用户名: 密码: 验证码:
长江三角洲海岸防护林树种选择与配置模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸防护林在改良土壤、降低风速、改善区域生态环境等方面发挥了重要作用,是沿海地区经济可持续发展的重要保障。国内外关于沿海防护林体系的林带结构、土壤改良、抵抗台风等方面进行了大量研究,取得了丰硕成果,积累了丰富的实践经验。但目前多数海岸防护林带林种单一,抵抗病虫害能力和稳定性较差,而可用于造林的树种类型较少。本文以长江三角洲地区的上海市和南通市海岸防护林带为研究对象,以选择适宜的造林树种和配置模式为目标,分别从海岸带植被类型分布、树种受水盐胁迫的反应、试验林树种综合评价、不同类型防护林肥力状况等方面入手进行研究。结果表明:
     (1)泥质海岸滩涂分布的主要植被群落为海三棱藨草、互花米草、芦苇等群落,内侧分布有狗尾草、白茅、加拿大一支黄花等草本群落,群落植被类型较为单一。土壤PH值和土壤含水率是影响滩涂植被群落物种多样性和植物分布的重要土壤因子,土壤PH值与三个多样性指数均呈显著负相关关系,相关系数分别为-0.912、-0.933、-0.905;土壤含水率与物种丰富度呈显著负相关,相关系数为-0.904,与其它两个多样性指数也有较高的负相关关系,相关系数分别为-0.722、-0.865;滩涂植被群落随土壤含水率的下降和PH值的降低,其物种多样性指数逐渐增加。
     (2)对4个防护林树种水盐胁迫下各项生理指标和生长情况的研究表明,初期低水盐浓度下可能刺激苗木根系的生长,但随着试验时间增加和水盐胁迫水平增高,水盐胁迫对不同树种的茎、叶、根系的生长和生物量的积累有明显抑制作用。
     (3)树木的生理指标中,质膜透性、叶绿素、可溶性蛋白含量等指标都与树木的耐水盐能力有关。但各个指标的变化趋势有很多不同,其受胁迫浓度、胁迫时间等影响较大,原因可能是各树种对水盐胁迫浓度都有一定的生理适应范围,且对胁迫的响应时间也有较大差异。因此用单一生理指标来分析树木的耐水盐能力,不确定性因素较多,评价难度较大。
     (4)通过主成分分析得到4个树种抵抗水盐胁迫能力大小顺序为乌桕>落羽杉>喜树>栾树,这与试验观测结果相符。由主成分分析因子载荷可以看出,苗高、地径、生物量与两个因子均为正相关,且载荷很大;质膜透性与两个因子均为负相关,载荷较大;游离脯氨酸含量对因子1载荷很大,但对因子2载荷很小;其它指标与两个因子的相关性不同。总之,评价树木的耐水盐能力,如选用生理指标,必须选择适合的胁迫压力和胁迫时间,且应结合多个生理指标进行综合分析。实际应用中,选择可以直接观测的形态指标如苗高、地径、生物量等形态指标,既方便操作,又比较可靠。
     (5)用层次分析法构建海岸带防护林树种选择评价指标体系,共涵盖了19个评价点,覆盖了生长适应性、生态功能、景观效应和经济价值等防护林树种选择的主要方面,采用定性与定量相结合的方法,对29个试验树种进行综合评价。根据评价结果推荐乔木树种12种,分别为苦楝、青桐、栾树、金丝垂柳、乌桕、黄连木、中山杉、喜树、墨西哥落羽杉、雪松、枫香、南酸枣,作为泥质海岸带防护林适宜造林树种。
     (6)海岸6种典型防护林带的林下土壤各种养分指标和除过氧化氢酶外几种主要的土壤酶活性在土层中的分布规律较为相似,一般随土层深度的增加而降低且差异显著,林地土壤养分和酶活性均高于滩地对照。水杉和杉木两种针叶树种林下土壤容重、含盐量均高于刺槐和杨树林等阔叶树种,非毛管孔隙度则低于后者;刺槐与杨树,杉木与杨树两种混交林土壤物理性状、养分含量及酶活性均好于纯林。
     (7)对防护林带的生长状况调查表明,刺槐与杨树,杉木与杨树混交林林木生长情况比纯林好,林木的平均树高、胸径均明显高于各自的纯林,林分郁闭度相对纯林明显增大。刺槐和杨树混交后,径高比分别为1:72.22和1:83.17,而刺槐和杨树纯林的径高比分别为1:70.90和1:80.86;杉木和杨树的混交林中杉木的径高比为1:89.97,而其纯林则为1:85.99,说明混交林中林木圆满度相对纯林大,树干尖削度变小,出材率增加。
     (8)用多元逐步回归方法对防护林草本层物种多样性指数与土壤肥力因子的关系研究表明:土壤PH值与草本层物种多样性指数呈显著负相关,且对三个物种多样性的解释能力分别达到84.6%、56.1%和59.1%,可见影响草本层物种多样性的主要因子是土壤PH值。其次是土壤全磷含量,它与草本层物种多样性指数呈正相关,对三个物种多样性的解释能力分别为11.3%、32.1%和31.9%。此外,土壤含水率、土壤有效磷含量、土壤容重、孔隙度和全氮含量也对草本层物种多样性有一定的影响。
Coastal shelter forest had played an important role in the coastal economic sustainabledevelopment, and it could improve the soil, reduce the wind speed and improve the regionecological environment. Study on the forest structure, soil improvement, resistance typhoonability of coastal shelter forest system at home and abroad had been done and greatachievements had been made. But now most of the coast shelter belt species was single,resistance insect ability and forest stability was poor, and few tree species could be used forafforestation. This paper studied the coast of shelter belt by the Yangtze river delta region ofShanghai and Nantong, separately from the coastal vegetation type distribution, reaction of treespecies under water and salt stress, comprehensive evaluation of experimental forest treespecies, soil fertility status under different types of shelter forest, in order to choose moreappropriate afforestation tree species and better configuration mode.. The results showed that:
     (1)The main kinds of vegetation communities on coast beaches in ShangHai area wereScirpus mariqueter, Spartina alterniflora Loisel., Phragmites australis, inside were Setairaviridis(L.)Beauv, Imperata cylindrica (Linn.) Beauv. And Solidago canadensis L.. Soil PHvalue and soil moisture content were the important soil factors which effected vegetationspecies diversity and plant distribution. Soil PH value had a significant negative correlationwith three communities diversity indexes, and the correlation coefficient was respectively-0.912,-0.933,-0.905; Soil moisture content had significant negative correlation with speciesrichness, and the correlation coefficient was-0.904.it also had a high negative correlation withthe other two diversity indexes, and the correlation coefficient was respectively-0.722,-0.865.With soil moisture descended and PH value reduced, the species diversity index of communitieson coast beach increased gradually.
