关于浑水管道输水系统临界不淤流速的试验研究[J].灌溉排水学报,2004,23(6):34-36,40.
    [91]高泉.粗颗粒物料管道输送临界流速的计算[J].长沙矿山研究院季刊,1983,3(4):1-13.
    [92]金文斌,黄小平,高文鹏.大颗粒物料在垂直管道内最小输送速度的试验研究[J].矿业研究与开发,1997,17(2):17-20.
    [93]申焱华,毛纪陵,凌胜.垂直管道固液两相流的最小提升水流速度[J].北京科技大学学报,1999,21(6):519-522.
    [94]姜龙,李鹏程,田龙等.垂直管水力提升临界淤堵流速的实验[J].有色金属,2006,58(1):82-85.
    [95]Hayden J.W.,Stelsen T.T.Hydraulic conveyance of solids in pipes[C].In Advances in Solid Liquid Flow and its Applications(Edited by Zandi I.),Oxford:Pergamon Press,1971:149-163.
    [96]孙西欢,阎庆绂,李永业等.管道螺旋流输送水力特性研究[M]北京:中国水利水电出版社,2012.
    [97]Kao D.T.Y.,Hwang L.Y.Critical slope for slurry pipeline transportating coal and other solid particles[A].Six International Conference on the Hydraulic Transport of Solids in Pipes[C]. Canterbury,UK:BHRA Fluid Engr,1979,6:57-72.
    [98]Changhee Kim,Mansoo Lee,Cheolheui Han.Hydraulic transport of sand-water mixtures in pipelines:Part I.Experiment[J] Journal of Mechanical Science and Technology, 2008,22:2534-2541.
    [99]Scott S.H.,Steven R.Hydraulic transport of fine and coarse sediment mixtures in pipelies[J].J.Transp.Eng.,2002,128:1-8.
    [100]Newitt D.M., Riehardson J.F., Abbottnad R M.,etal. Hydraulie conveying of solids in horizonial pipes[J]. Tnars.Instn.Chem.Engrs.,1955,33(4),93-113.
    [101]Newitt D.M.,etal.Hydraulie conveying of solids in vertical pipes[J].Trans. Inst. Chem. Engrs.,1961,39(2):33-78.
    [102]赵利安.大颗粒浆体管内流动规律研究[D].辽宁:辽宁工程技术大学,2011.
    [103]Doron P.,Granica D.,Barnea D.Slurry flow in horizontal pipes-experimental and modeling[J].Int.J.Multiphase Flow.1987,13(4):535-547.
    [104]Gao Peng.Transition between two bed-load transport regimes:Saltation and Sheet Flow[J] Journal of Hydraulic Engineering,2008,134(3):340-349.
    [105]Gorji M.,Ghorbani N.The influences of velocity on pressure losses in hydrate slurry [J]. International Journal of Numerical Methods for Heat & Fluid Flow,2008,18(1):5-13.
    [106]Carstrns M.R.A theory for heterogeneous flow of solids in pipes[J].Proc.ASCE, J.Hydraul. Div.,1969,95(HY1):275-286.
    [107]Noda K.,Takahashi H.,Kawashima T.Relation between behavior of particles and pressure loss in horizontal pipes[C].In Proc.7th Int.Conf.on the Hydraulic Transport of Solids in Pipes,Rome,Paper D4,1984:191-205.
    [108]Toda M.,Yonehara J.,Kimura T.,etal.Simulation of limit-deposit celocity in horizontal liquid-solid flow[C].In Proc.7th Int.Conf.on the Hydraulic Transport of Solids in Pipes,Sendai, Paper J2,1980:191-205.
    [109]Wani G.A.,Mani B.P.,Suba R.D.,etal.Studies on the hold-up and pressure gradient in hydraulic conveying of settling slurries through horizontal pipes[J].J.Pipelines,1983,3: 215-222.
    [110]Shook C. A., Daniel S. M.A variable-density model of the pipeline flow of suspensions[J].The Canadian Journal of Chemical Engineering,1969,47(2):196-200.
    [111]Ekambara K.,Sean S.R.,Nandakumar K.Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX[J].Ind.Eng.Chem.Res,2009,48 (17):8159-8171.
    [112]Jayasundara C.T., Yang R.Y., Guo B.Y.,etal.Effect of slurry properties on particle motion in IsaMills[J]. Minerals Engineering,2009,22(11):886-892.
