用户名: 密码: 验证码:
黄河源区不同退化程度高寒草地CO_2、CH_4通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以我国黄河源区高寒草甸生态系统为主要研究对象,于2006年生长季,在青海省果洛藏族自治州玛沁县大武镇以西大武河流域选择了具有代表性的5个退化和利用梯度的草地,即:未退化草地、轻度退化草地、中度退化草地、重度退化草地(“黑土型”)和人工草地(7龄垂穗披碱草单播)进行研究。采用野外观测和室内测定相结合的方法,利用静态箱-气相色谱等设备对5个不同退化和利用梯度草地的主要温室气体CO2和CH4进行野外定位观测。同步观测了气温、地温(0cm、5cm、10cm)和土壤含水量等环境因子以及生物量、多样性和盖度等群落学特征。在此基础上分析和研究了5个退化和利用梯度草地的主要温室气体(CO2、CH4)的日变化和季节变化特征及其与主要环境因子的关系,主要研究结论如下:
     1.不同退化程度原状草地CO2通量日变化
     不同退化程度草地CO2通量均为正值,高寒草甸生态系统与大气CO2交换表现为释放源的特征。生长季CO2释放速率具有明显的单峰型日变化进程,有昼高夜低的特点,释放速率最大值一般出现在上午11:00~13:00,最小值出现在凌晨4:00~7:00。7:00~15:00为CO2释放速率上升时段,15:00至翌日7:00为CO2释放速率下降时段。生长季未退化草地、轻度退化草地、中度退化草地、重度退化草地和人工草地等五种原状草地,CO2释放速率最大值分别为327.34±2.38、304.21±4.12、299.56±3.02、309.28±0.28和369.23±2.36mgm-2h-1,最小值分别为109.93±3.09、101.16±3.17、92.21±2.69、97.12±5.86和119.31±4.75mgm-2h-1。
     2.不同退化程度原状草地CO2通量季节变化
     五种原状草地CO2释放速率具有明显的季节动态,其变化趋势基本一致,且均表现为正排放。方差分析显示,重度退化草地和人工草地CO2释放速率与中度退化草地CO2释放速率差异显著,重度退化草地与未退化草地CO2释放速率差异不显著。生长旺季(6月~9月)重度退化草甸释放速率明显高于中度退化草甸,主要是因为重度退化草甸以杂类草为主,禾草和莎草科植物偶见,毒杂草所占比例较大,虽然返青晚,但生长旺季总盖度为40%~60%,且毒杂草高度大。而中度退化草甸以禾草为优势种,虽返青早,但总盖度为20%~30%,裸露的秃斑地占40%~60%。
     3.不同退化程度原状草地CH4通量日变化
     不同退化程度原状草地CH4通量多为吸收,高寒草甸生态系统是大气CH4的吸收汇。CH4通量的日变化特征比较复杂,吸收通量的最大值均出现在晚上,吸收通量的最小值出现在早上9:00~11:00。CH4吸收通量的日变化与温度无明显的数值关系。
     4.不同退化程度原状草地CH4吸收通量季节变化
     不同退化程度原状草地CH4吸收通量的季节变化规律不尽相同。中度退化草地和轻度退化草地CH4吸收通量季节动态不明显,未退化草地、重度退化草地和人工草地CH4吸收通量季节动态较明显,生长旺季高于非生长旺季(主要与土壤含水量有关)。方差分析显示,不同退化程度草地间CH4通量差异不显著。CH4吸收通量与气温和地温有较好的相关性,分别达到了0.01或0.05的显著性水平。5个样地CH4吸收通量与土壤含水量的相关性比较好。
     5.不同退化程度草地三个处理CO2通量对比分析
     对于原状草地:CO2通量平均值大小顺序为:人工草地>重度退化草地>未退化草地>轻度退化草地>中度退化草地,方差分析显示,重度退化草地和人工草地CO2释放速率与中度退化草地CO2释放速率差异显著,重度退化草地与未退化草地CO2释放速率差异不显著。对于去表草地: CO2释放速率平均值大小顺序为:未退化草地>轻度退化草地>中度退化草地>重度退化草地>人工草地。对于土壤处理:CO2释放速率平均值大小顺序为:未退化草地>轻度退化草地>人工草地>中度退化草地>重度退化草地。
     6. CO2通量与温度和土壤含水量的关系
     对CO2通量日变化与相应观测时段气温的相关性分析显示:对于原状草地:CO2通量与相应观测时段气温的相关性顺序为重度退化草地>中度退化草地>轻度退化草地>未退化草地>人工草地。相关系数R2分别是0.9179、0.9169、0.8818、0.8511和0.6774。对于去表草地:CO2通量与相应观测时段气温的相关性顺序为轻度退化草地>中度退化草地>重度退化草地>人工草地>未退化草地。相关系数R2分别是0.9488、0.9377、0.9287、0.7455和0.7382。对于土壤处理:CO2通量与相应观测时段气温的相关性顺序为中度退化草地>轻度退化草地>重度退化草地>未退化草地>人工草地。相关系数R2分别是0.9546、0.95、0.9473、0.7757和0.7706。
     CO2季节释放速率与气温和地温的相关关系均达到了0.01或0.05的显著性水平,与土壤水分无显著相关性,但水分在一定程度上也影响了CO2的释放速率,尤其在重度退化草地(“黑土型”),水分对CO2通量的影响较为明显。
     7. CO2通量与生物量关系
     在各草地中,CO2通量随绿色活体生物量(鲜重)、地上总生物量(鲜重)的增加而呈上升趋势。用指数模型拟合这一趋势,与绿色活体生物量(鲜重)的相关程度高于与地上总生物量(鲜重)的相关程度。CO2通量随立枯生物量的增长,呈显著程度不等的下降趋势,指数模型也能拟合这一趋势。重度退化草地CO2通量与立枯生物量之间关系不显著。未退化草地CO2通量同绿色活体之间的指数关系比较显著,这同它们的抗逆性和对水分的利用机制有一定的关系。
     各草地CO2通量与根系生物量之间是指数关系,CO2通量随10~20cm根系生物量的增加而增加,其趋势各个草地并不相同。
     8. CH4通量与生物量关系
     在各草地中,CH4吸收通量随绿色活体生物量的增加而略有上升趋势,虽用指数模型能拟合这一趋势,但相关系数较低。CH4吸收通量随立枯生物量的增长,呈显著程度不等的下降趋势,除了重度退化草地,指数模型也能拟合其余草地的这一趋势。由于重度退化草地在一个阶段出现CH4的正排放,CH4通量与立枯生物量的关系用对数模型来拟合。CH4吸收通量随地下生物量的增加而呈程度不等的上升或下降趋势。
In this paper, the fluxes of carbon dioxide and methan(eCO2,CH4)were measured at the same time with static enclosed chamber/GC technique through the experiment in five represent sample sites in the alpine meadow ecosystem in the source area of Yellow River . Five different representative grassland types were heavily degraded, lightly degraded, moderately degraded, non-degraded alpine meadow and artificial grassland. The air temperature, soil temperature (0cm, 5cm, 10cm),soil water content and biomass were measured parellel with the geses flux measurement. According to the results of experiment, we analyzed the characteristics and the possible effects of different environmental factors on diurnal variation and seasonal variation of CO2 and CH4 in different grassland. The main conclusions are as follows:
     1. the diurnal variation of CO2 flux of different degrees degraded alpine meadow
     The fluxes of CO2 from different degrees degraded alpine meadow were mostly positive during the field measurements, which indicate that the alpine meadow emits CO2 to atmosphere basically. The daily continues measurements showed that the flux of CO2 emission in daytime was higher than that of nighttime. The maximal emission flux occured at 11:00~13:00 a.m., and the minimal flux occured at 4:00~7:00 in the morning. The increasing period of CO2 emission appeared from 7:00 to 15:00 and the decreasing period appeared from 15:00 to 7:00 of the following day. The maximum of CO2 emission flux in the heavily degraded, lightly degraded, moderately degraded, non-degraded alpine meadow and artificial grassland are respectively 327.34±2.38 mgm-2h-1, 304.21±4.12 mgm-2h-1, 299.56±3.02 mgm-2h-1 , 309.28±0.28 mgm-2h-1 and 369.23±2.36mgm-2h-1.The minimum of them are respectively 109.93±3.09 mgm-2h-1, 101.16±3.17 mgm-2h-1, 92.21±2.69mgm-2h-1, 97.12±5.86mgm-2h-1 and 119.31±4.75mgm-2h-1.
     2. the seasonal dynamic of CO2 flux of different degrees degraded alpine meadow
     Seasonal dynamic of the CO2 emission rate was pretty remarkable,and the trend of five different representative grassland types were consistent. The fluxes of CO2 from different degraded alpine meadow and grassland were mostly positive during the plant growing seasons. CO2 fluxes in heavily degraded meadow and artificial grassland were significantly different from moderately degraded meadow, and the CO2 fluxes in heavily degraded meadow were not significantly different from non-degraded meadow.
     CO2 emission rate higher in the heavily degraded alpine meadow than in the moderately degraded alpine meadow during the plant growing seasons.Ruderal is the dominant species and poison grass is secondary in heavily degraded meadow and Grass or Cyperaceae is only a few. Whole coverage of the heavily degraded alpine meadow is more than that of the moderately degraded alpine meadow although the heavily degraded alpine meadow germinates late and the moderately degraded alpine meadow germinates early.Whole coverage is 40%~60% in the heavily degraded alpine meadow and it is 20%~30% in the moderately degraded alpine meadow.
     3. the diurnal variation of CH4 flux of different degrees degraded alpine meadow
     The fluxes of CH4 in different degrees degraded alpine meadow were mostly negative, this means that the alpine meadow sink CH4 from atmosphere. The diurnal variation of CH4 flux is complicated, the maximal sink was occurred at night. The minimal absorption flux was happened at 9:00~11:00 a.m.. There was no significant relationship between the diurnal variation of CH4 absorption and temperature.
     4. the seasonal dynamic of CH4 flux of different degrees degraded alpine meadow
     There was an different seasonal variation in different alpine meadow.The seasonal dynamic of CH4 flux in moderately degraded and lightly degraded alpine meadow is not significant.There was an obvious seasonal variation in non-degraded alpine meadow,heavily degraded alpine meadow and artificial grassland.The CH4 fluxes were higher in summer and lower in autumn and spring.The CH4 fluxes were significantly correlated with the air temperature and soil temperature, and they were also significantly correlated with soil water in different alpine meadow.CH4 fluxes in different degrees degraded alpine meadow were not significantly .