     (2)Researches about various physiological indexes and the growth of four shelter foresttree species under water and salt stress showed that in the early stages, lower water and saltconcentration might stimulate the growth of root seedlings, but with the test time passed and thelevels of salt and water stress increased, it had a significant inhibitory effect on the stem, leaf,root growth and biomass accumulation of different species.
     (3)In the physiological indexes, plasma membrane permeability, chlorophyll, solubleprotein content,etc were relevant to trees water and salt resistant ability. But the change trendof each index had many different, which was effected by the concentration and time of stress.The reason might be the tree species had a certain physiological range of stress, and theresponse time of various tree species also had a big difference. So using a single physiologicalindex to analysis the trees resistance ability to water and salt stress was uncertain and difficult.
     (4)The principal component analysis about the four species resistance ability to salt andwater stress showed that: Sapium sebiferum>Taxodium mucronatum> Camptotheca acuminata> Koelreuteria paniculata, which was in agreement with observation results. By principalcomponent analysis, seedling height, ground diameter, biomass had a positive correlation withtwo factors, and the factor loadings were big; Plasma membrane permeability had a negativecorrelation with two factors; Factor1loading of free proline content was big, but factor2loading was very small; Other indexes association with two factors was different. In short, ifchoose physiological indexes to analysis trees water and salt resistance ability, it must choosesuitable for pressure and intimidation of stress, and should combine with various physiologicalindexes. In practical application, the choice can be directly observable form indicators such asseedling height, ground diameter, and biomass, morphological index, which were moreconvenient and reliable for operation.
     (5)AHP was used to construct the coastal shelter forest tree species selection evaluationindex system, totally covering19ranking points, including the major aspects such as the growthadaptability, ecological function, landscape effect and economic value. With the qualitative andquantitative method, test tree species were comprehensive evaluated. According to theevaluation results, Melia azedarach Linn., Firmiana simplex(L.)W.F.Wight, Koelreuteriapaniculata,etc were recommended as suitable planting species to muddy coastal shelter forest.
     (6)Soil nutrient indexes except catalase under six typical coast forest of shelter belt had asimilar distribution, and generally reduced with the increasing of soil depth and had asignificant difference, while they were higher than the beach. Soil bulk density and salt contentof Metasequoia glyptostroboides and Cunninghamialanceolata(Lamb.)Hook. were higher thanthe locust and Poplars, while the capillary porosity were lower than the latter. Soil nutrientcontent and enzyme activity of two mixed forest were better than pure forest.
     (7)The growth condition of the trees showed that: the trees in two mixed forest werebetter than trees in pure forest, the average tree height, diameter at breast height and crowndensity were significantly higher than the pure forest. The diameter to height ratio of locust andpoplars in mixed forests was respectively1:72.22,1:83.17, while in pure forests wasrespectively1:70.90,1:80.86; Cunninghamialanceolata(Lamb.)Hook. in mixed forest was1:89.97, while in pure forest was1:85.99. So trees in mixed forests the Taper was smaller,while fullness and stand Outturn Tables ratio were bigger than in pure forests.
     (8)The results of stepwise regression about soil fertility properties affecting speciesdiversity in herb layer showed that the main factor affecting species diversity was soil PH, andit had an obvious negative correlation. For species richness of herb layer、Simpson index andShannon index its explanation ability respectively achieved84.6%、56.1%and59.1%. Thenwas the soil total phosphorus. and it was positively related with herb layer species, itsexplanation ability for the three species diversity index respectively achieved11.3%、32.1%and31.9%. In addition, the soil moisture content, soil phosphorus content, effective soil bulk density, porosity and total nitrogen content had a certain effect on the herb layer of speciesdiversity.
引文
[1]林逸.中国沿海防护林体系[J].防护林科技,1996,28(3):51~52.
    [2]张纪林,康永新,季永华.沿海防护林体系的结构与功能及发展趋向[J].世界林业研究,1998,11(1):50~56.
    [3]宋兆民.我国防护林体系的发展和研究[J].防护林科技,1998,(4):14~17.
    [4]林文棣.中国海岸带林业[M].北京:海洋出版社,1993.
    [5]彭镇华.中国森林生态网络体系建设.北京:中国林业出版社,2002.
    [6]张金池.水土保持学.沈阳:辽宁大学出版社,2003.
    [7]张旭东.长江流域森林可持续发展战略.安徽农业大学学报,2001,28:126~130.
