用户名: 密码: 验证码:
泥石流与主河水流交汇模型及耦合计算方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱含大量泥沙石块的泥石流进入主河,往往会堵断河流,淹没上游农田、铁路、公路等沿河建筑物,造成大范围危害。另一方面,泥沙石块在河道中的堆积,控制着入汇口附近的水沙交互作用和河床形态变化,变迁型河段对公路、铁路的危害是全局范围的。
     从力学性质上划分,一般泥石流属于非牛顿流体,而河水则通常被看作是牛顿流体,泥石流入汇主河,其汇流后的运动特征与牛顿流体之间的交汇问题不同,是一种非牛顿流体与牛顿流体之间的汇流问题,泥沙的堆积与输移、主河水流的变化以及河床的改变等均表现极为复杂。本文首先通过野外实地考察和室内模型实验,来探明两种不同流体交汇时相互作用特点,然后建立在不同交汇条件下泥石流和主河水流交汇的流动模型,并研究可行的求解方法。
     在野外考察方面,主要围绕云南小江流域,调查了泥石流与主河交汇现状及其泥石流活动对铁路和公路的影响,分析总结了实际观测到的交汇特点。
     为了探明泥石流与主河交汇的相互作用机理,本文重点介绍了所开展的室内模型实验。首先研究了两场交汇试验的相似性问题,对于泥石流入汇主河水流,其相似性主要应考虑主支流的几何因素(包括交汇口夹角)、入汇前泥石流物理特性、主支沟各流体运动学和动力学因素。实验的重点放在交汇初期汇流部的流动特点,对于一般稀性及粘性泥石流,交汇角、支沟与主沟相互关系、主支流流量比的影响非常大。根据泥石流在交汇区的流动特性,试验得出两种不同的交汇模式,即“有分层交汇”模式和无明显分层的“潜入式交汇”模式。试验还表明有分层交汇时泥石流的运动与泥石流在无水流作用下的运动有着本质的不同,而潜入式交汇模式与异重流有相似之处。模型试验得到了潜入式交汇泥石流龙头运动速度变化规律和龙头几何特征,初步探明了分层交汇的动力学机理和上下层速度差的影响因素。
     在试验研究的基础上,针对潜入式交汇模式,运用质量守恒方程和动力学方程建立了入汇泥石流龙头的运动方程。计算结果得到以下结论:(1)当主河水流弗劳德数比较小(Fr<0.35)时,入汇主河泥石流龙头运动速度近似以线性下降,且与试验值吻合较好;(2)混合流粘滞系数η和绕
    
