用户名: 密码: 验证码:
IV-VI族半导体纳米晶的合成、组装及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,越来越多的研究人员把目光投向尺寸在纳米级别的材料上。由于量子限域效应,使得纳米材料具有独特的尺寸可调的物理和化学性质,与他们的体材料相比有很大的不同。在实际中,为了能使这些具有优良性质的纳米材料,得到广泛的应用,利用这些纳米颗粒自组装成为二维和三维的超晶格结构是目前人们主要的研究方向之一。因为这些“人造固体”不但能由构造他们的单独纳米粒子产生可调的性质,而且还可以由这些纳米粒子组装后做为体材料的物理性质。而这种经过精细裁剪具有纳米粒子整齐堆砌体材料将会提供一个提高纳米材料性质和性能的新窗口。虽然现在纳米粒子的合成在这二十年内有了飞速的发展,但设计和建造这些纳米粒子超晶格结构仍是一个巨大的挑战。本论文以IV-VI族半导体纳米材料(包括PbS、PbSe和PbTe)为主要的研究对象,探索了合成IV-VI族半导体纳米晶的方法;研究了这些纳米晶的自组装超晶格结构的过程和机理;发现了在室温条件下合成高质量PbS纳米粒子和纳米花以及相关的各种形貌的空心结构;研究了PbSe纳米晶的不稳定性以及重新修正了PbSe纳米晶的摩尔消光系数。
     我们介绍一种简单有效的制备纳米粒子超晶格结构的路线。发现单分散且无规则的纳米粒子和他们排列有序的超晶格结构之间可以相互转化。我们通过包覆在粒子表面外的配体链的构造熵将二者有机结合起来,构建出一个新模型。当配体链在室温时处于混乱的状态,纳米粒子在铜网上呈现出单分散的无序状态。与之相比较,当配体链在室温时处于有序的状态时,这些纳米粒子可以很容易且快速的形成具有周期性的超晶格结构。经典分子动力学模拟的结果表明配体链的形状对温度的高低很敏感。随着温度的升高,配体链容易变的混乱,导致配体-配体间的VDW相互作用力减小。这些理论计算结果和我们的实验结果是一致的。利用提到的模型,我们将把我们的工作拓展到去制备大面积的一元和二元超晶格结构。
     利用我们合成PbSe纳米晶的过程和理论支持,我们扩展到制备其它IV-VI族的纳米晶以及超晶格结构。尺寸-形貌可调的IV-VI族纳米粒子(PbS,PbSe和PbTe)可以通过一步溶剂热的方法合成出来。随后在反应容器中的自然冷却过程使得这些纳米粒子表面包覆了有序的配体链,这使得清洗过的纳米粒子溶液可以快速地在铜网上形成超纳米粒子晶格结构,不需要任何后期的处理过程。这种自发的自组装过程可以归结为在熵的驱动下以及由于溶液挥发产生的配体-配体VDW相互作用下的结果。这些结果也进一步证明了我们之前提出的关于配体链构造熵的模型。这也使得我们相信这种简便有效的方法以及配体链模型可以更广泛的用在制备其它纳米粒子的超晶格结构。
     我们报道了一种在室温条件下制备单分散PbS纳米花的简单方法。这种花的形成主要是由于共同存在两种具有不同链长和不同位阻的脂肪胺造成的。而且,通过升高反应温度和延长反应时间,粒子内部熟化过程使得这些事先准备好的纳米花演变成不同形貌的空心纳米结构,包括球形、立方八面体、立方体以及纳米棒/纳米管。这些新颖的PbS纳米结构或许在科学和技术应用上有重要的潜能。
     我们对PbSe半导体纳米晶在几个传统物理条件下的稳定性进行了系统研究。PbSe半导体纳米晶暴露在空气中的不稳定性与粒子浓度、粒子尺寸和光照条件有关。这些与空气接触的不稳定性是由破坏性的氧化作用和碰撞引起分解造成的。与之相反,处于氮气保护下的PbSe半导体纳米晶无论是在紫外光照射下还是加热条件下,其吸收和发光光谱都不变。PbSe纳米晶在第一激子吸收峰的摩尔消光系数已经通过电镜照片,原子吸收和近红外吸收光谱确定了。大量的颗粒统计和计算方法使我们精确地得到粒径及每个标准PbSe纳米晶样品的总原子数。实验结果表明,单个PbSe纳米粒子是由一个PbSe核及Pb原子终止的表面层构成的。此属性导致在这些非化学计量的PbSe纳米晶体中对尺寸具有依赖的Pb与Se的原子比。通过考虑Pb原子终止的表面,对粒径依赖的PbSe纳米晶的对粒径依赖的的摩尔消光系数与纳米晶直径成幂指数关系,指数为2.5。
     初步探索了PbSe纳米晶的高压结构及性质。随着压力的增加,PbSe纳米晶结构从NaCl(B1)相转变为CsCl(B2)相,且其吸收和荧光都呈现出红移的现象。
With the development of science and technology, more and more researchers are paying attention to the nano-sized materials. Their unique size-tunable physical and chemical properties differ greatly from the corresponding bulk materials because of quantum-confinement effect. In practice, to fulfill the extensive applications of these excellent nanomaterials, much effort tends to utilize them as ideal building blocks for self-assembling two and three dimensional (2D and 3D) superlattice structures. These novel“artificial solids”would provide tunable properties determined both by the properties of individual nanoparticle constituents and the collective physical properties of the superlattice. Well-defined ordered solids prepared from tailored nanocrystalline building blocks provide new opportunities to optimize and enhance the nanomaterial properties and performance. The achievement of this goal, initially requires the building block NCs to be synthesized with