    [8]曹新孙.农田防护林学[M].北京:中国林业出版社,1983.
    [9]胡海波,康立新.国内外沿海防护林生态及其效益研究进展[J].世界林业研究,1998,11(2):18~25.
    [10]张胜杰.上海市森林资源现状及消长动态分析[J].华东森林经理,2000(14):23~24,29.
    [11]张群,崔心红,夏檑,等.上海临港新城近60a筑堤区域植被与土壤特征[J].浙江林学院学报,2008,25(6):698~704.
    [12]李琦,吴晓春,张于卉.对上海沿海防护林建设若干问题的探讨[J].防护林科技,2006,72(3):103~105.
    [13]许基全.沿海防护林体系营造技术[M].北京:中国林业出版社,1996.
    [14]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106~115.
    [15]盛炜彤.人工林植被管理与稳定性[J].林业科学研究,2004,17(专刊):1~6.
    [16]李恭学,李俊,陈益泰,等.新围垦滩涂防护林树种选择及造林关键技术研究[J].防护林科技,2010,94(1):14~16,50.
    [17]谢影,张金池.黄河、长江流域水土流失现状及森林植被保护对策[J].南京林业大学学报,2002,26(6):88~92.
    [18]孙启祥,彭镇华.长江滩地杨树人工林生物量研究[J].林业科技通讯,1998,(4):50~53.
    [19]孙启祥,彭镇华.滩地立地条件造林树种选择研究[J].安徽农业大学学报,1998,(1):34~37.
    [20]龚洪柱,魏庆营.盐碱地造林学[M].北京:中国林业出版社,1986.
    [21] ВорронковаНМ.Дыханиелистъевдревесныхрастенийюгаприморскогокрая.Ботанизескийжурнал,1988,73(7):1011~1016.
    [22] Cavelier J et al. Soil respiration in the cloud forest and dry deciduous forest of Serrania de Macuira[J], Colombia.Biobropica,1990,22(4):346~352.
    [23] Rhizopoulou S et al.Water relations for sun and shade leaves of four mediterranean evergree sclerophylls. Journal ofEx-perimental Botany,1991,42(238):627~635.
    [24] Mclennan D S et al. Spatial variation in black cottonwood (populus trichocarpa) foliar nutrient concentrationsat seven alluvial sites in coastal Britain Colombia[J].Canadian Journal of Forest Research,1990,20(7):1089~1097
    [25]季永华,张纪林,孙金林,等.沿海地区水杉林带生物量的时空结构特征[J].江苏林业科技,1999,26(4):6~10.
    [26]冯福生,孙金林.如东沿海柳杉林生长及生物量的初步研究[J].江苏林业科技,1993,(1):5~8.
    [27]卢义山,吴忠祥.苏北海堤防护林主要造林树种林分生物量与生产力的研究[J].江苏林业科技,2000,27(2):12~15.
    [28]彭方仁,李杰,张纪林,等.海岸带不同林农复合经营模式的生物生产力研究[J].南京林业大学学报,2000,24(2):78~82.
    [29] Baldwin V C Jr.Green and dry. weight equations for above.ground components of planted loblolly pine trees in theWest Gulf region[J].Southern Journal,1987,11(4):212~218.
    [30] Steinke T D et al.Litter production by mangroves Ⅱ.st. Lucia and Richaras Bay[J]. South African Forest of Botany,1988,54(5):445~454.
    [31] Silva et al. Metals reservion in a red mangrove forest[J]. Biotropica,1990,22(4):339~345.
    [32] Lee W.G. et al. Inviasion of the subantarotic AuckLand Island, New Zealand, by the asterad Tree Olearia Lyallii and itsinteraction with a resident myrtaceous tree metrosideros umbellata[J]. Journal of Biogeography,1991,18(5):493~508.
    [33] Vander Moezel P.G. et al. The effect of salinity on the germination of some wastern Australian Eucalytus andHelalenca species[J]. Seed Science and Technology,1987,15(11):239~246.
    [34] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses [J]. Plant CellEnviron,1993,16:15~24.
    [35] Kuiper D J,Schuit. Actual cytokine in content rat ion in plant tissue as an indicator for salt resistance in cereals [J].Plant Soil,1990,123:243~250.
    [36] TattiniM R,GucciM A,Coradesch i C, et al. Gas exchange and ion content in halophytes plant during salinitystress and subsequent relief [J].Physiol Plant,1995,95:203~210.
    [37] Stoeyr,Wal Kerr.Citrus and salinity [J].Scientia Horticulturae,1999,78:39~81.
    [38] Larson K D, Schaffer B, Davies F S. Flooding, mineral nutrition and net gas exchange of mango trees [J]. Hort. Sci.1992,52:113~124.
    [39]靖元孝,陈兆平,程惠青,等.淹水时水翁幼苗光合特性与不定根的关系.热带亚热带植物学报,2000,8(4):361~364.
    [40]杨暹,陈小燕,杨云英.淹水对开花期大白菜花的形成和细胞保护系统的影响[J].中国蔬菜,2000(2):7~10.
    [41]何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应I.水涝胁迫对银杏膜脂过氧化作用及保护酶活性的影响[J].山地农业生物学报.2000,19:272~275.
    [42] Dasberg S et al. The effect of saline irrigation water on“shamouti”orange trees [J]. Irrigation Soience,1991,12(4):205~211.
    [43] Sun E.J. Studies on scorching of rice plants and trees on northwestern coastal areas of Taiwan III. Pathologicalevidences of salt spray injury to major windbreak trees[J]. Plant Protection Bulletin,1992,34(4):283~293.