     5. the analysis of CO2 flux in different degrees degraded alpine meadow
     The result of analysis of variance about CO2 fluxes in different types of meadow are displayed as follows. For the the original meadow, the order of CO2 emission fluxes was artificial grassland>heavily degraded meadow>non-degradedmeadow>lightly degraded meadow>moderately degraded meadow. CO2 fluxes in heavily degraded meadow and artificial grassland were significantly different from moderately degraded meadow, and the CO2 fluxes in heavily degraded meadow were not significantly different from non-degraded meadow.For the reaped meadow treatment, the order of CO2 emission fluxes was non-degraded meadow> lightly degraded meadow > moderately degraded meadow>heavily degraded meadow> artificial grassland. For the soil treatment, the order of CO2 emission fluxes was non-degraded meadow >lightly degraded meadow>artificial grassland> moderately degraded meadow>heavily degraded meadow.
     6. relationships between CO2 flux and temperature,soil moisture in different degrees degraded alpine meadow
     The correlativity of CO2 flux and temperature in different degrees degraded alpine meadow are displayed as follows. For the the original meadow, the correlativity order of CO2 flux and temperature was heavily degraded meadow > moderately degraded meadow > lightly degraded meadow >non-degradedmeadow>artificial grassland. The correlativity are respectively 0.9179, 0.9169, 0.8818, 0.8511 and 0.6774. For the the reaped meadow, the correlativity order of CO2 flux and temperature was lightly degraded meadow>moderately degraded meadow>heavily degraded meadow>artificial grassland>non-degradedmeadow. The correlativity are respectively 0.9488, 0.9377, 0.9287, 0.7455 and 0.73821. For the the soil treatment, the correlativity order of CO2 flux and temperature was moderately degraded meadow > lightly degraded meadow > heavily degraded meadow >non-degradedmeadow>artificial grassland. The correlativity are respectively 0.9546, 0.95, 0.9473, 0.7757 and 0.7706 .
     The diurnal variation and the seasonal variation were both significantly correlated with the air temperature and soil temperature (0cm,5cm,10cm).Whereas having a weak correlation with the soil moisture. In the five sample sites, the effect of soil moisture to CO2 flux in the heavily degraded meadow (Black soil patch)was more significant than the other four sample sites.
     7. relationships between CO2 flux and biomass in different degrees degraded alpine meadow
     CO2 fluxes increased with the green biomass and aboveground biomass in different types of meadow. Exponential functions could be used to describe relationship between CO2 fluxes and biomass. There was a significant correlation relationship between CO2 fluxes and green biomass. However, there was weak relationship between CO2 fluxes and aboveground biomass. CO2 fluxes decreased with the increase of standing dead biomass in different types of meadow. Relationships between CO2 fluxes and standing dead biomass could be described by exponential equations in different types of meadow. There was weak relationship between CO2 fluxes and standing dead biomass in heavily degraded meadow. There was a significant correlation relationship between CO2 fluxes and standing dead biomass in non-degraded meadow.
     Exponential functions could be used to describe relationships between CO2 fluxes and underground biomass in different types of meadow. CO2 fluxes increased with the 10~20cm underground biomass, but the upward trend is not same in different types of meadow.
     8. relationships between CH4 flux and biomass in different degrees degraded alpine meadow
     CH4 absorption flux increased with the green biomass in different types of meadow. Exponential functions could be used to describe relationship between CH4 absorbable fluxes and biomass, but there was a weak relationship between them. CH4 absorbable fluxes decreased with the increase of standing dead biomass in different types of meadow. Exponential functions could be used to describe relationship between CH4 absortion fluxes and standing dead biomass in non-degraded meadow,moderately degraded meadow, lightly degraded meadow and artificial grassland. Logarithmic functions could be used to describe relationship between CH4 fluxes and standing dead biomass in heavily degraded meadow because of CH4 emission flux sometimes. CH4 absortion fluxes increased or decreased with the underground biomass in different types of meadow.
引文
[1] Aguilar R , Kelly E F,Heil R D.Effects of cultivation on soils in northern Great Plains rangeland [J].Soil Science Society of America,Journal,1988,52 :1081~1085.
    [2] Boehme S E, Sabine C L,Reimers C E. CO2 fluxes from a coastal transect:A time-series approach[J]. Marine Chemistry, 1998,63(2):49~67.
    [3] Bonito G M,Coleman D C,Haines B L,Cabrera M L. Can nitrogen, mineralization rates of forest stands along an elevation gradient? [J]. Forest Ecology and Manangement,2003,176: 563~574.
    [4] Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere[A]. New York, Academic Press,1990, 61~127.
    [5] Budyko M.L.The Earth’s Climate Past and Future[M]. New York,Academic Press,1982. 1~13.
    [6] Castro M S, Steudler P A, Melillo J M, et al. Exchange of N2O and CH4 between the atmosphere and soils in spruce-fir forests in the Northeastern United-States[J]. Biogeochemistry.1992.18: 119~135.
    [7] Christensen T R. Jonasson S.Callaghan T V,et al.On the potential CO2 release from tundra soils in changing climate[J]. Applied Soil Ecology,1999,11:127~134.