    [113]Turian R.M.,Yuan T.F.Flow of slurries in pipelines[J].AIChE.J.,1977,23(3):232-243.
    [114]Turian R.M.,Yuan T.F.,Giacomo Mauri.Pressure drop correlation for pipeline flow of solid-liquid suspensions[J]. AIChE.J.,1971,17(4):809-817.
    [115]张士林.沉降性浆体速度与浓度分布耦合模型及迁移速度研究[D].辽宁:大连理工大学,2005.
    [116]Matousek.Flow mechanism of sand-water mixtures in pipelines [D],Netherlands,1997.
    [117]Wilson K.C.,Addie G. R.,Sellgren A.,et al.Slurry transport using centrifugal pumps [M].Springer Science & Business.,2009.
    [118]Matousek V.Pipe-Wall Friction in Vertical Sand-Slurry Flows[J],Particulate Science &Technology,2009,27(5):456-468.
    [119]白晓宁,胡寿根,张道方等.固体物料管道水力输送的研究进展与应用[J].水动力研究与进展,2001,16A(3):303-311.
    [120]杨金燕,金英豪,姚香.浆体管道输送有关技术的试验研究[J].矿业工程,2009,7(3):66-68.
    [121]白晓宁,胡寿根.浆体管道的阻力特性及其影响因素分析[J].流体机械,222,28(11):26-29,11.
    [122]许振良.管道内非均质流速度分布与水力坡度的研究[J].煤炭学报,1998,23(1):91-96.
    [123]许振良.沉降性浆体在水平管道内输送时的水力坡度[J].中国有色金属学报,1999,9(2):441-447.
    [124]许振良.一个非均质流水力坡度解析的新模型[J].泥沙研究,2000,1:56-64.
    [125]张士林.水平浆体管道堆积层厚度与水力坡度的关系[J].水力采煤与管道输送,2006,1:3-4,15.
    [126]张士林.浆体管道低速段水力坡度的研究[J].水力采煤与管道输送,2011,3:1-3.
    [127]赵利安,许振良.水平管道中粗颗粒浆体摩阻损失的研究[J].湖南文理学院学报(自然科学版),2007,19(1):89-91,95.
    [128]宁德志.沉降性浆体倾斜管道水力坡度的研究[D].辽宁:辽宁工程技术大学,2001.
    [129]赵利安,许振良.倾斜管道水力坡度的研究[J].辽宁工程技术大学学报,2003,22(增刊):15-17.
    [130]赵利安,许振良.倾斜管道颗粒完全滑移的摩阻损失[J].黑龙江科技学院学报,2005,15(5):285-287.
    [131]赵利安,孟庆华.伴有滑动床的浆体倾斜管道摩阻损失研究[J].矿业研究与开发,2007,28(2):3-6.
    [132]孙凯年,刘可任,章庆松.液固两相流垂直管道向上输送水力坡度的研究[J].黄金,1987,2:4-7.
    [133]夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失[J].泥沙研究,2002,2:23-28.
    [134]唐军,胡文书,林愉.深海采矿水力提升系统的压力损失计算[J].矿山机械,2009,37(17):23-25.
    [135]丁宏达.海底多金属结核的管道水力输送[J].水力采煤与管道运输,2006,2:1-3.
    [136]王铁力,赵利安.浆体管道中大颗粒干涉力研究[J].洁净煤技术,2011,17(1):122-125.
    [137]韩旭,张奇志,王晓光.管道输送中浆体水力坡度的研究[J].有色矿冶,1997,2:1-4.
    [138]韩旭,张奇志,佟庆理.用人工神经网络法研究管道中浆体摩阻损失[J].矿业工程,1997,17(1):5-8.
    [139]赵顺亭,东静波,夏强等.牛顿流体在连续管内流动的压降数值模拟[J].石油机械,2009,37(7):13-16.
    [140]解海卫.粉煤灰弄僵管道流动特性与阻力特性的研究[D].河北:华北电力大学,2004.
    [141]丁宏达.高浓度浆体管道摩阻损失计算方法研究[J].油气储运,1987,6(3):28-34.
    [142]谭幼媛.高浓度浆体输送特性的研究[J].矿业研究与开发,1995,15(2):9-13.