    [44] Anderson J P E, Domash K H. Quantities of plant nutrients in the microbial biomass of selected soils[J]. SoilScience,1980,130:212~216.
    [45] Amato M, Ladd J N. Assay for microbial biomass based on ninhydrin-reactive nitrogen extracts of fumigatedsoils[J]. Soil Biol. Biochem.,1988,20:107~114.
    [46] Atlas R M. Use of microbial diversity measurements to assess environmental stress.In:Klug M J, Reddy C A(eds)Current perspectives in microbial ecology[J]. American Society for Microbiology, Washington D C,1984:540~545.
    [47] Anderson T H, Domsch K H. The metabolic quotient for CO2as a specific activity parameter to assess the elects ofenvironmental conditions, such as pH, on the microbial biomass of forest soils[J]. Soil Biology and Biochemistry,1993,25:393~395.
    [48] Anderson T H. Microbial eco-physiological indicators to assess soil quality[J]. Agriculture, Ecosystem and Environment,2003,98:285~293.
    [49] Bonde A T, Schniirer J, Rosswall T. Microbial biomass as a fraction of potentially mineralizable N in soil from long termfield experiments[J]. Soil Biology and Biochemistry,1988,20(4):447~452.
    [50] Caborn J M. The influences of shelterbelts on microclimate[J].Quart.J.Roy.Meteor.Soc,1957,81:112~115.
    [51] Carbon J M. Shelterbelts and microclimate[M]. London: Faber and Fabei Ltd.1965.
    [52]李国旗,安树青,张纪林,等.海岸带防护林4种树木的风压力应力分析[J].南京林业大学学报,1999,23(4):76~80.
    [53]康立新,王述礼.沿海防护林体系生态效益概述[J].江苏林业科技,1995,22(3):1~5.
    [54]康立新.泥质海岸防护林生态经济效益研究初报[J].江苏林业科技,1994,(4):15~16.
    [55]梁珍海,刘德辉,康立新,等.苏北沿海防护林对林地土壤蒸发的影响研究[J].南京大学学报:自然科学版,1996,32(1):170~174.
    [56]梁珍海,刘德辉,卢义山,等.泥质海岸防护林对滩涂土壤盐分的影响及机制[J].南京大学学报:自然科学版,1998,34(2):139~143.
    [57]梁珍海,康立新,仇才楼,等.苏北沿海防护林对土壤脱盐及脱盐稳定性的影响[J].南京林业大学学报,1994,18(3):41~45.
    [58]胡海波,康立新,梁珍海,等.泥质海岸防护林土壤酶活性与理化性能关系的研究[J].东北林业大学学报,1995,23(5):37~45.
    [59]胡海波,康立新.泥质海岸防护林土壤酶活性特征研究[J].土壤学报,1998,35(1):112~118.
    [60]胡海波,梁珍海,康立新,等.泥质海岸防护林改善土壤理化性能的研究[J].南京林业大学学报,1994,18(3):13~18.
    [61]刘德辉,梁珍海,李荣锦,等.泥质海岸防护林对滩涂土壤的改良效果研究[J].土壤通报,1998,29(6):245~247.
    [62]仇才楼,梁珍海,康立新,等.苏北沿海防护林对土壤渗透性的影响[J].生态学杂志,1996,16(2):13~16.
    [63]张金池,康立新.苏北海堤林带根系固土功能研究[J].水土保持学报,1994,8(2):43~47,55.
    [64]张金池,康立新.苏北海堤主要防护林类型防蚀功能研究[J].南京林业大学学报,1996,20(3):11~15.
    [65]张金池,臧廷亮,曾锋.岩质海岸防护林树木根系对土壤抗冲性的强化效应[J].南京林业大学学报,2001,25(1):9~12.
    [66]卢义山,张金池,宋万平,等.海堤林带树木根系对堤防安全影响探讨[J].南京林业大学学报,1994,18(1):31~36.
    [67]温远光,李信贤,和太平,等.广西沿海防护林的生物多样性保育功能的研究[J].防护林科技,2000,42(1):1~4.
    [68]陈永辉,伍寿彭,殷云龙,等.江苏滨海盐碱地中山杉造林推广试验[J].江苏林业科技,1996,23(4):18~22.
    [69]郑景明,于雷,李绍忠.泥质海岸防护林树种选择及造林工程技术研究[J].防护林科技,1999,39(2):4~6.
    [70]李绍忠.北方泥质海岸防护林生态工程的研究[J].应用生态学报,1996,7(2):122~128.
    [71]孟康敏,崔玉国,潘文利,等.滨海苏打盐渍土的改良与造林技术研究[J].辽宁林业科技,1999,(2):1~5,64.
    [72]于雷.滨海盐渍土防护林树种选择的研究[J].辽宁林业科技,2001,(2):7~9,46.
    [73]邢尚军,薄其祥,吕雷昌,等.滨海重盐碱地白刺耐盐性及其栽培技术研究[J].山东林业科技,2000,127(2):7~11.
    [74]张建锋,邢尚军,孙启祥,等.黄河三角洲重盐碱地白刺造林技术的研究[J].水土保持学报,2004,18(6):144~147.
    [75]李慧仙,信文海.华南沿海城市绿化抗风树种选择及防风措施[J].华南热带农业大学学报,2000,6(1):15~17.
    [76]陈士银,杨新华,杜盛珍.庭园绿化树种抗风性能的调查与分析[J].防护林科技,1999,41(4):32~35.
    [77]陈万章,仇才楼,李荣锦.提高刺槐在江苏沿海造林树种中比重的探讨[J].江苏林业科技,2000,27(5):60~62.