quite uniform size and shape. Although great progress on the synthesis of NCs has been made in the last two decades, the design and construction of these NCs superlattices is still a great challenge in material science. In this thesis, we focus on lead chalcogenide IV-VI semiconductor nanocrystals (including PbS, PbSe, and PbTe), discuss their synthesis methods, study the processe and mechanism of forming these NCs superlattices; we describe a facile method at room temperature to synthesize PbS NCs ,3D PbS nanoflowers, and PbS single crystal hollow nanostructures with tunable morphologies; study the stability of and molar extinction coefficient of PbSe semiconductor NCs.
     We presented a facile and efficient route to prepare single component NP superlattices. Mutual transformation between random PbSe NPs and their well-ordered superlattices was unified by a proposed model of ligand chain’s configuration. When ligand chains were disordered at RT, PbSe NPs were random and monodisperse; comparatively, the ordered chains at RT would correspond to periodic superlattice structures obtained. The simulation results of classical molecular dynamics indicated that the configuration of capping ligand chains was sensitive to temperature; with the increase of temperature the chains would become more disordered. These theoretical results were consistent with our experimental phenomena. Employing the model and simulation presented here, we are extending our work to large-scale single and binary NPs superlattices.
     Using the experimental method and theoretical results above mentioned, size- and shape-tunable lead chalcogenide IV-VI (PbS, PbSe and PbTe) NCs could be synthesized by one-pot solvothermal method. The subsequent natural cooling process in the reaction vessel made these NCs capped with ordered ligand chains, thereby spontaneously assembling into highly regular superlattice patterns on TEM grids without any other post-synthetic procedure. This spontaneous assembly was attributed to entropy driven force and solvent evaporation-induced ligand-ligand VDW interaction. These results further proved our configuration model of ligand chains. It is also believed that this established method and ligand chains model can significantly be extended to control the growth of other NCs and fabricate their superlattices.
     We report a facile method at room temperature to synthesize monodisperse PbS nanoflowers, which is attributed to the coexistence of two types of amines with different-length alkyl chains and different steric hindrance. Furthermore, during the increase of reaction temperature and time, the intraparticle ripening drives these prepared nanoflowers to evolve into single crystal hollow nanostructures with different morphologies (sphere, cuboctahedron, cube, and tube/rod).