     西南交通大学博士研究生学位论文第日页
    流系数CD对龙头运动速度影响较大;(3)泥砂沉降速度w,对龙头内部体
    积比浓度有显著影响。
     对于复杂的有分层交汇情况,本文从经典流体力学和非牛顿流体力
    学理论出发,建立统一的能反映交汇区流动的控制方程,在此基础上,
    采用标志网格法(MAC法)和质点网格法(PIC法),结合现有的有关
    泥石流、泥沙等浆体的流变关系和流变参数,提出了一种计算交汇区流
    场和泥沙沉积与输移的祸合分析方法。通过计算实践表明:文中所提出
    的祸合计算方法是可行的,所建立的二维和三维模型,可以从不同的角
    度刻画了交汇区水面的变化、泥沙沉积与输移特性。
     考虑到泥石流在结构上具有多样性,本文在对传统离散单元法(DEM)
    进行分析的基础上,提出了适用于计算泥石流运动的三维离散单元模型,
    运用此模型计算了主河在无水(或弱水流)条件下,泥石流堆积过程与
    堆积扇形态。在此基础上,提出了泥石流(采用离散单元法)与主河水
    流(流体力学方法)交替计算的祸合模型,模型中重点考虑了堆积体与
    水流交接面单元格中泥沙沉积与输移,并按单元格中的流动状态和泥沙
    浓度来确定泥沙的沉积与输移。运用改进后的模型计算了无水和有水流
    作用下的两种堆积过程,其堆积体的纵向坡面变化、堆积扇的几何形态、
    泥沙浓度分布等,均得到了较详细的刻画。
When debris flow, which contains large quantities of stone, sand and clay particles, enters into a Main River, the river is frequently blocked, and farmland, railways and roads, and all of the construction along the river upstream will be ruined. Also, stone and sediment deposited in the Main River, it has an important influence on the movement of sediment and flow, and river channel may change. As a consequence, the changing river will affect construction of overall the railway and highway situation.
    From mechanics point of view, debris flow is usually classified as Non-Newtonian flow, and water in river as Newtonian flow. Thus, there is a complex interaction between Non-Newtonian flow and Newtonian flow, when a debris flow joins into a Main river. The transportation and deposit of sediment and water flow within the junction area is much more complex then between water flows. In this paper, first we investigate the mechanism of confluence between debris flow and the main river, Based on field observation and experiment, then deduce an equation for flow and sediment in the junction area with different conditions of confluence, and study a solution of the equation.
    First, we investigated Xiaojiang River, a well known area of rainfall debris flow occurrence, located in Yunnan Province in China. From field investigation, we gathered useful data about confluence between debris flow and the main river, and the effect of debris flow action railway and highway.
    To study the mechanism of confluence between debris flow and the main river, we carried out experiments. First, model similarity laws for model tests are studied. Flow phenomena at the junction area and experimental data are also reported. Based on the experiment, two patterns in confluence between debris flow and Main River, stratification flow and submerging flow, are put forward. The velocity changes and shape of debris flow head submerging into water, and mechanism of stratification flow in the confluence are examined.
    Based on the field observation and the experiment, the theoretical
    
    
    
    equation to describe the movement of debris flow head in the submerging flow pattern is established, and the calculation parameters are studied in turn.
    The following conclusions can be drawn from the simulation:
    1. In the case of a low Froude number (Fr<0.35), the velocity of debris flow head submerging into water exhibits an approximately linear decrease, which is in good agreement with the experimental data.
    2. The viscosity ( ) and drag coefficient (CD) have a large influence upon the speed of debris flow head.
    3. Sediment settling velocity (wS) has pronounced effect on the concentration (Cv) in the body of debris flow head.
    With regard to stratification flow, based on theories of both classic fluid mechanics and non-Newtonian fluid mechanics, this thesis has first established a two-dimensional and three-dimensional governing equation with the tensor form, to describe the confluence of debris flow and main channel.
    Using the present rheologic equation and parameters of both debris flow and flow with hyperconcentration of sediment, and the MAC and PIC methods, a coupling numerical simulation which can solve this equation has been proposed.
    Calculated results show that this method is really feasible for analysis of the movement characteristic of flow and sediment in a conjunction area. The 2-D and 3-D calculating model can depict details of different aspects, from different angles.
    Considering that the characteristics of debris flow body are many and varied, this paper discusses the conventional Discrete Element Method (DEM). A three-dimensional model for simulating debris flow is put forward first. Using this model, the debris flow deposit process and the accumulative fan form are simulated under both conditions, the small water flow in the main channel and no water action.
    Then, a coupling model is established, in which the calculation alternates between debris flow with DEM and the main channel with the hydromechanics method. The sediment deposit an
引文
1.杜榕桓,康志成等.云南小江泥石流综合考察与防治规划研究.科技文献出版社重庆分社,1987
    2.蒋忠信等.中国山区道路灾害防治.重庆大学出版社,1996
    3.陈光曦,王继康,王林海.泥石流防治.中国铁路出版社,1983
    4.姚令侃.铁路泥石流工程灾害形式及概率分析.路基工程.1996,(2):38-43
    5.姚德基,商向朝.国外泥石流研究中的若干基本理论问题.泥石流论文集(1).科学技术文献出版社重庆分社,198l:142-150
    6.中国科学院(中国自然地理)编辑委员会.中国自然地理·地貌.科学出版社,1981.301-312
    7.钱宁,王兆印.泥石流运动机理的初步探讨.地理学报.1984,39(1):33-43
    8.吴积善,田连权.论泥石流学.山地研究.1996,14(2):89-95
    9.吴积善,田连权,康志成等.泥石流及其综合治理.科学出版社,1993
    10. Fryxell F. M. and Horberg L. Alpine mudflows in grand Teton national park,Wyoming.Geological Society of America Bulletin. 1943,54: 457-472
    11. Sharp R. P. and Nobles L. H. Mudflow of 1941 at Wrightoon, southern California. Geological Society of America Bulletin. 1953,64:547-560
    12. Curry R. R. Observation of alpine mudflows in the Tenmile range, central Colorado. Geological Society of America Bulletin. 1966,77:771-776,
    13. Anderson D. M., Reynolds R. C. and Brown J. Bentonote debris flows in northern Alaska. Science. 1969,164:173-174
    14. Johnson, A.M. and Rahn P. H. Mobilization of debris flow. Zeitschrift for Geomorphologie. 1970,9:168-186
    15. Yano K., Daido A.. Fundamental study on mudflow. Bull. Disaster Prev. Res. inst., Kyoto Univ. Japan. 1965,14,part 2:69-83
    16. Takahashi T. Mechanical characteristics of debris flow. Journal of the
    