    [78]陈万章,仇才楼,李荣锦.74杨在江苏沿海地区生长情况的调查分析[J].江苏林业科技,2001,28(4):26~28.
    [79]施瑞冲,吴仲祥,宋万平.良种刺槐无性系在如东海堤的引种试验[J].江苏林业科技,1998,25(2):26~27.
    [80]高彦花,张华新,杨秀艳,等.耐盐碱植物对滨海盐碱地的改良效果[J].东北林业大学学报,2011,39(8):43~46.
    [81]韩步阳,周武忠.苏北沿海地区树种选择和造林技术的调查研究[J].华东森林经理,1995,9(3):49~52.
    [82]李信贤.广西海岸防护体系中防护林的作用与树种选择[J].广西科学院学报,2001,17(2):82~86.
    [83]张玲菊,黄胜利,周纪明等.常见绿化造林树种盐胁迫下形态变化及耐盐树种筛选[J].江西农业大学学报,2008,30(5):833~838.
    [84]韩玉洁,孙海菁,朱春玲,等.上海沿海防护林树种适应性评价[J].南京林业大学学报:自然科学版,2010,34(4):165~168.
    [85]郗金标,何源,许景伟,等.论山东沿海防护林体系建设的树种选择[J].防护林科技,2004,60(3):17~20.
    [86]万福绪,韩玉洁.苏北沿海防护林优化模式研究[J].北京林业大学学报,2004,26(2):31~36.
    [87]万福绪,杨东.苏北海堤杉木杨树混交林林木生长及土壤肥力研究[J].南京林业大学学报,2006,30(2):43~46.
    [88]季永华.江苏海岸带林农复合模式林分密度研究[J].江苏林业科技,2000,27(5):7~11.
    [89]康立新,梁珍海.苏北沿海农田林网复合结构林网规划设计[J].江苏林业科技,2001,28(1):10~13.
    [90]康立新,张纪林,等.护田林带树种配置评价与优化模式选择[J].南京林业大学学报,1991,15(1):47~53.
    [91]殷云龙,孙醉君,贺善安,等.赣榆县滨海通榆运河综合效益型防护林的优化模式[J].植物资源与环境,1995,4(1):37~42.
    [92]顾杰,王思健,蔡洪达,等.海门沿海防护林体系工程建设技术研究[J].江苏林业科技,1998,25(4):23~28.
    [93]安树青,张久海,陈兴龙,等.江苏海岸带林草复合生态技术及其效应研究[J].林业科学,2001,37(2):21~28.
    [94]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物土壤酶和土壤养分含量的研究[J].山东林业科技,2002(2):1~5.
    [95]胡延杰,翟明普,武觐文.杨树刺槐混交林及纯林土壤微生物数量及活性与土壤养分转化关系的研究[J].土壤,2002(4):42~50.
    [96]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节动态研究[J].北京林业大学学报,2001,23(5):466~467.
    [97]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林根际微生物数量及其生化强度的季节性动态研究[J].土壤通报,2002,33(6):219~222.
    [98]贾黎明,方陆明,胡延杰.杨树刺槐混交林及纯林枯落叶分解[J].应用生态学报,1998,9(5):463~467.
    [99]贺位忠,李玉芬,高大海.舟山海岛困难地造林树种选择与配套技术研究[J].浙江林业科技,2008,28(4):39~42.
    [100]张建锋,邢尚军,郗金标,等.树木耐盐的生理指标测定[J].东北林业大学学报,2003,31(6):90~93.
    [101]李保成,汪仕涛,蔡臻,等.提高上海滨海防护林工程中树木种植成活率的几点浅见[J].上海农业科技,2006(6):105~106.
    [102]吴新民,潘根兴,李恋卿,长江三角洲土壤质量演变趋势分析[J],地理与地理信息科学,2006,22(3):88~91.
    [103]安旭东,朱继业,陈浮,等.全球变化对长江三角洲土地持续利用的影响及其对策[J].长江流域资源与环境,2001,10(3):266~272.
    [104]左书华,李九发.上海潮滩滩涂资源的合理开发与利用及可持续发展[J].海洋地质动态,2007,23(1):22~26.
    [105]马涛,傅萃长,陈家宽.上海城市发展中的湿地保护与可持续利用[J].城市问题,2006,(9):29~32.
    [106]李九发,戴志军,应铭,等.上海市沿海滩涂土地资源圈围与潮滩发育演变分析[J].自然资源学报,2007,22(3):361~371.
    [107]张胜杰.上海市森林资源现状及消长动态分析[J].华东森林经理,2000,(14):23~24,29.
    [108]苏德源.上海滩涂开发利用的现状及规划[J].上海建设科技,2003,(3):18~19.
    [109]杨永川,达良俊.上海乡土树种及其在城市绿化建设中的应用[J].浙江林学院学报,2005,22(3):286~290.
    [110]唐东芹,杨学军,邵芹英.上海城市绿化树种的生长适应性调查及规划意见[J].林业科技,2001,26(5):54~56.
    [111]杨学军,唐东芹,钱虹妹,等.上海城市绿化利用树种资源的现状与发展对策[J].植物资源与环境学报,2000,9(4):30~33.
    [112]林明锐,张庆费,郑思俊,等.上海城市化地区孤岛状山体残存植被特征[J].生态学杂志,2009,28(7):1245~1252.
    [113]中国林业标准汇编(营造林卷)[M].北京:中国林业出版社,1998.
    [114]中华人民共和国林业部科技司.林业科技标准汇编(三)[M].北京:中国林业出版社,1991.
    [115]南京农业大学主编.土壤农化分析(第二版)[M].北京:农业出版社,1988.
    [116]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学出版社,1978.