     The stability of PbSe semiconductor nanocrystals over several conventional physical conditions has been systematically studied. PbSe semiconductor nanocrystals under air exposure exhibited instability dependent on particle concentrations, particle sizes, and light conditions. These air-contacted instability trends were due to the These novel PbS nanostructures may have significant scientific and technological applications. destructive oxidation and the kinetically collisioninduced decomposition, which differed from the traditional thermodynamic mechanism. In contrast, under inert nitrogen gas, the absorption and photoluminescence properties of the PbSe semiconductor nanocrystals were preserved even with UV irradiation or upon being heated at mild temperatures.
     The molar extinction coefficients of PbSe nanocrystals at the first excitonic absorption peak have been determined by utilizing TEM, AA spectrometry, and UV-vis-NIR spectrophotometry. The large number particle statistics and our proposed calculation approach have allowed us to precisely find out the particle size and the total atom number for each standard PbSe nanocrystal sample, respectively. The experimental results have demonstrated that the individual PbSe nanoparticle is composed of a PbSe core terminated by an extra layer of Pb atoms. This property leads to a sizedependent Pb/Se atomic ratio in these nonstoichiometric PbSe nanocrystals. By taking account of the surfaceterminated Pb atoms, the size-dependent PbSe nanocrystal molar extinction coefficient is proportional to ~ 2.5 orders of the nanocrystal diameter.
     In the present work, the structure and optical properties of PbSe NCs were studied as a function of pressure. For PbSe NCs, both absorption and PL spectral exhibit a red-shift and structure transform form B1 to B2 with increasing pressure.
引文
[1]张立德,牟季美科学出版社2001.
    [2]张金中,王中林,刘俊,陈少伟,刘刚玉化学工业出版社2004.
    [3] Wise, F. W. Accounts of Chemical Research 2000, 33, 773.
    [4] Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Letters 2005, 5, 865.
    [5] Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. Acs Nano 2008, 2, 833.
    [6] Law, M.; Beard, M. C.; Choi, S.; Luther, J. M.; Hanna, M. C.; Nozik, A. J. Nano Letters 2008, 8, 3904.
    [7] Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Letters 2008, 8, 3488.
    [8] Nair, G.; Geyer, S. M.; Chang, L. Y.; Bawendi, M. G. Physical Review B 2008, 78.
    [9] Schaller, R. D.; Klimov, V. I. Physical Review Letters 2004, 92.
    [10] Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Nano Letters 2006, 6, 424.
    [11] Talapin, D. V.; Murray, C. B. Science 2005, 310, 86.
    [12] Weissleder, R. Nature Biotechnology 2001, 19, 316.
    [13] Murray, C. B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Ibm Journal of Research and Development 2001, 45, 47.
    [14] Yu, W. W.; Falkner, J. C.; Shih, B. S.; Colvin, V. L. Chemistry of Materials 2004, 16, 3318.
    [15] Hines, M. A.; Scholes, G. D. Advanced Materials 2003, 15, 1844.
    [16] Lu, W. G.; Fang, J. Y.; Stokes, K. L.; Lin, J. Journal of the American Chemical Society 2004, 126, 11798.
    [17] Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J. Journal of the American Chemical Society 2006, 128, 3241.
    [18] Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D. L.; Meeldijk, J.; Hickey, S. G. Journal of the American Chemical Society 2006, 128, 6792.
    [19] Pietryga, J. M.; Schaller, R. D.; Werder, D.; Stewart, M. H.; Klimov, V. I.; Hollingsworth, J. A. Journal of the American Chemical Society 2004, 126, 11752.
    [20] Wehrenberg, B. L.; Wang, C. J.; Guyot-Sionnest, P. Journal of Physical Chemistry B 2002, 106, 10634.
    [21] Sashchiuk, A.; Amirav, L.; Bashouti, M.; Krueger, M.; Sivan, U.; Lifshitz, E. Nano Letters 2004, 4, 159.
    [22] Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. Journal of the American Chemical Society 2003, 125, 11100.