    [8] Cicerone R J,Shetter JD. Sources of at mospheric methane: measurements in rice paddies and a discussion[J].J.Geophys. Res.,1981,86(C):7203~7209.
    [9] Coleman, D. C. Soil carbon balance in a successional grassland [J]. Oikos., 1973,24:195~199.
    [10] Collins S L,S C Barber.Effects of disturbance on diversity in a mixed-grass prairie[J].Vegetation, 1985, 64: 87~94.
    [11] Collins S L.,G E Uno.Seed predation,seed dispersal and disturbance in grassland:a comment[J]. American Naturalist,1985,125:866~872.
    [12] Collins S L.Interaction of disturbance in tallgrass prairie:a field experiment[J].Ecology,1987, 68(5): 1243~1250.
    [13] Crutzen P J,Andreae M O.Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles[J]. Science,1990,250:1669~1677.
    [14] Czepiel PM,Crill PM,Harriss RC. Environmental factors influencing the variability of methane oxidation in temperate zone soils[J].J.Geo-phys.Res.Atmos.,1995. 100:9359~9364.
    [15] David K.C,Jones.Global warming and geomorphology[J].The Geographical Joural, 1993,159(2): 125.
    [16] Dise N B. Methane emission from Minnesota peat lands: Spatial and seasonal variability [J]. GlobalBiogeochem. Cyc.,1993,7:123~142.
    [17] Dong Y S, Zhang S, Qi Y C. et al. Diurnal variation and fluxes for CH4, and CO2 in Inner Mongolia grassland[J]. Science Sinica, 2000,45: 318~322
    [18] Dorr H, Katruff L, Levin I. Soil texture parameterization of the methane uptake in aeratedsoils[J]. Chemosphere, 1993,26: 697~713
    [19] Duenas C.,Fernandez M.C.,Carretero J.,etal. Methane uptake in soils of southern Spain estimated by two different techniques: atatic chamber and 222 radon flux and soil air concentration profiles[J].Atmospheric Environment,1996,30(4):545~552.
    [20] Edwardl N.T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor[J]. Soil Sci. Am Pro.,1975,39: 361~365.
    [21] Elser J.J ,Fagan W .F,Denno R F et al.Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408:578~580
    [22] Fan S,Gloor M,Mahlman J,et al.North American carbon sink[J]. Science,1999,283:1815.
    [23] Fernandez I J. et al. Soil carbon dioxide characteristics under different forest types and after harvest [J].Soil Sci.Soc.Amer.J..1993,57: 1115~1121.
    [24] Grace, J., J. Lloyd,J. Mclntyre,et al. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazoinia.Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazoinia[J].Science,1995,270: 778~780.
    [25] Guangmin Cao,Yanhong Tang,Wenhong Mo.,et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetanplateau[J].Soil Biology & Biochemistry, 2004, 36:237~243.
    [26] Gufu Oba,Ole R Vetaas and Nils C Stenseth.Relationship between biomass and plant species richness in arid-zone grazing lands[J].Journal of Applied Ecology,2001,38;836~845.
    [27] Holzapfel-Pschorn A Seiler W.Methane emission during a cultivation period from an Italian rice paddy [J].J.Geophys.Res., 1986,11803~11814.
    [28] Hontoria C,Rodriguez2Murillo J C,SaaA.Relationship between soil organic carbon and site characteristics in Peninsular Spain[J].Soil Sci, Soc. A m.J.1999,63:614~621.
    [29] Houghton J T, Davison E A, Woodwell G M. Missing sinks, feedback, and understanding the roles of terrestrial ecosystems in the global carbon balance[J]. Global Biogeochemical Cycles, 1998, 12:25~34
    [30] Houghton R.A.Changes in the Storage of Terrestrial Carbon since 1995[M]. Soils and Global Change,1995.CRC Press, Inc:45~65.
    [31] Hunt J E, Kelliher F M, Mcseveny T M et al. Long-term carbon exchange in a sparse, seasonally dry tussock grassland[J]. Global Change Biology, 2004,10: 1785~1800
    [32] Huston M A.Patterns of species diversity on coral reefs[J].Annual Review of Ecological Systematics,1985,16:149~177.
    [33] Jakobsen P., et al. Sulfide and CH4 formation in soils and sediments[J]. Soil Sci.,1981,132(4): 279~287.
    [34] Kalburtji K l, Mamolos A P, Kostopoulou S K. Litter dynamics of Dactylis glomerata and Vicia villosa with respect to climatic and soil characteristics.Grass and Forage Science,1998, 53: 225~ 232.
    [35] Karlen D L,Rosek M J ,Gardner J C, et al. Conservation reserve program effects on soil quality indicators [J].Journal of Soil and Water Conservation , 1999 , 54 (1):439~444.
    [36] Keeling C D,et al.. Interannual extrems in the rate of rise of atmospheric carbon dioxide since 1980.Nature, 1995, 375~386.
    [37] Keeling Charles D. Climate change and carbon dioxide: An introduction[J]. National Academy of Science,1997,94:8273~8274.
    [38] Keppler F, Hamilton JTG Brab M., Rockmann T. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 2006,439: 187~191
    [39] Kessavalou A, Mosier A R, Dorm J W., et al. Fluxes of carbon dioxide, Nitrous Oxide, and Methane in grass sod and winter wheat-fallow tillage management[J]. Journal of Environmental Quality, 1998,27: 1094~1104
    [40] Kimble J M,L evine E R,The Nairobi Conference:Topics,Results,and Research Needs[A].Trans 15th World Conf Soil Sci [C].Acapulco,Mexico,1994,151~162.