    [143]王佩勋.矿山充填料浆水力坡度计算[J].有色矿山,2003,32(1):8-11.
    [144]费祥俊.固体管道水力输送摩阻损失的预测[J].水利学报,1986,12:20-29.
    [145]邱跃琴.浆体管道输送中两种阻力损失计算方法的分析[J].贵州工业大学学报(自然科学版),1999,28(5):31-35.
    [146]邓祥吉,倪福生,罗荣民.管道输沙阻力损失的2种计算模型[J].河海大学常州分校学报,2005,19(1):54-56,60.
    [147]Braden M.Rheology of composite filling material pastes[J].J.Dent.Res.,1977,56(6): 627-630.
    [148]Thurgood J.R.,Oswld G.E.,Youngblood E.L.The rheological characterization of coal liquefaction preheater slurries[J].AIChE.J.,1982,28(1):111-116.
    [149]Hiromoto Usui,Lei Li,Hiroshi Suzuki.Rheology and pipeline transportation of dense fly-ash-water slurry[J].Korea-Australia Rheology J.,2001,13(1):47-54.
    [151]黄玉诚,李晓明,耿向慧等.拟膏体充填料浆流型和流态研究[J].中国矿业,2009,18(4):96-101.
    [152]胡华,黄玉诚,孙恒虎.拟膏体充填料浆流变特性及其多因素影响分析[J].有色金属(矿山部分),2003,55(3):4-7.
    [153]胡华,孙恒虎,黄玉诚.拟膏体粘弹性塑性流变模型与流变方程研究[J].中国矿业大学学报,2003,32(2):119-122.
    [154]王新民,肖卫国,王小卫等.金川全尾砂膏体充填料浆流变特性研究[J].矿冶工程,2002,22(3):13-16.
    [155]吕宪俊,胡术刚,金子桥等.细粒尾矿充填料浆的流变特性及输送工艺参数研究[C].合肥:第五届中国充填采矿技术与筹备大会,2011,5:92-95.
    [156]许毓海,许新启.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,2004,13(3):16-19.
    [157]赵龙生,孙恒虎,孙文标等.拟膏体料浆流变特性及其影响因素分析[J].中国矿业,2005,14(10):46-48.
    [158]翟永刚,吴爱祥,王洪江等.全尾砂膏体料浆的流变特性研究[J].金属矿山,2010,12:30-32,57.
    [159]王天刚,黄玉诚,李飞跃.在稳定流状态下拟膏体料浆流变特性研究[J].有色矿山,2003,32(6):8-10,21.
    [160]赵才智,周华强,翟群迪等.膏体充填料浆流变性能的实验研究[J].煤炭科学技术,2006,34(8):54-56.
    [161]刘同有.金川全尾砂膏体物料流变特性的研究[J].中国矿业,2001,10(1):14-21.
    [162]陈良勇,段珏锋,刘猛等.水煤浆真实流变特性的研究[J].动力工程,2008,28(5):74-79.
    [163]王秋粉,任远,陈良勇等.压力下水煤浆流变特性的测量[J].南京师范大学学报(工程技术版),2006,6(2):63-67.
    [164]董平,吕玉庭,陈俊涛.超细煤水煤浆流变特性的研究[J].选煤技术,2004,4:45-49.
    [165]尹连庆.火电厂粉煤灰浆体特性研究[J].河北电力,1994,1:35-37,43.
    [166]王星,赵学义,翟圆媛等.高浓度赤泥颗粒特性和流变特性的试验研究[J].金属矿山,2008,1:107-109,134.
    [167]Roco R.M.Diagram to classify liquid-solid flows by their microstructure[A]. Proc. Hydrotransport11[C].,1988:81-103.
    [168]孟庆华,许振良,郝宁等.水平管道中固体颗粒推移和悬移状态的判别[J].水力采煤与管道运输,2005,4:3-5.
    [169]刘大有.固液两相流体力学[M].北京:高等教育出版社,1993.
    [170]倪晋仁,王光谦,张红武.固液两相流基本理论及其应用[J].北京:科学出版社,1991
    [171]柳冠青.范德华力和静电力下的细颗粒离散动力学研究[D].北京:清华大学,2011.
    [172]黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学与力学,2000,21(3):265-276.