    [23] Acharya, S.; Gautam, U. K.; Sasaki, T.; Bando, Y.; Golan, Y.; Ariga, K. Journal of the American Chemical Society 2008, 130, 4594.
    [24] Wang, Z. L. Advanced Materials 1998, 10.
    [25] Zaitseva, N.; Dai, Z. R.; Leon, F. R.; Krol, D. Journal of the American Chemical Society 2005, 127, 10221.
    [26] Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Murray, C. B. Journal of the American Chemical Society 2006, 128, 3248.
    [27] Murray, C. B. N., D. J. and Bawend,iM. G. Journal of the American Chemical Society 1993, 115.
    [28] Murray, C. B. K., C. R.; Bawendi, M. G. Science 1995, 270.
    [29] Sun, S.; Murray, C.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989.
    [30] Black, C.; Murray, C.; Sandstrom, R.; Sun, S. Science 2000, 290, 1131.
    [31] Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H.; Cheah, K.; Chen, J.; Wang, J. Angewandte Chemie International Edition 2008, 47, 9685.
    [32] Redl, F.; Cho, K.; Murray, C.; O'Brien, S. Nature 2003, 423, 968.
    [33] Shevchenko, E.; Talapin, D.; O'Brien, S.; Murray, C. J. Am. Chem. Soc 2005, 127, 8741.
    [34] Shevchenko, E.; Talapin, D.; Kotov, N.; O'Brien, S.; Murray, C. Nature 2006, 439, 55.
    [35] Shevchenko, E.; Talapin, D.; Murray, C.; O'Brien, S. J. Am. Chem. Soc 2006, 128, 3620.
    [36] Radtke, Z. Journal of the American Chemical Society 2007, 129, 50.
    [37] Chen, Z.; O'Brien, S. Acs Nano 2008, 2, 1219.
    [38] Evers, W.; Friedrich, H.; Filion, L.; Dijkstra, M.; Vanmaekelbergh, D. Angewandte Chemie 2009, 121, 9835.
    [39] Weis, J.; Levesque, D. Physical Review E 1993, 48, 3728.
    [40] Prasad, B.; Stoeva, S.; Sorensen, C.; Klabunde, K. Langmuir 2002, 18, 7515.
    [41] Landman, U.; Luedtke, W. Faraday discussions 2004, 125, 1.
    [42] Talapin, D.; Shevchenko, E.; Murray, C.; Titov, A.; Kral, P. Nano Lett 2007, 7, 1213.
    [43] Nykypanchuk, D.; Maye, M.; van der Lelie, D.; Gang, O. Nature 2008, 451, 549.
    [44] Park, S.; Lytton-Jean, A.; Lee, B.; Weigand, S.; Schatz, G.; Mirkin, C. Nature 2008, 451, 553.
    [45] Talapin, D. V. Acs Nano 2008, 2.
    [46] Zhuang, J. Q.; Wu, H. M.; Yang, Y. G.; Cao, Y. C. Angewandte Chemie-International Edition 2008, 47, 2208.
    [47] Chen, Z. Y.; Moore, J.; Radtke, G.; Sirringhaus, H.; O'Brien, S. Journal of the American Chemical Society 2007, 129, 15702.
    [48] Wang, Z.; Harfenist, S.; Whetten, R.; Bentley, J.; Evans, N. Journal of Physical Chemistry B-Condensed Phase 1998, 102, 3068.
    [49] Yu, W. W.; Peng, X. Angewandte Chemie-International Edition 2007, 46, 2559.
    [50] Martin, J.; Wilcoxon, J.; ODINEK, J.; PROVENCIO, P. Journal Physical Chem B 2000.
    [51] Shevchenko, E.; Talapin, D.; Kornowski, A.; Wiekhorst, F.; K tzler, J.; Haase, M.; Rogach, A.; Weller, H. Advanced Materials 2002, 14, 287.
    [52] Sun, S. Advanced Materials 2006, 18, 393.
    [53] Sun, S.; Murray, C. Journal of Applied Physics 1999, 85, 4325.