    Hydraulics Division. 1978,104:1153-1169,
    17. Takahashi T. Debris flow on prismatic open channel. Journal of the Hydraulics Division. 1980,106(HY3):381-396
    18.章书成.泥石流研究述评.力学进展.1989,19:365-374
    19.刘希林.国外泥石流机理模型综述.灾害学.2002,17:1-6
    20. McTigue D. F.. A nonlinear constitutive model for granular materials: application to gravity flow. Journal of Applied Mechanics ASME. 1982,49(2):291-296
    21. Johnson P. C. and Jackson R. Frictional-collisional constitutive relations for granular materials with applications to plane shearing. Journal of fluid mechanical. 1987,176:67-93
    22. Johnson P. C. et al.. Frictional-collisional equations of motion for particulate flow and their application to chutes. Journal of fluid mechanical. 1990,210:501-535
    23. Chen, C. L.. Generalized viscoplastic debris flow. J. Hydr. Engr., Proc. ASCE. 1986,114(3):237-258
    24. Chen, C. L.. General solutions for viscoplastic debris flow. J. Hydr. Engr., Proc. ASCE. 1986,114(3):259-282,
    25. O'Brien J. S., Julien P. Y. and Fullerton w. T. Tow dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering. 1993, 119(2):244-261
    26. Keefer D. K. et al.. Real-time landslide warning during heavy rainfall. Science. 1987, 238:921-925
    27. Iverson R. M.. The physics of debris flow. Reviews of Geophysics. 1997,35(3):245-296,
    28.费祥俊.高浓度浑水的宾汉极限剪应力.泥沙研究.1981,(3):19-28
    29.费祥俊.高浓度浑水的粘滞系数(刚度系数).水利学报.1982,(3):57-63
    30.费祥俊.泥石流的粘性及其测定方法.铁道工程学报.1985,(4):9-16
    31.沈寿长.泥石流应力本构关系.水利学报.1998,(12):16-21
    32.沈寿长,谢慎良.泥石流的结构模式和粗颗粒对浆体流变特性的影响.泥沙研究.1983,(3):12-19
    33.熊刚,费祥俊.泥石流浆体屈服应力的计算方法.泥沙研究.1996,(1):56-66
    