    [117]关松萌.土壤酶及其研究法[M].北京:农业出版社,1986.
    [118]赵兰坡,姜岩.土壤磷酸酶活性测定方法的探讨[J].土壤通报,1986,17(3):138~141.
    [119]范志平,关文彬,曾德慧,等.东北地区农田防护林高效多功能经营的指标体系及标准研究[J].应用生态学报,2001,12(5):701~705.
    [120]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [121]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004.
    [122]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983(3):24~29.
    [123] Huang B,Johnson J W,Nesmith D S. et al. Growth, physiological and anatomical response of two wheat genotypes towaterlogging and nutrient supply[J]. Exp Bot, l994,45:193-202
    [124]赵可夫.植物对水涝胁迫的适应[J].生物学通报,2003,38(12):11~14.
    [125]武维华.植物生理学[M].北京:科学出版社,2003.
    [126]乔勇进,赵萍舒,李成,等.山东省沿海沙质海岸防护林体系建设[J].防护林科技,1999,41(4):26~28.
    [127]顾宇书,邢兆凯,赵冰,等.沙质海岸防护林体系建设技术及其研究现状[J].防护林科技,2010,96(3):36~38,57.
    [128]成向荣,虞木奎,张建锋,等.沿海防护林工程营建技术研究综述[J].世界林业研究,2009,22(1):63~67.
    [129]李成,乔勇进,张敦论.山东省沿海沙质海岸防护林树种的选择[J].防护林科技,2002,53(4):64~66.
    [130]闫芊,陆健健,何文珊.崇明东滩湿地高等植被演替特征[J].应用生态学报,2007,18(5):1097~1111.
    [131]吴统贵,吴明,萧江华.杭州湾滩涂湿地植被群落演替与物种多样性动态[J].生态学杂志,2008,27(8):1284~128.
    [132]秦卫华,王智,蒋明康.互花米草对长江口两个湿地自然保护区的入侵[J].杂草科学,2004(4):15~16.
    [133]李加林,杨晓平,童亿勤,等.互花米草入侵对潮滩生态系统服务功能的影响及其管理[J].海洋通报,2005,24(5):33~36.
    [134]高建华,杨桂山,欧维新.互花米草引种对苏北潮滩湿地TOC、TN和TP分布的影响[J].地理研究,2007,26(4):799~808.
    [135]沈永明.江苏省沿海互花米草人工盐沼的分布及效益[J].国土与自然资源研究,2002(2):45~47.
    [136]张忍顺,沈永明,陆丽云,等.江苏沿海互花米草(Spartina alterniflora)盐沼的形成过程[J].海洋与湖沼,2005,36(4):358~366.
    [137]赵广琦,张利权,梁霞.芦苇与入侵植物互花米草的光合特性比较[J].生态学报,2005,25(7):1604~1611.
    [138]梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较[J].生态学报,2006,26(3):842~848.
    [139]邓自发,安树青,智颖飙,等.外来种互花米草入侵模式与爆发机制[J].生态学报,2006,26(8):2678~2686.
    [140]郭建英,杨文斌,胡小龙,等.行带式防风固沙林带间植被和土壤修复效果分析[J].灌溉排水学报,2011,30(4):128~131.
    [141]马凯,李永宁,金辉,等.不同生境类型金莲花群落物种多样性比较[J].草业科学,2011,28(8):1467~1472.
    [142]宋小艳,郝建锋.物种多样性的研究进展[J].安徽农业科学,2011,39(14):8559~8561.
    [143]赵菲,谢应忠,马红彬,等.封育对典型草原植物群落物种多样性及土壤有机质的影响[J].草业科学,2011,28(6):887~891.
    [144]赵成章,董小刚,石福习,等.高寒山区退耕地不同植被恢复方式下群落稳定性[J].山地学报,2011,29(1):6~11.
    [145]赵成章,石福习,董小刚,等.祁连山北坡退化林地植被群落的自然恢复过程及土壤特征变化[J].生态学报,2011,31(1):0115~0122.
    [146]张晶晶,赵忠,宋西德,等.渭北黄土高原人工刺槐林植物多样性动态[J].西北植物学报,2010,30(12):2490~2496.
    [147]李玉新,赵忠,陈金泉.不同林龄人工沙棘林结构与林下物种多样性研究[J].西北植物学报,2010,30(4):0645~0651.
    [148]刘丽丽,金则新,李建辉.浙江大雷山夏蜡梅群落植物物种多样性及其与土壤因子相关性[J].植物研究,2010,30(1):57~64.
    [149]郑绍伟,陈泓,黎燕琼,等.岷江上游干旱河谷区植被多样性与环境因子的相关性研究[J].四川林业科技,2009,30(6):21~27.
    [150]贺强,崔保山,赵欣胜,等.黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系[J].生态学报,2009,29(2):676~687.
    [151]肖开煌,苏智先,张素兰,等.不同海拔珙桐群落乔木物种多样性与土壤因子关系研究[J].云南大学学报:自然科学版,2007,29(4):408~413.
    [152]李维成,吴荣辉,李建华.沿海防护林森林资源现状及对策[J].华东森林经理,1994(8):14~17.
    [153]马涛.上海林地和绿地碳汇发展困境与对策[J].中国城市林业,2011,9(2):23~25.
    [154]盛条娟,衡辉.完善上海市林业养护长效管理机制的若干建议[J].华东森林经理,2006,20(4):14~16.
    [155]石振昌.崇明县碳汇林业发展存在的问题及对策[J].现代农业科技,2010,(15):274,276.
    [156]刘文敏.上海绿化林业持续发展原则及对策建议[J].上海蔬菜,2008(6):15~18.