    [54] Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Journal of the American Chemical Society 2008, 130, 4016.
    [55] Song, Q.; Ding, Y.; Wang, Z. L.; Zhang, Z. J. Journal of Physical Chemistry B 2006, 110, 25547.
    [56] Lu, W.; Liu, Q.; Sun, Z.; He, J.; Ezeolu, C.; Fang, J. J. Am. Chem. Soc 2008, 130, 6983.
    [57] Yin, M.; O'Brien, S. Journal of the American Chemical Society 2003, 125, 10180.
    [58] Kang, C.; Lai, C.; Peng, H.; Shyue, J.; Chou, P. Acs Nano 2008, 2, 750.
    [59] Kovalenko, M. V.; Heiss, W.; Shevchenko, E. V.; Lee, J. S.; Schwinghammer, H.; Alivisatos, A. P.; Talapin, D. V. Journal of the American Chemical Society 2007, 129, 11354.
    [60] Lu, C.; Chen, Z.; O'Brien, S. Chemistry of Materials 2008, 20, 3594.
    [61] Stouwdam, J. W.; Shan, J.; van Veggel, F.; Pattantyus-Abraham, A. G.; Young, J. F.; Raudsepp, M. Journal of Physical Chemistry C 2007, 111, 1086.
    [62] Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Journal of the American Chemical Society 2008, 130, 15081.
    [63] Qu, L. H.; Yu, W. W.; Peng, X. P. Nano Letters 2004, 4, 465.
    [64] Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Journal of the American Chemical Society 2003, 125, 12567.
    [65] Yu, W. W.; Chang, E.; Falkner, J. C.; Zhang, J. Y.; Al-Somali, A. M.; Sayes, C. M.; Johns, J.; Drezek, R.; Colvin, V. L. Journal of the American Chemical Society 2007, 129, 2871.
    [66] Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chemistry of Materials 2003, 15, 2854.
    [67] Schmelz, O.; Mews, A.; Basche, T.; Herrmann, A.; Mullen, K. Langmuir 2001, 17, 2861.
    [68] Striolo, A.; Ward, J.; Prausnitz, J. M.; Parak, W. J.; Zanchet, D.; Gerion, D.; Milliron, D.; Alivisatos, A. P. Journal of Physical Chemistry B 2002, 106, 5500.
    [69] Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. Journal of Physical Chemistry B 2002, 106, 7619.
    [70] Yu, P. R.; Beard, M. C.; Ellingson, R. J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. Journal of Physical Chemistry B 2005, 109, 7084.
    [71] Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Journal of the American Chemical Society 2006, 128, 10337.
    [72] Moreels, I.; Lambert, K.; De Muynck, D.; Vanhaecke, F.; Poelman, D.;Martins, J. C.; Allan, G.; Hens, Z. Chemistry of Materials 2007, 19, 6101.
    [73] Alivisatos, S. H. T. a. A. P. SCIENCE 1994, 265, 373.
    [74] Wang, Z. W. F., K.; Ma, C.; Wang, Z. L. Applied Physics Letters 2007, 90, 113115.
    [75] Meulenberg, R. W. S., G. F. Physical Review B 20023, 66, 035317.
    [76] Grant, C. D. C., J. C.; Hamel, S.; Williamson, A. J.; Zaitseva, N. Small 2008, 4, 788.
    [77] T. CHATTOPADHYAY, H. G. V. S., W.A. GROSSHANS and W.B. HOLZAPFEL Physica B 1986, 139, 356.
    [78] Hunt, N.; Jardine, R.; Bartlett, P. Physical Review E 2000, 62, 900.
    [79] Li, M. S.; Hu, C. K.; Klimov, D. K.; Thirumalai, D. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 93.
    [80] Chang, C. E. A.; McLaughlin, W. A.; Baron, R.; Wang, W.; McCammon, J. A. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 7456.
    [81] 24. Fujiwara, S. S., T. Phys. Rev. Lett 1998, 80.
    [82] Fujiwara, S.; Sato, T. Journal of Chemical Physics 1999, 110, 9757.