    
    34.王裕宜等.蒋家沟泥石流体静力特征.云南蒋家沟泥石流观测研究.科学出版社,1990
    35.王裕宜,邹仁元.泥石流浆体中沙粒间动摩擦力.中国地质灾害与防治学报.1998,9(4):1-7
    36.王裕宜,费祥俊.自然界泥石流流变模型的探讨.科学通报.1999,44(11):1211-1216
    37.王裕宜等.泥石流浆体屈服应力综合表达式的研究.自然灾害学报.1999,8(3):104-110
    38.王光谦,倪晋仁,张军,康志成.泥石流的颗粒流模型.山地研究.1992,10(1):1-10
    39.王光谦,倪晋仁,费祥俊.快速颗粒流碰撞应力的动理模型.力学学报.1993,25(3):348-355
    40.洪正修.泥石流流速公式探讨.中国地质灾害与防治学报.1995,(20):26-33,
    41. Schamber D. R. and MacArthur R. C.. One-Dimensional Model for Mudflows. Hydraulics and Hydrology in the Small Computer Age.. ASCE. 1985,(2):1334-1339
    42.范椿.一维定常泥石流的数学模型.力学与实践.1994,16(1)
    43.范椿.泥石流及其运动方程.力学与实践.1997,19?(3)
    44. MacArthur R.C.,Sehamber D.R.,Hamilton D.L..West M. H. Generalized methodology for simulating mudflows. Presented at Water Forum 86, ASCE. 1986, (8)
    45.章书成,陈英燕,袁晓凤等.粘性泥石流一维运动数学模型.自然灾害学报.1996,(4):69-76
    46.田连权,吴积善,康志成等.泥石流侵蚀搬运与堆积.成都地图出版社,1993
    47.倪晋仁,王光谦.泥石流的结构两相流模型:Ⅰ.理论.地理学报.1998,53(1):66-76
    48. Savage S.B.. Granular flows down rough inclines-review and extension. In Mechanics of granular Materials: New Models and Constitutive Relations. Ed.: Jenkins,J.T.et al., Eisevier Science Publishers, Netherlands, 1983:261-282
    49. Johnson, P.C., Jackson, R.. Frictional-collisional constitutive relations
    
    for granular materials, with application to plane shearing. Journal of Fluid Mechanics. 1987, 167:67-93
    50. W.Echart, S.Faria, K.Hutter, et al. Continuum Description of Granular Materials. Spring School at the Department of Structural and Geotechnical Engineering Politechnical Institute, Turin, Italy, April 2002
    51. Hakuno M. and Uchida Y. Application of the Distinct Element Method to the numerical analysis of debris flows. Structural Eng. /Earthquake Eng..1991,8(2):75-85, proc. Japan Society of civil Engineers,1991
    52.章书成.泥石流研究的新动向.首届全国泥石流滑坡防治学术会议.云南科技出版社,1993
    53.水山高久.土石流泛滥土石流对策工效果评价.新砂防.1987,40(5)
    54.水山高久.土石流泛滥模型实验土石流灾害再现.新砂防.1987,40(3)
    55.石川芳治.堆积扇上泥石流泛滥机理.泥石流和洪水灾害防御国际学术讨论会论文集A卷.1991
    56.唐川.泥石流二维非恒定流数值模拟及其危险度分区.自然灾害学报.1993,2(4)
    57.唐川.泥石流堆积泛滥过程的数值模拟及其危险范围预测模型的研究.水土保持学报.1994,8(1)
    58.唐川.平面二维泥石流数值模拟方法的探讨.水文地质工程地质.1994,(5):9-12
    59.余斌.二维定常泥流的数值模拟.自然灾害学报.1995,4(4):96-99
    60.王光谦,邵颂东,费祥俊.泥石流模拟:Ⅰ-模型.泥沙研究.1998,(3):7-13
    61.王光谦,邵颂东,费祥俊.泥石流模拟:Ⅱ.验证.泥沙研究.1998,(3):15-17
    62.王光谦,邵颂东,费祥俊.泥石流模拟:Ⅲ.应用.泥沙研究.1998,(3):18-22
    63.邵颂东,王礼先.北京山区泥石流运动数值模拟及危险区制图.北京林业大学学报.1999,(6):11-16
    64.倪晋仁,廖谦,曲轶众等.阵性泥石流运动与堆积的欧拉-拉格朗日
    