    [41] Klein D A.Seasonal carbon flow and decomposer relationship in a semi-arid grassland soil[J].Ecology,1997,58:184~190.
    [42] Kucera, C. and Kirkham, D. Soil respiration studies in tall-grass prairie in Missouri [J]. Ecology,1971, 52: 912~915.
    [43] Kursar T.A. Elevation of soil respiration and soil CO2 concentration in a low land moist forest in Panama[J]. Plant and Soil,1989,113: 21~29.
    [44] Lal R,J Kimble,R Follett,Land use and soil C pool in terrestrial ecosystem[A].R J Kimbkle,R Follett.Management of carbon sequestration in soil [C].Boca Raton:CRC Press,1998,1~10.
    [45] Lal R,Kimble J M,Levine E and Stewart B A.Soil Management and Greenhouse Effect [M].Boca Ration:Lewis Publ,1995,1~8.
    [46] Lal R.Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect[J].Prog Environ Sci,1999,1:327~326.
    [47] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: A review [J].Soil Biol.,2001,37:25~50.
    [48] Lessard R, Rochette P, Topp E, et al. Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites [J].Can.J.SoilSci.,1994,74:139~146.
    [49] Levine J S,W R Cofer,J P Pinto. Biomass burning [A]. Khalil. Atmospheric Methane: Sources,Sinks,and Role in Global Change[C].New York:Springer-Verlag,1993,229~313.
    [50] Li C Q,Tang M C.The climate change of Qinghai-Tibet plateau and its neighborhood in the recent 30 years[J]. Plateau Meteorology,1988,5(4):332~341.
    [51] Manabe S, Wetherald R T. The effects of doubling the CO2 concentration on the climate of a general circulation model[J]. J. Atmos.Sci.1975,32:3~15.
    [52] Mclntyre S,Lavorel S,Landsberg J.Disturbance response in vegetation-towards a global perspective on functional reait[J].J.Vegetation Scin.,1999,10:621~630.
    [53] Michaelson G L.Carbon storage and distribution in tundra soils of Arctic Alaska,U.S.A. [J]. Arctic and Alpine research,1996,28(4):14~424.
    [54] Monastersky,R.warming Reaps Earlier Spring Growth[J]. Science news,1996,150:21.
    [55] Ni J.Carbon storage in terrestrial ecosystems of China:Estimates at different spatial resolutions and their responses to climate change[J].Climate change,2001,49:339~358.
    [56] Noguchi I, Mariko S, Aoki K. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants [J].Plant Physiol.,1990,94:59~66.
    [57] Norman J M,Garcia R,Verma S B.Soil surface CO2 fluxes and the carbon budget of a grassland[J].J Geophys Res,1992,97:18854~18853.
    [58] Ojima D S, Parton WJ,Schimel D S.Modeling the effects of climate and CO2 in grassland storage of soil [J]. Water Air Soil Pollution,1993,70:643~657.
    [59] Ouyang Y, boersma L. Dynamic oxygen and carbon dioxide exchange between soil and atmosphere model development[J].Soil Sci. Soc, 1992,56:1695~1702.
    [60] Parton W J,Scurlock J M O,Ojima D S, et al. Observation and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J].Global Biogeochemical Cycles,1993,7:785~809.
    [61] Paul E A,Clark F E. Soil microbiochemistry[M].Academic Press,San Diego,1989.
    [62] Philip M Fearnside. Global Warming and Tropical Land-use Change:Greenhouse Gases Emission from Biomass Burning,Decomposition and Soil in Forest Conversion, Shifting Cultivation and Secondary Vegetation[J]. Climate Change,2000,6:115~158.
    [63] Post W M,Emanuel W R,Zinke PJ,Stangenberger AG. Soil carbon pools and life zones[J]. Nature,1982,298;156~159.
    [64] Prentice,K.C.,Fung,I.Y.,The sensitivity of terrestrial carbon storage to climate change[J].nature, 1990,346(5):48~51.
    [65] Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationnnship to vegetation and climate[J].Tellus,1992,44:81~89.
    [66] Saarnio S, Alm J, et al. Effects of raised CO2 on potential CH4 production and oxidation and CH4 emission from a boreal mire[J]. Ecology,1998,86:261~268.
    [67] Saarnio S, Silvola J. Effect of increased CO2 and N on CH4 efflux from a boreal mire: a growth chamber experiment[J]. Oecologia,1999,119:349~356.
    [68] Sampson R N,Apps M, Brown S,Cole C V,Dowing J,Heath L S,Ojima D S,Smith T M,Wisniewski J.Terrestrial biospheric carbon fluxes-quantification of sinks and sources of CO2[J].Water Air Soil Pollut,1993,70:3~15.
    [69] Schlesinger W H. Carbon storage in the calishe of arid soils:a case study from A rizona[J]. Soil S cience,1982,133:247~255.
    [70] Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies [J]. Biogeochemistry,1989,7:33~53.
    [71] Segers R, Kenqen SWM. Methane Production as a function of anaerobic carbon mineralisation: a Procoss model [J]. Biogeochemistry,1998,30:1107~1117.