    [173]王英杰,金星.水力提升管道内两相流运动的运动学仿真计算[J].矿上机械,2011,39(12):50-54.
    [174]孟晓刚,倪晋仁.固液两相流中颗粒受力及其对垂向分选的影响[J].水利学报,2002,9:6-13.
    [175]吴磊.粗颗粒固液两相的数值模拟[D].浙江:杭州电子科技大学,2010.
    [176]林建忠等.超长颗粒多相流体动力学—圆柱状颗粒两相流[M].北京:科学出版社,2008.
    [177]夏建新,吉祖稳.水沙环境学[M].北京:海洋出版社,2004.
    [178]夏建新,吉祖稳.湍流中泥沙垂线分布的力学解释[J].水利学报,2003,1:45-50.
    [179]夏建新,倪晋仁.水沙流中颗粒脉动特性[J].水利学报,2003,3:7-13.
    [180]Gay E.C.,Nelson P.A.,Armstrong W.P.Flow properties of suspensions with high solids concentration[J]. AIChE J.,1969,6:15.
    [181]许振良.非均质流速度分布与水力坡度的研究[D].辽宁:东北大学,1998.
    [182]钱宁.高含沙水流运动[M].北京:清华大学出版社,1989.
    [183]钟德钰,王光谦,王士强.非均匀颗粒形成浆体屈服应力的计算模型[J].泥沙研究,1998,3:29-33.
    [184]熊刚,费祥俊.泥石流浆体屈服应力的计算方法[J].泥沙研究,1996,1:56-65.
    [185]王裕宜,詹钱登,邹仁元等.泥石流浆体屈服应力综合表达式的研究[J].自然灾害学报,1999,8(3):103-110.
    [186]钱宁,王兆印.泥石流运动机理的初步探讨[J].地理学报,1984,39(1):33-43.
    [187]刘波,许振良,赵聪.非均质流水平管道内固体颗粒的运动与滑移速度分布关系研究中国科技信息,2009,11:46-47.
    [188]张宗生.金川矿山废石膏体配制与流变特性研究[D].云南:昆明理工大学,2008.
    [189]邹正勤,高谦,南世卿.充填采矿用全尾砂胶结材料流变特性研究[J].金属矿山,2012,12:132-134.
    [190]熊楚安.煤浆浓度对油煤浆流变特性和表观黏度的影响[J].黑龙江科技学院学报,2012,22(3):238-239.
    [191]孙成功,吴家珊,李保庆.高浓度煤浆的制备和流变性的研究[J].燃料化学学报,1996,24(2):132-133.
    [192]郑伯坤.尾砂充填料流变特性和高浓度料浆输送性能研究[D].湖南:长沙矿山研究院,2011.
    [193]赵利安,许振良.粗砂浆体水平管道流动水力坡度预测研究[J].水利水运工程学报,2013,1:71-75.
    [194]倪福生,赵立娟,齐帜等.粗砂水力输送多峰阻力特性[J].中国港湾建设,2010,1:23-27.
    [195]乔建廷.水平管道中均质流界限速度的研究[D].辽宁,辽宁工程技术大学,2005.
    [196]Schulz L.Experience of the soviet union in hydromechanization[J]. Bergbautechnic, 1962,12:353-361.
    [197]李伟.水平管道中浮游界限速度的研究辽宁:辽宁工程技术大学,2004.
    [198]许振良,李伟.水平管道中浮游界限速度研究[J].辽宁工程技术大学学报,2006,25(6):839-841.
    [199]戴继岚.管道中具有推移层的两相流动[D].北京:清华大学,1985.
    [200]李伟,许振良,甘正旺.人工神经网络在水平管道浆体输送浮游界限速度中的应用[J].管道技术与设备,2005,1:15-16.
    [201]丁宏达.浆体管道输送设计流速中在运行中的可靠性分析[J].水力采煤与管道输送,2002,1:3-7.
    [202州正旺.沉降性浆体水平管道堆积速度的研究[D].辽宁:辽宁工程技术大学,2004.
    [203]吴万荣,梁向京.水平管道中工业浆体堆积速度的确定[J].合肥工业大学学报(自然科学版),2012,35(6):721-724.