    模型 Ⅰ.理论.自然灾害学报.2000(3):8-14
    65.廖谦,倪晋仁,曲轶众等.阵性泥石流运动与堆积的欧拉-拉格朗日模型 Ⅱ.应用.自然灾害学报.2000(4):53-58
    66. Chen H,Chen S, Matthaeus W H. Recovery of the Navier-Stohes Equation Using a Lattice-gas Boltzmann Method. Phys.Rev.. 1992.45A:5339-5342
    67.俞慧丹,赵凯华.模拟可压缩流体的格子Boltzmann模型.物理学报.1999,45(8):1470-1476
    68.施卫平,胡守信,阎广武.用改进的格子Boltzmann方法模拟浅水长波问题.计算物理.1997,14(4、5):663-665
    69.徐辉,刘贵苏等.流体动力学的格子Boltzmann方法及其具体实现.燃烧科学与技术.1996,2(4):406-410
    70.阎广武,邵显,胡守信.用格子Boltzmann方法研究波及其粘性实验.吉林大学自然科学学报.1996,(4):23-27
    71.胡厚田等.高速远程滑坡流体动力学理论的研究.西南交通大学出版社,2003
    72. Bagnold R.A..Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under shear. Proc Roy Soc London,Ser A. 1954,225
    73. Savage S.B..Experinments on Shear flows of Cohesionless Granular Materials. In Proc. U.S. Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechaics of Granular Materials,Gakujusu Bunkn Fukyu-Kai, 1978
    74. Savage S.B.,Mekeown S..Shear Stresses Developed During Rapid Shear of Concentrated Suspensions of Large Spherical Particles between Concentric Cylinders,J. fluid Mech.. 1983,127
    75. Savage S.B.,Sayed M.. Stresses Developed by Dry Cohesionless Granular Materials Sheared in an Annular Shear Cell. J. fluid Mech.. 1984,142
    76. Hanes D.M.,Inman D.L..Oberservations of Rapidly Flowing Granular Fluid Mixtures. J. fluid Mech. 1985,150
    77.王沁,姚令侃,陈春光,格子Boltzmann方法在非牛顿流体研究中的应用.四川大学学报(自然科学版).2002,39(2)
    
    
    78. Taylor, E.H.. flow characteristics at rectangle open-channel junctions. Trans. Amer. Soc. Civ. Engirs.. 1944, 109:893-912
    79. Webber, N. B. and Greated, C,A.. An investigation of flow behavior at the junction of rectangle channels. Proc. Inst. Engrs. 1966,34:321-334
    80. Mosely, M.P.. An experimental study of channel confluences. Journal of Geology. 1976, 84:535-562
    81. Ashmore,P.E. and Parker, G.. Confluence scour in coarse braided streams. Water Resour.Res. 1983, 19:392-402
    82. Best. J.L. and Reid. i. Separation Zone at open channel junctions. J. Hrdr. Engrg. ASCE. 1984, 110(11):1588-1593
    83. Amamurthy.A.S. et al. Combining open channel flow at right angled junctions. J. Hydr. Engrg. AASCE. 1988,114(12):1449-1460
    84.周华君,王绍成.长江嘉陵江交汇口水力特征研究.水运工程.1994,(12):24-29
    85.兰波,王勇.干支流交汇水面形态特征分析.重庆交通学院学报.1997,(4):109-114
    86.兰波.山区河流交汇河口的综合特性分析.重庆交通学院学报.1998,(4):91-96
    87.刘建新,程昌华.山区河流干支流汇流特性研究.重庆交通学院学报.1996,(4):90-94
    88.许光祥,周华君.长江嘉陵江交汇口汇流特性统计分析.重庆交通学院学报.1996(增刊):99-104
    89.倪晋仁,惠遇甲,张国生.嘉陵江入汇对重庆河段水力特征影响的水力学分析.泥沙研究.1991,(2):29-38
    90.杨武学,唐先海,石长伟.黄渭洛河汇流区河势演变及其带来的影响.泥沙研究.2002:(4):35-41
    91.罗保平.汇流河段干支流分界线的实验研究.水运工程.1994,(11):13-16
    92. Schmidet,J.C.and Graf, J.B.. Aggradation and degradation of alluvial sand diposits,1965 to 1986,Colorado River, Grand canyon National Park, Arizona, U.S.Geological Survey Professional Paper,1990: 1493,79p
    