    [83] Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Nature Materials 2009, 8, 354.
    [84] Salem, L. J. Chem. Phys. 1962, 37.
    [85] An, K.; Lee, N.; Park, J.; Kim, S.; Hwang, Y.; Park, J.; Kim, J.; Park, J.; Han, M.; Yu, J. Journal of the American Chemical Society 2006, 128, 9753.
    [86] Wang, Z.; Harfenist, S.; Vezmar, I.; Whetten, R.; Bentley, J.; Evans, N.; Alexander, K. Advanced Materials 1998, 10, 808.
    [87] Korgel, B.; Fullam, S.; Connolly, S.; Fitzmaurice, D. J. Phys. Chem. B 1998, 102, 8379.
    [88] Kim, Y.; Lee, D.; Cha, H.; Kim, C.; Kang, Y. Chem. Mater 2007, 19, 5049.
    [89] Motte, L.; Billoudet, F.; Lacaze, E.; Douin, J.; Pileni, M. J. Phys. Chem. B 1997, 101, 138.
    [90] Wang, D.; Xie, T.; Peng, Q.; Li, Y. J. Am. Chem. Soc 2008, 130, 4016.
    [91] Murphy, C.; Sau, T.; Gole, A.; Orendorff, C.; Gao, J.; Gou, L.; Hunyadi, S.; Li, T. J. Phys. Chem. B 2005, 109, 13857.
    [92] Sra, A. K.; Ewers, T. D.; Xu, Q.; Zandbergen, H.; Schaak, R. E. Chemical Communications 2006, 750.
    [93] Hyeon, T.; Lee, S.; Park, J.; Chung, Y.; Na, H. J. Am. Chem. Soc 2001, 123, 12798.
    [94] Sun, S.; Zeng, H. J. Am. Chem. Soc 2002, 124, 8204.
    [95] Song, Q.; Ding, Y.; Wang, Z.; Zhang, Z. Journal of Physical Chemistry B 2006, 110, 25547.
    [96] Chiu, J.; Kim, B.; Kramer, E.; Pine, D. J. Am. Chem. Soc 2005, 127, 5036.
    [97] Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu, C. D.; Fang, J. Y. Journal of the American Chemical Society 2008, 130, 6983.
    [98] Yin, M.; O'Brien, S. J. Am. Chem. Soc 2003, 125, 10180.
    [99] Jiao, F.; Harrison, A.; Bruce, P. G. Angewandte Chemie-International Edition 2007, 46, 3946.
    [100] Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H. Journal of the American Chemical Society 2004, 126, 11458.
    [101] Song, Q.; Ding, Y.; Wang, Z. L.; Zhang, Z. J. Chemistry of Materials 2007, 19, 4633.
    [102] Cao, Y. C. Journal of the American Chemical Society 2004, 126, 7456.
    [103] Huo, Z. Y.; Chen, C.; Liu, X. W.; Chu, D. R.; Li, H. H.; Peng, Q.; Li, Y. D. Chemical Communications 2008, 3741.
    [104] Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O'Brien, S. Journal of the American Chemical Society 2005, 127, 9506.
    [105] Zhang, H. T.; Wu, G.; Chen, X. H. Langmuir 2005, 21, 4281.
    [106] Zhuang, Z. B.; Peng, Q.; Zhang, B.; Li, Y. D. Journal of the American Chemical Society 2008, 130, 10482.
    [107] Murray, C.; Kagan, C.; Bawendi, M. Science 1995, 270, 1335.
    [108] Cao, Y.; Wang, J. J. Am. Chem. Soc 2004, 126, 14336.
    [109] Kovalenko, M.; Heiss, W.; Shevchenko, E.; Lee, J.; Schwinghammer, H.; Alivisatos, A.; Talapin, D. Journal of the American Chemical Society 2007, 129, 11354.
    [110] Zhang, Y.; Sun, X.; Si, R.; You, L.; Yan, C. Journal of the American Chemical Society 2005, 127, 3260.