    [72] Segers R. Methane production and methane consumption: a review of process underlying wetland methane fluxes [J]. Biogeochemistry,1998,41:23~51.
    [73] Singh S N, Kulshreshtha K, Agnihotri S. Seasonal dynamics of methane emission from wetlands[J]. Chemosphere:Global Change Sci.,2000,2:39~46.
    [74] Smith K A,Greenhouse gas fluxes between land surface and the atmosphere[J]. Progress of Physical Geography,1990,3:349~272.
    [75] Tang M C,Li C Q,Zhang J.The climate change of Qinghai-Tibet plateau and its neighborhood[J]. Plateau Meteorology,1986,(1):394~95.
    [76] Tans P.P.,Fung I.Y. and Takahashi T. Observational constraints on the global atmospheric CO2 budget[J].Science,1990,247:1431~1438.
    [77] Termon J F, Oudot C, Dessier A,et al.. A seasonal tropical sink for atmospheric CO2 in the Atlantic Ocean: The role of the Amazon River discharge[J]. Marine Chemistry,2000,68(3): 183~201.
    [78] The World Resources Institute.World Resources 1994-1995 [M].New York/ Oxford:Oxford Univ.Press,1996,137.
    [79] Trumbore S E,Chadwick O A,Amundson R.Rapid exchanges between soil carbon and atmospheric carbon dioxide driven by temperature [J].Science.1996,272 (19):93~396.
    [80] Upadhyaya, S.D. and Singh, V. P. Microbial turn over of organic matter in a tropical grassland soil[J].Pedobiologia,1981,1:100~109.
    [81] WBGU Special Report.The accounting of biological sinks and sources under the Kyoto Protocol [C].1998, 102~119.
    [82] Xiao Huilin.Climate change in relation to soil organic matter[J].Soil and Envi ronment Sciences,1999,8 (4):300~304.
    [83] Yagi,K.,Minami,K. Effect of organic matter application on CH4 emission from some Japanese paddy fields[J]. Soil Sci,plant nutr,1990,40(2):221~230.
    [84]蔡祖聪,Arivn R.Mosier.土壤水分状况对CH4氧化和CO2排放的影响[J].土壤.1999,16(6): 289~295.
    [85]曹广民,李英年,张金霞等.高寒草甸不同土地利用格局土壤CO2的释放量[J].环境科学,2001,22(6):14~19.
    [86]曹广民,吴琴,李东,胡启武,李月梅.土壤-牧草氮素供需状况变化对高寒草甸植被演替与草地退化的影响[J].生态学杂志C,2004,23 (6) :25~28
    [87]陈碧辉.温室气体源汇及其对气候影响的研究现状[J].气象科学,2006,26(5):586~590.
    [88]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科学技术出版社, 1995
    [89]陈全功,梁天刚,卫亚星.青海省达日县退化草地研究Ⅱ退化草地成因分析与评估[J].草业学报, 1998,7(4):44~48
    [90]陈全胜,李凌浩,韩兴国.水分对土壤呼吸的影响及机理[J].生态学报,2003,23(5):972~978.
    [91]陈佐忠,汪诗平主编.中国典型草原生态系统[M].北京:科学出版社,2000.
    [92]崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤排放规律的研究[J].应用生态学报,2000,11(3): 390~394.
    [93]崔晓勇,阵佐忠,阵四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):316~325.
    [94]董云社,张申,齐玉春等.内蒙古典型草地CO2、N2O、CH4通量的同时观测及其日变化[J].科学通报,2000,45(3):318~322.
    [95]杜睿,陈冠雄,吕达仁.内蒙古草原生态系统-大气间N2O和CH4排放通量研究的初步结果[J].气候与环境研究,1997,23(3):264~272.
    [96]杜睿,陈冠雄.不同放牧强度对草原生态系统CH4排放通量的影响[J].河南大学学报(自然科学版),1997,27(2):79~85.
    [97]樊江文,钟华平,梁飚,等.草地生态系统碳储量及其影响因素[J].中国草地, 2003, 25(6): 51~58.
    [98]方精云,刘国华,徐嵩龄.中国生态系统碳库[A].北京:中国科学技术出版社,1996, 25~276.
    [99]方精云,谱世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594~602.
    [100]甘肃农业大学草原系编.草原生态化学实习实验指导书(内部发行)[M].1985.
    [101]高峰,孙成权,曲建升.全球变化研究的新认识——IPCC第三次气候评价报告第一工作组概要[J].地球科学进展,2001,16(3):442~445.
    [102]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报, 2004, 24(4): 790~797.
    [103]耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报,2001,56(1):44~53.
    [104]国家环保局.中国生态问题报告[M].北京:中国环境科学出版社,1999,10~19,42~55,57~78.
    [105]胡启武,吴琴,李东,曹广民.不同土壤水分含量下高寒草地CH4释放的比较研究[J].生态学杂志,2005,24(2):118~122.
    [106]胡自治.草原分类学概论[M].北京:中国农业出版社,1997
    [107]黄国宏,肖笃宁,李玉祥.芦苇湿地温室气体甲烷排放研究[J].生态学报,2001,21(9) 18~22.
    [108]金会军,程国栋,徐柏青.青藏高原花石峡冻土站高寒湿地CH4排放研究[J].冰川冻土,1998,20(2):36~38.