    
    93. Webb,R.H.,Pringle,P.T, and Rink,G.R. Debris Flows from tributaries of Colorado River, Grand Canyon National Park,Arizona,U.S. Geological Survey Professional Paper,1989: 1492,39p
    94.匡尚富.汇流部泥石流的特性和淤积过程的研究.泥沙研究.1995,(1):1-15
    95.徐永年,匡尚富等.泥石流入汇的危险性判别指标.自然灾害学报.2002,(3):33-38
    96.中国科学院兰州冰川冻土研究所.甘肃省交通科学研究所.甘肃泥石流.人民交通出版社,1982
    97.吴积善,康志成,田连权等.云南东川蒋家沟泥石流观测研究.科学出版社,1990
    98.钟敦伦,谢洪,刘世建等.北京山区柯太沟泥石流.山地学报.2000,(3):212-216
    99.中国科学院西南资源开发考察队.西南自然灾害及其防治对策.科学出版社,1991
    100.王士革,崔鹏,谢洪等.山区铁路建设中的泥石流灾害与防治对策.工程地质学报.2000,8(4)
    101.支俊峰、时明立.“89.7.21”十大孔兑区洪水泥沙淤堵黄河分析.黄河水沙变化研究论文集,第三集.1993:190-211
    102.李鸿琏.试论泥石流地区的河道演变.水土保持通报.1985,(1)
    103.钟敦伦等.金沙江下游四川片泥石流.滑坡普查报告.1991
    104.撒民力,赵伟封,降祖铭.非相似模型的设计与研究.西安公路交通大学学报.1999,19(增刊):42-47
    105.左东启等.模型试验的理论和方法.水利电力出版社,1984
    106.左东启.相似理论20世纪的演进和21世纪的展望.水利水电科技进展.1997,17(2):10-15
    107.王协康,方铎.泥石流模型试验相似律分析.四川大学学报(工程科学版).2000,32(3):10-12
    108.王兆印.泥石流龙头运动的试验研究及能量理论.水利学报.2001,(3):18-26
    109.倪晋仁,王光谦,熊育武等.泥石流的结构两相流模型:Ⅱ.应用.地理学报.1998,53(1):78-85
    110.李昌华,金德春.河工模型试验.人民交通出版社,1999
    