    [111] Sun, H. J. Phys. Chem. B 1998, 102, 7338.
    [112] Wang, Y.; Du, X.; Guo, L.; Liu, H. The Journal of chemical physics 2006, 124, 134706.
    [113] Dai, Q.; Wang, Y.; Li, X.; Zhang, Y.; Pellegrino, D.; Zhao, M.; Zou, B.; Seo, J.; Yu, W. Acs Nano 2009, 3, 1518.
    [114] Wang, Z. J. Phys. Chem. B 2000, 104, 1153.
    [115] Zheng, R.; Gu, H.; Xu, B.; Fung, K.; Zhang, X.; Ringer, S. Advanced Materials 2006, 18, 2418.
    [116] Li, F.; Delo, S.; Stein, A. Angewandte Chemie International Edition 2007, 46, 6666.
    [117] Zhuang, J.; Wu, H.; Yang, Y.; Cao, Y. Journal of the American Chemical Society 2007, 129, 14166.
    [118] Xu, J.; Ge, J.; Li, Y. Journal of Physical Chemistry B-Condensed Phase 2006, 110, 2497.
    [119] Wang, Z.; Petroski, J.; Green, T.; El-Sayed, M. J. Phys. Chem. B 1998, 102, 6145.
    [120] Sun, S.; Yang, D.; Villers, D.; Zhang, G.; Sacher, E.; Dodelet, J. Advanced Materials 2008, 20, 571.
    [121] Ning, J. J.; Dai, Q. Q.; Jiang, T.; Men, K. K.; Liu, D. H.; Xiao, N. R.; Li, C. Y.; Li, D. M.; Liu, B. B.; Zou, B.; Zou, G. T.; Yu, W. W. Langmuir 2009,25, 1818.
    [122] Jia, F.; Zhang, L.; Shang, X.; Yang, Y. Advanced Materials 2008, 20, 1050.
    [123] Dai, Q. Q.; Xiao, N. R.; Ning, J. J.; Li, C. Y.; Li, D. M.; Zou, B.; Yu, W. W.; Kan, S. H.; Chen, H. Y.; Liu, B. B.; Zou, G. T. Journal of Physical Chemistry C 2008, 112, 7567.
    [124] Chang, S.; Liu, L.; Asher, S. Journal of the American Chemical Society 1994, 116, 6745.
    [125] Caruso, F.; Caruso, R.; M hwald, H. Science 1998, 282, 1111.
    [126] Sun, Y.; Xia, Y. Science 2002, 298, 2176.
    [127] Yin, Y.; Rioux, R.; Erdonmez, C.; Hughes, S.; Somorjai, G.; Alivisatos, A. Science 2004, 304, 711.
    [128] Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; de Abajo, F. J. G. Physical Review Letters 2003, 90.
    [129] He, T.; Chen, D.; Jiao, X.; Wang, Y. Advanced Materials 2006, 18, 1078.
    [130] Lu, X.; Au, L.; McLellan, J.; Li, Z.; Marquez, M.; Xia, Y. Nano Letters 2007, 7, 1764.
    [131] Yin, Y.; Erdonmez, C.; Aloni, S.; Alivisatos, A. J. Am. Chem. Soc 2006, 128, 12671.
    [132] An, K.; Kwon, S. G.; Park, M.; Bin Na, H.; Baik, S. I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y. W.; Song, I. C.; Moon, W. K.; Park, H. M.; Hyeon, T. Nano Letters 2008, 8, 4252.
    [133] Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S.; Li, Y. J. Am. Chem. Soc 2008, 130, 2736.
    [134] Zhang, G. Q.; Wang, W.; Yu, Q. X.; Li, X. G. Chemistry of Materials 2009, 21, 969.
    [135] Cabot, A.; Smith, R. K.; Yin, Y. D.; Zheng, H. M.; Reinhard, B. M.; Liu, H. T.; Alivisatos, A. P. Acs Nano 2008, 2, 1452.