    [109]金会军,程国栋.初冬季节青藏高原清水河地区甲烷排放速率变化[J].冰川冻土[J].1998,20(4):368~375.
    [110]金会军,吴杰,程国栋.青藏高原湿地CH4排放评估[J].科学通报,1999,44 (3):1758~1762.
    [111]康兴成.青藏高原地区近40年来气候变化的特征[J].冰川冻土,1996,18(增刊): 281~288.
    [112]李博,雍世鹏,李瑶等.中国的草原[M].北京:科学出版社,1999.
    [113]李博.中国北方草地退化及其防治对策[J].中国农业科学,1997,30 (6):1~9
    [114]李博.生态学[M].北京:高等教育出版社,2000.
    [115]李东,曹广民,胡启武,吴琴,李月梅,王迎红.高寒灌丛草甸生态系统CO2释放的初步研究[J].草地学报,2005,13(2):144~148
    [116]李东,曹广民,胡启武等.高寒灌丛草甸生态系统CO2释放的初步研究[J].草地学报,2005,13(2):144~148.
    [117]李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应,Ⅰ碳循环的分室模型、碳输入与储存[J].植物学通报,1998,15(2):14~22.
    [118]李凌浩,王其兵,白永飞等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680~686.
    [119]李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报, 1998, 22(4): 300~302
    [120]李明峰,董云社,齐玉春,耿元波.极端干旱对温带草地生态系统CO2、CH4、N2O通量特征的影响[J].资源科学,2006,26(3):89~95.
    [121]李明峰,董云社,齐玉春,耿元波.锡林河流域羊草群落春季CO2排放日变化特征分析[J].中国草地,2003,25(3):9~14.
    [122]李希来,黄葆宁.青海黑土滩草地成因及治理途径[J].中国草地,1995, 51(4):64~67
    [123]李英年,沈振西.近40年海北高寒草甸生态系统定位站气温变化特征[J].资源生态环境网络动态,1999,103:28~31.
    [124]李玉娥,林而达.天然草地利用方式改变对土壤排放CO2和吸收CH4的影响[J].农村生态环境,2000,16(2):14~16.
    [125]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351~357.
    [126]梁福源,宋林华,王静.土壤CO2浓度昼夜变化及其对土壤CO2排放量的影响[J].地理科学进展,2003,22(2):170~176.
    [127]刘东生.全球变化和可持续发展科学[J].地学前沿,2002,9(1):1~8.
    [128]刘惠,成升魁,张雷.人类经济活动影响碳排放的国际研究动态[J].地理科学进展,2002,21(5):420~429.
    [129]刘伟,王启基,王溪,周立,李有福,李发吉.高寒草甸“黑土型”退化草地的成因及生态过程[J].草地学报,1999,7(4):300~307
    [130]刘允芬,欧阳华,曹广民等.青藏高原东部生态系统土壤碳排放[J].自然资源学报,2001,16(2):152~160.
    [131]龙瑞军,董世魁,胡自治.西部草地退化的原因分析与生态恢复措施探讨[J].草原与草坪,2005,(6):3~7
    [132]马克平.生物多样性研究的原理与方法[C].北京:中国科学技术出版社,1994,141~165.
    [133]马玉寿,郎百宁,建立草业系统恢复青藏高原“黑土型”退化草地植被[J].草业科学,1998,15 (1):5~9
    [134]马玉寿,郎百宁,李青云,施建军,董全民.江河源区高寒草甸退化草地恢复与重建技术研究[J].草业科学, 2002,19 (9):1~5
    [135]马玉寿,郎百宁,李青云等.江河源头草地生态环境现状及恢复途径[J].中国草地,1999, (6):59~61.
    [136]马玉寿,郎百宁,王启基.“黑土型”退化草地研究工作的回顾与展望[J].草业科学,1999, 16(2):5~9
    [137]裴志永,欧阳华,周才平.青藏高原高寒草原碳排放及其迁移过程研究[J].生态学报,2003, (2):231~236.
    [138]彭敏,陈桂琛.青海湖地区植被演变趋势的研究[J].植物生态学与地植物学学报,1993, 17(1):71~81.
    [139]齐玉春,董云社,耿元波等.我国草地生态系统碳循环研究进展[J].地理科学进展,2003,23(4): 342~352.
    [140]齐玉春.内蒙古温带草地生态系统生物地球化学循环中主要温室气体通量与碳平衡[D].中国科学院研究生院博士学位论文,2003.
    [141]尚占环,丁玲玲,龙瑞军.江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J].草业学报,2007,16(1):34~40
    [142]孙步功,龙瑞军,孔郑,冯瑞璋.青海果洛黄河源区高寒草甸CO2释放速率研究[J].草地学报,2007,15(5):449~453
    [143]孙鸿烈.青藏高原的形成演化[M].上海:上海科学技术出版社,1996,169~192.
    [144]孙儒冰,李博等.普通生态学[M].北京:高等教育出版社,1993,128~140.
    [145]汤懋苍,程国栋,林振耀.青藏高原近代气候变化及对环境的影响[M].广州:广东科技出版社,1998,121~139.
    [146]陶波,葛全胜,李克让等.陆地生态系统碳循环研究进展[J].地理研究,2001,20(5):564~574.