    
    111.王裕宜等.粘性泥石流体的应力应变特性和流速参数的确定.中国地质灾害与防治学报.2003,14(1):9-13,
    112.刘江,程尊兰.云南盈江浑水沟泥石流流速计算.泥石流论文集(1).科学技术文献出版社重庆分社,1981:87-89
    113.祁龙.粘性泥石流阻力规律初探.山地学报.2000,18(6):508-513
    114.史明礼等.山区河道糙率变化规律浅析.水文.2000,10(2):19-22
    115.陈世丹,王平,陈香朋.山区河道糙率变化规律初步分析及应用.安徽水利水电.1998,(6):28-32
    116.吴修广,王平义.山区河流二维阻力特性研究.重庆交通学院学报.2001,20(3):102-105
    117.何易平.泥石流对山区河流河床演变的影响.中国科学院研究生院博士学位论文.2003
    118.王裕宜,费祥俊.粘性泥石流颗粒悬浮机理研究.中国科学(E缉).1999,29(4):372-377
    119. Fukuoka S., Mizumura K. and Kanoh T.. Fundamental Study on Dynamics of the Head of Gravity Currents. Proc.Japan Society of Civil Engineers. 1978, 274:41-55
    120.陈德明.泥石流与主河水流交汇机理及其河床响应特征.博士学位论文.中国水利水电科学研究院.2000
    121. Wan, Zhaohui, Zhaoyin Wang. Hyperconcentrated Flow. IAHR Monograph Series. 1994
    122.陈文芳.非牛顿流体力学.科学出版社,1984
    123.韩式防.非牛顿流体连续介质力学.四川科学技术出版社,1988
    124.周雪漪.计算水力学.清华大学出版社,1995
    125. Harlow, F. H., and Amsden, A. A.. Numerical calculation of almost incompressible flow, J. comp. Phys..1968,3:80
    126. Harlow, F. H., and Welch, J. E.. Numerical calculation of timedependent viscous incompressible flow of fluid with free surface, Phys.,fluids. 1965, 8:2182
    127. Amsden, A. A., and Harlow, F. H.. A simplified MAC technique for incompressible fluid flow ealculations,J.comp. Phys..1970, 6:322
    128.李德元,徐国荣,水鸿寿等编.二维非定常流体力学数值方法.科学出版社,1997:99-135
    
    
    129.钱宁主编.高含沙水流运动.清华大学出版社,1989:38-78
    130.周必凡,李德基,罗德福等.泥石流防治指南.科学出版社,1991:73-75
    131.郭志学.泥石流入汇交汇区水沙运动特性.四川大学博士学位论文.2003
    132. Cundall.P.A: A Computer Model for Simulating Progressive. Large Scale Movement in Blocky Rock Systems. Symp. ISRM.Nancy. France. 1971:129-136
    133. Kiyama.H.and Fujimura.H.. Analysis on gravity Flow of Rock Granular Assemblies by Cundall Model. Proc.Japan Society of Civil Engineers. 1983,333:137-146
    134. Iwashita,K. and Hakuno, M.. Modified Distinct Element Method Simulation of Dynamic Cliff Collapse. Structural Eng. /Earthquake Eng., 1990,7(1): 133-142, Proc. Japan Society of Civil Engineers,1990
    135. Uchida, Y. and Hakuno,M.. Distinct Element Analysis of Dry Rock Avalanches[J],Structural Eng./Earthquake Eng.. 1990,7(2):206-214, Proc. Japan Society of Civil Engineers,1990
    136. Iwashita, K. and Hakuno, M.,Modified distinct element method simulation of dynamic clift collapse, Structural Eng./Earthquake Eng. 1990,7(1): 133-142,proc. Japan Society of civil Engineers, 1990
    137.王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用.东北工学院出版社,1991
    138.李为,朱德懋,胡选利等.不连续散粒体的离散单元法.南京航空航天大学学报.2000,22(1):101-104
    139.焦玉勇,葛修润,刘泉声等.三维离散单元法及其在滑坡分析中的应用.岩土工程学报.2000,22(1):101-104
    140.王泳嘉,邢纪波.三维离散单元法及其在边坡工程中的应用.中国矿业.1996,5(1):34-39
    141.杨本洛.理论流体力学的逻辑自洽化分析.上海交通大学出版社,1998:98-122
    142. Chunguang Chen, Lingkan Yao, Qin Wang. Numerical simulation on the confluence of debris flow and main channel by the MAC method. In: Proc. of theme C ⅩⅩⅨ IAHR Congress. Beijing, 2001:353-359
    
    
    143.陈龙斌,胡晓军,唐志平.离散元数值模拟中查找邻居元关系的改进算法.计算力学学报.2001,17(4):498-499

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700