    [136] Wang, X.; Fu, H. B.; Peng, A. D.; Zhai, T. Y.; Ma, Y.; Yuan, F. L.; Yao, J. N. Advanced Materials 2009, 21, 1636.
    [137] Abel, K. A.; Shan, J.; Boyer, J.-C.; Harris, F.; van Veggel, F. C. J. M. Chemistry of Materials 2008, 20, 3794.
    [138] Yong, K.; Sahoo, Y.; Choudhury, K.; Swihart, M.; Minter, J.; Prasad, P. Chem. Mater 2006, 18, 5965.
    [139] Xiong, S.; Xi, B.; Xu, D.; Wang, C.; Feng, X.; Zhou, H.; Qian, Y. The Journal of Physical Chemistry C 2007, 111, 16761.
    [140] Peng, Z.; Jiang, Y.; Song, Y.; Wang, C.; Zhang, H. Chemistry of Materials 2008, 20, 3153.
    [141] Wang, S. F.; Gu, F.; Lu, M. K. Langmuir 2006, 22, 398.
    [142] Zhu, Y. F.; Fan, D. H.; Shen, W. Z. Langmuir 2008, 24, 11131.
    [143] Naravanaswamy, A.; Xu, H. F.; Pradhan, N.; Peng, X. G. Angewandte Chemie-International Edition 2006, 45, 5361.
    [144] Lee, S. M.; Jun, Y. W.; Cho, S. N.; Cheon, J. Journal of the American Chemical Society 2002, 124, 11244.
    [145] Cordero, S.; Carson, P.; Estabrook, R.; Strouse, G.; Buratto, S. Journal of Physical Chemistry B 2000, 104, 12137.
    [146] Jones, M.; Nedeljkovic, J.; Ellingson, R.; Nozik, A.; Rumbles, G. J. Phys. Chem. B 2003, 107, 11346.
    [147] Sapra, S.; Nanda, J.; Pietryga, J.; Hollingsworth, J.; Sarma, D. J. Phys. Chem. B 2006, 110, 15244.
    [148] Pietryga, J.; Werder, D.; Williams, D.; Casson, J.; Schaller, R.; Klimov, V.; Hollingworth, J. Journal of the American Chemical Society 2008, 130, 4879.
    [149] Wehrenberg, B.; Wang, C.; Guyot-Sionnest, P. J. Phys. Chem. B 2002, 106, 10634.
    [150] Du, H.; Chen, C.; Krishnan, R.; Krauss, T.; Harbold, J.; Wise, F.; Thomas, M.; Silcoxs, J. Nano Letters 2002, 2, 1321.
    [151] Yu, P.; Beard, M.; Ellingson, R.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. Phys. Chem. B 2005, 109, 7084.
    [152] Qadri, S. B. Y., J.; Ratna, B. R.; Skelton, E. F.; Hu, J. Z. Applied Physics Letters 1996, 69, 2205.
    [153] Jiang, J. Z. G., L.; Secco, R.; Frost, D.; Olsen, J. S.; Truckenbrodt, J. Journal of Applied Physics 2000, 87, 2658.
    [154] Sergey V. Ovsyannikov, V. V. S., Andrey Y. Manakov, Anna Y. Likhacheva, Ivan F. Berger, Alexey I. Ancharov, and Mikhail A. Sheromov phys. stat. sol. (b) 2007, 244, 279.
    [155] S V Streltsov, A. Y., A P Vokhmyanin, S V Ovsyannikov and V V Shchennikov J. Phys.: Condens. Matter 2009, 21.
    [156] Sergey V. Ovsyannikov, V. V. S., Andrei Y. Manakov, Anna Y. Likhacheva, Yuri S. Ponosov, Viktor E. Mogilenskikh, Alexander P. Vokhmyanin, Alexey I. Ancharov, and Eugenii P. Skipetrov P hys. Status Solidi B 2009, 246, 615.
    [157] Kirill K. Zhuravlev, J. M. P., Robert K. Sander, and Richard D. Schaller APPLIED PHYSICS LETTERS 2007, 90, 043110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700