    [157]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379~38.
    [158] Muller M, Santarius KA.Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity.PlantPhyiol.1978,62:326~333.
    [159] Maslenkora LT.Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids.JPlant Physiol.1993,142:629~634.
    [160] Rao GG, Rao GR.Pigment composition and chlorophyyase activity in pigment pea and Gingelley under NaCl salinity.IndianJExpBiol.1986,19:768-770.
    [161]张其德.盐胁迫对植物及其光合作用的影响(中)[M].生命世界,2000,1:28-29.
    [162] Jackson M B, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil floodingand submergence [J]. Plant Biology,1999,1:274-287.
    [163] Drew M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia [J].Annu RevPlant Physiol Plant Molecular Biology,1997,48:223-250.
    [164] Vartapetian B B, Jackson M B. Plant adaptations to anaerobic stress [J].Annals of Botany,1997,79(SlA):3-20
    [165] Anella L B, Whitlow TH. Photosynthetic response to flooding of Acer rubrum seedlings from wet and dry sites[J].American Midland Naturalist2000,143:330-342.
    [166] Casanova M T, Brock M A. How do depth, duration and frequency of flooding influence the establishment of wetlandplant communities [J].Plant Ecology,2000,147:237-250.
    [167] CastonguayY,Nadeau P, Simard R R. Effects of flooding on carbohydrate and ABA levels in roots and shoots ofalfalfa[J].PlantCellEnviron,1993,16:695-701.
    [168] ChenH J,RobertG Q,RobertR B.Effectof soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake inthe invasive exoticLepidium latifolium[J].AquatBot,2005,82(4):250-268.
    [169]彭秀,肖千文,罗韧,唐艳梅,邹雪梅.淹水胁迫对中华蚊母生理生化特性的影响[J].四川林业科技,2006(27):17-20.
    [170]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983(3):24-29.
    [171]魏和平,利容千.淹水对玉米不定根形态结构和ATP酶活性的影响[J].植物生态学报,2000,24(3):293-297
    [172]靖元孝,陈兆平,程惠青,等.淹水时水翁幼苗光合特性与不定根的关系.热带亚热带植物学报,2000,8(4):361-364.
    [173]陈立松,刘星辉.果树逆境生理[M].北京:中国农业出版社,2002.
    [174] Huang B,Johnson J W,Nesmith D S. et al. Growth, physiological and anatomical response of two wheat genotypes towaterlogging and nutrient supply[J]. Exp Bot, l994,45:193-202.
    [175]杨暹,陈小燕,杨云英.淹水对开花期大白菜花的形成和细胞保护系统的影响[J].中国蔬菜,2000(2):7-10
    [176]刘华山,盂凡庭,杨青华,等.土壤渍涝对芝麻根系生长及抗氧化物酶活性的影响[J].植物生理学通讯,2005,41(1):45-47.
    [177]何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应I.水涝胁迫对银杏膜脂过氧化作用及保护酶活性的影响[J].山地农业生物学报.2000,19:272-275.
    [178]徐锡增,唐罗忠,程淑婉.涝渍胁迫下杨树内源激素及其它生理反应[J].南京林业大学学报,1999,23(1):1-5
    [179]李合生主编.现代植物生理学(第二版)[M].北京:高等教育出版社,2005
    [180]段国辉,袁澍,刘文娟等.多胺与植物逆境胁迫的关系[J].植物生理学通讯,2005,41(4):531-536
    [181] ParidaA K, MittraA B D B. Effects of salton growth, ion accumulation, photosynthesis and leaf anatomy of themangrove,Bruguiera parviflora.Trees,2004,18:167-174
    [182] Levitt J.Response of Plants to Environmental Stress.2nd ed.New York:Academic Press,1980:365-434
    [183] Vicente O, Boscaiu M, Naranjo M A, Estrelles E, Bellés J M, Soriano P. Responses to salt stress in the halophytePlantagocrassifolia (Plantaginaceae). Journal ofArid Environments,2004,(58):463-481.
    [184]钟小仙,邹轶,张建丽,许映君,刘智微.海盐胁迫对海滨雀稗植株形态与生长的影响[J].江苏农业科学,2009(6):235-236.
    [185]冯建灿,张玉洁,杨天柱,等.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响[J].林业科学研究,2002,15(2):197-202.
    [186]骆建霞,史燕山,吕松,等.3种木本地被植物耐盐性的研究[J].西北农林科技大学学报:自然科学版,2005,33(12):121-124.
    [187]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [188]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
    [189]肖强,郑海雷.水淹对互花米草生长及生理的影响[J].生态学杂志,2005,24(9):1025-1028.
    [190]杨逞,陈晓燕,杨运英.涝渍逆境对菜心的菜蔓的形成与细胞保护系统的影响[J].中国蔬菜,2000(2):7-10
    [191]叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较生态学报[J],2001,20(10):1654~1661
    [192]刘录祥,孙其信.灰色系统理论应用于作物新品种综合评估初探[J].中国农业科学,1989,22(3):22~24.
    [193]郝清玉,刘强,钟琼芯,等.沿海防护林防护效能综合评价方法的比较与选择[J].林业资源管理,2010(2):82~88,112.
    [194]刘杰,杨恒友,孙双君.层次分析法在城镇行道树选择评价中的应用[J].安徽农业科学,2010,38(6):3257~3258.
    [195]杨斌.运用层次分析法优选临夏北塬农田防护林树种[J].林业科学,2006,42(6):51~54.
    [196]何兴元.应用AHP构建城市森林树种综合评价指标体系[J].辽宁林业科技,2006(3):1~3.