    [204]Kenneth C.Wilson,James K.P.Tse.Deposition limit for coarse-particle transport in inclined pipes[C].9th international conferenct on hudraulic transport of solids in pipes
    [205]赵利安,许振良.矿浆管道堵管事故原因分析及防治措施[J].辽宁工程技术大学学报(自然科学版),2009,28(增刊):10-12.
    [206]Taylor G I. Statistical theory of turbulence [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1935,151(A873):0421-0444
    [207]Taylor G I. Statistical theory of turbulence-Ⅱ [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1935,151(A873):0444-0454
    [208]Taylor G I. Statistical theory of turbulence Ⅲ-Distribution of dissipation of energy in a pipe over its cross-section [J].Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1935,151(A873):0455-0464
    [209]Taylor G I. Statistical theory of turbulence IV-Diffusion in a turbulent air stream [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1935,151(A873):0465-0478
    [206]Ghanta K C, Purohit N K. Pressure drop prediction in hydraulic transport of bi-dispersed particles of coal and copper ore in pipeline [J]. Canadian Journal of Chemical Engineering, 1999,77(1):127-131.
    [207]李鹏程.粗颗粒垂直管水力提升规律研究[D].北京:清华大学,2007.
    [208]Newitt D.M.,Richardson J.F.Hydraulic conveying of solids[J]Nature,1955,175(4462): 800-801.
    [209]陈广文,古德生,高泉.浆体水平管道输送阻力损失计算探讨[J].中南矿冶学院学报,1994,25(2):162-166.
    [210]赵利安.沉降性浆体倾斜管道摩阻损失的研究[D].辽宁:辽宁工程技术大学,2004.
    [211]佐藤博.翰送システム[M].日本:秋田活版印刷株式会社,1995.
    [212]夏建新.大洋多金属结核水力提升两相流体动力学及应用研究[D].北京:中国矿业大学,2000.
    [213]夏建新,黄家桢,唐达生等.锰结核开采射流泵提升方式研究[J].矿冶工程,1999,19(03):13-15.
    [214]赵国景,夏建新,黄家桢.锰结核动态管道水力提升[J].矿冶工程,2000,20(03):18-20,24.
    [215]Sharp B B,Oneill I C.Lateral.Diffusion of Large Particles in Turbulent Pipe Flow [J]. Journal of Fluid Mechanics,1971,45(FEB15):575-584.
    [216]Francis J R D. Experiments on Motion of Solitary Grains Along Bed of A Water-Stream [J]. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1973,332(1591):443-471.
    [217]Hong S, Choi J, Yang C K. Experimental study on solid-water slurry flow in vertical pipe by using PTV method [M].2002
    [218]Albion K, Briens L, Briens C, et al. Detection of oversized material in a hydrotransport slurry pipe using a non-invasive acoustic method [J]. Powder Technology,2009,190(3): 361-371
    [219]Garic-Grulovic R V, Grbavcic Z B, Boskovic-Vragolvic N, et al. Mass transfer in vertical liquid-solids flow of coarse particles [J]. Powder Technology,2009,189(1):130-136.
    [220]张世奇.粗颗粒浑水流变特性[J].水利学报,1990,11:34-40,47.
    [221]唐晓明.高浓度粘稠物料的泵送及流变特性试验研究[D].浙江:浙江大学,2007
    [222]Ping Lu,Mingyao Zhang.Rheology of coal-water paste [J].Powder Technology,2005, 150(3):189-195.
    [223]Acikalin S, Yilmazer U. Effect of volume fraction and particle size on wall slip in flow of polymeric suspensions [J] Journal of Applied Polymer Science,2005,98(1):439-448.
    [224]陈广文.浆体管道输送流型特性及其阻力损失分析[J].有色金属,1994,46(1):15-19.
    [225]Vladimir. Vand. Viscosity of solutions and suspentions Ⅱ Experimental detemination of the viscosity-Concentration relationship[J].J.Phys.Chem.,1948,52(2):300-314.
    [226]J.S Chong,E.B.Christiansen,A.D Baer.Rheology of concentrated suspensions[J]. Journal of Applied Polymer Science,1971,15(8):2007-2021.
    [227]褚君达.浑水的粘滞性.河流泥沙国际学术讨论会论文集[C].1980.
    [228]D.Quemada.Rheology of concentrated disperse systems and minimum energy diddipation principle I.Viscosity- concentration relationship[J].Rheol.Acta,1977,16:82-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700