    [147]王刚,吴明强,蒋文兰.人工草地杂草生态学研究Ⅰ杂草入侵与放牧率之间的关系[J].草业学报,1995,4(2):75~80
    [148]王根绪,程国栋,沈永平,等.江河源区的生态环境变化及其与综合保护研究[M].兰州:兰州大学出版社,200,21~105
    [149]王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义[J].冰川冻土,2002,24(6): 693~700.
    [150]王根绪,程国栋,沈永平等.江河源区的生态环境变化及其与综合保护研究[M].兰州:兰州大学出版社,2001,21~105.
    [151]王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21 (2):101~107
    [152]王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101~107.
    [153]王庚辰,杜睿,王艳芬等.内蒙古草原N2O和CH4排放通量及其季节变化特征研究[J].草地学报,1998,6(4):306~311.
    [154]王凯雄,姚铭,许利君.全球变化研究热点-碳循环[J].浙江大学学报,2001,27(5):473~478.
    [155]王明星,张仁健,郑循华.温室气体的源与汇[J].气候与环境研究, 2000,5(1):75~79.
    [156]王启基,周兴民,张堰青,等.高寒小嵩草草甸植物群落结构特征及其生物量[J].植物生态学报, 1995, 3:225~235
    [157]王启基,杨福屯,史顺海.高寒矮嵩草草甸再生草生长规律的初步研究[A].中国科学院西北高原生物研究所.高寒草甸生态系统国际学术讨论会论文集[C].北京:科学出版社,1989,83~93.
    [158]王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量[J].生态学报,2002,22(5):655~660.
    [159]王卫东,谢小立,上官行健等.我国南方红壤丘陵区稻田CH4产生规律[J].农村生态环境,1995,11(3):11~13.
    [160]王秀红,郑度.青藏高原高寒草甸资源的可持续利用[J].资源科学,1999,21(6):38~42.
    [161]王艳芬,陈佐忠.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545~551.
    [162]王业勖,赵士洞.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29~35.
    [163]王跃思,纪宝明,黄耀等.农垦和放牧对内蒙古草原N2O、CO2排放和CH4吸收的影响[J]. 2001,22(6):7~13.
    [164]温明章.草地资源开发在我国生态农业中的地位及前景[J].农业环境与发展,1996,13(2):14~18.
    [165]温玉璞,汤洁,邵志清.瓦里关山大气CO2浓度变化及地表排放影响的研究[J].应用气象学报,1997,8(2):129~136.
    [166]吴琴,曹广民,胡启武,李月梅.矮嵩草草甸植被-土壤系统CO2的释放特征[J].资源科学,2005,27(2):96~101.
    [167]徐世晓,赵新全,李英年,等.青藏高原高寒灌丛生长季和非生长季CO2通量分析[J].中国科学D辑, 2004, 34 (增刊Ⅱ): 118~124.
    [168]叶勇,卢昌义,黄玉山,谭凤仪等.海莲林土壤CH4通量的日变化和滩面差异[J].厦门大学学报(自然科学版),1997,36(6):925~930.
    [169]叶勇,卢昌义.海南红树林湿地CH4通量的日变化研究[J].海洋学报,2000,22(3):103~109.
    [170]张金霞,曹广民,周党卫.退化草地暗沃寒冻雏形土CO2释放的日变化和季节动态[J].土壤学报, 2001, 38(1): 32~38.
    [171]张金霞,曹广民,周党卫.高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环[J].生态学报, 2003,23(4): 627~634
    [172]张金霞,曹广民,周党卫.草毡寒冻雏形土CO2释放特征[J].生态学报,2001,21(4):544~549.
    [173]张金霞,曹广民,周党卫.放牧强度对高寒灌丛草甸土壤CO2释放速率的影响[J].草地学报.2001,9(3):183~190.
    [174]张金霞,曹广民,周党卫.退化高寒草地暗沃寒冻雏形土CO2释放的日变化和季节动态[J].土壤学报,2001,38(1):32~40.
    [175]张宪洲,石培礼,刘允芬.青藏高原高寒草原生态系统土壤CO2排放及其碳平衡[J].中国科学D辑, 2004, 34(增刊Ⅱ):193~199.
    [176]赵景波,杜娟,袁道先.西安地区土壤CO2释放量和释放规律[J].环境科学,2002,23(1):25~28.
    [177]钟华平,杜占池.川东中高山地区红三叶、鸭茅凋落物分解速率与气候因子之间的定量关系[J].中国草地,1997,(6):29~32.
    [178]周党卫,曹广民,张金霞.植物生长季退化草毡寒冻雏形土CO2释放特征[J].应用生态学报,2003,14(3):367~371.
    [179]周广胜.未来全球环境变化与可持续发展[J].植物生态学报,2000,24(2):21~25.
    [180]周华坤,周立,赵新全.江河源区“黑土滩”型退化草场的形成过程与综合治理[J].生态学杂志,2003,22 (5):51~55
    [181]周兴民.矮嵩草草甸在封育条件下群落结构和植物量变化的初步观察[J].高原生物学,1986,(5):1~6.
    [182]周兴民.中国的嵩草草甸[M].北京:科学出版社,2001
    [183]邹建文,黄耀,宗良纲,郑循华,王跃思.稻田CO2、CH4和N2O排放及其影响因素[J].环境科学学报.2003,23(6):758~764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700