    [197]黄家荣.用层次分析法调整三都县林种树种结构[J].四川林勘设计,1999(4):24~26,35.
    [198]童丽丽,吴祝慧,王哲宇,等.层次分析法与熵技术评价在南京城市绿化生态树种选择中的应用[J].东北林业大学学报,2010,38(9):58~61.
    [199]方创琳,毛汉英.区域发展规划指标体系建立方法探讨[J].地理学报,1999,54(5):410~419.
    [200]邹建文,曾志新,廖菊阳,等.层次分析法在湘北地区林种结构调整中的应用[J].湖南林业科技,2004,31(4):34~37.
    [201]李苗裔,李渊.层次分析法在防护林林种结构优化评价中的应用—以官司河流域为例[J].安徽农业科学,2010,38(11):5800~5802,5845.
    [202]惠淑荣,王岩,魏忠平.泥质海岸防护林综合效益评价指标体系研究[J].西北林学院学报2011,26(2):75~80
    [203]韩友志,邢兆凯,于雷,等.辽宁泥质海岸防护林体系建设的技术、经济措施及规划研究[J].辽宁林业科技,2007(4):35-46.
    [204]幕长龙,龚固堂.防护林体系综合效益评价研究述评[J].四川林业科技,2000,21(1):13-19.
    [205]雷孝章,王金锡,彭沛好,等.中国生态林业工程效益评价指标体系[J].自然资源学报,1999,14(2):175-182.
    [206]沈慧,姜凤岐.水土保持林土壤改良效益评价指标体系的研究[J].北京林业大学学报,2000,22(5):96-99.
    [207] SAATY T L. Hierarchies, Reciprocal Matrices and RatioScale,Discrete and System Models[M].New York:Springer-verlag,1983.
    [208]林德荣,支玲,高德华,等.基于层次分析法的迁西县“三北”防护林工程社会影响评价[J].北京林业大学学报:社会科学版,2008,7(1):42-46.
    [209]李绍忠.北方泥质海岸防护林生态工程的研究[J].应用生态学报,1996,7(2):122-12.
    [210]骆宗诗,向成华,慕长龙.绵阳官司河流域主要森林类型凋落物含量及动态变化[J].生态学报,2007(5):1772-178.
    [211]吴志华,李天会,张华林,等.广东湛江地区绿化树种抗风性评价与分级选择[J].亚热带植物科学,2011,40(1):18~23.
    [212]李亚,姚淦,曾虹,等.江苏沿江生态防护林树种评价体系的建立与树种的初步筛选[J].植物资源与环境学报,2010,19(3):73~78.
    [213]钟哲科,高智慧,杨树、水杉林带枯落物对土壤微生物C、N的影响[J].林业科学,2003,39(2):153~157.
    [214]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究[J].生态学报,1997,17(4):377~385.
    [215]陈金耀.天然杉木混交林及主要伴生树种凋落物动态变化[J].福建林学院学报,1998,18(3):255~259.
    [216]刘爱琴,马祥庆,等.马尾松林下不同混交模式对土壤肥力的影响[J].浙江林学院学报,1998,15(3):250~255.
    [217]贺伟,贾黎明,等.混栽杨树—刺槐间磷素养分转移途径的研究[J].应用生态学报,2003,14(4):481~486.
    [218]范文杰.滨海土壤化学因子对刺槐中龄林生长影响的研究[J].南京林业大学学报,1990,14(1):57~62.
    [219]高祥斌,刘增文.岷江上游典型森林生态系统土壤酶活性初步研究[J].西北林学院学报,2005,20(3):1-5..
    [220] Vazquez M M, Cesar S, Azcon R. Interactions between arbuscular mycorrizal fungi other microbialinocants(Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities inthe rhizosphere of maize plant[J]. Appl Soil Ecol,2000,15:261-272.
    [221]陆梅,韩智亮.滇池西岸森林公园4种针叶林土壤酶活性与养分关系研究[J].安徽农业科学,2011,39(13):7656~7660.
    [222]高志红,张万里,张庆费.森林凋落物生态功能研究概况及展望[J].东北林业大学学报,2004,32(6):79-83.
    [223]戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系[J].河北林学院学报,1995,10(1):13~18.
    [224]赵之重.土壤酶活性与土壤肥力关系的研究[J].青海大学学报:自然科学版,1998,16(3):24~29.
    [225]薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280~285.
    [226]沈慧,姜凤岐.水土保持林土壤改良效益评价指标体系的研究[J].北京林业大学学报,2000,22(5):96-99.
    [227]雷相东,唐守正,李冬兰,等.东北过伐林灌木层物种多样性与林分因子的典型相关分析[J].应用环境与生物学报,2002,8(4):346~350.
    [228]雷相东,唐守正,李冬兰,等.影响天然林下层植物物种多样性的林分因子的研究[J].生态学杂志,2003,22(3):18~22.
    [229]雷相东,张会儒,李冬兰,等.东北过伐林区四种森林类型的物种多样性比较研究[J].生态学杂志,2003,22(5):47~50.
    [230]雷相东,唐守正.群落本质多样性排序及应用[J].林业科学研究,2002,15(3):285~290.
    [231]雷相东,唐守正.林分结构多样性指标研究综[J].林业科学,2002,38(3):140~146.
    [232]陈光升,钟章成.重庆缙云山常绿阔叶林群落物种多样性与土壤因子的关系[J].应用与环境生物学报,2004,10(1):12~17.
    [233]黎云祥,刘钊,等.南充市近郊退化灌丛草坡群落物种多样性与环境因子灰色关联度分析[J].四川师范学院学报:自然科学版,1998,19(2):189~192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700