用户名: 密码: 验证码:
节能减排环境下的电力系统规划与重构相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,在党中央的正确领导下,我国作为世界上发展最快的发展中国家,经济、社会发展取得了举世瞩目的辉煌成就,人民生活水平得到了明显改善。然而,由于长期以来我国的能源利用效率低下、技术条件落后、产业结构不合理等因素,我国在取得巨大成就的同时也付出了资源过度消耗和环境严重破坏的高昂代价,经济、社会发展与能源、环境危机的矛盾日趋尖锐,节能减排已成为我国实现可持续发展、保证中华民族长远利益的必由之路,也是应对全球能源危机和气候变化的迫切需要。
     电力系统作为一次能源消耗和二次能源供应的关键环节,是整个节能减排工作的重中之重。随着我国节能减排工作不断深入、政策不断加强,电力系统正迎来一系列新的变革和新的问题,迫切需要一些新的研究与分析方法。在此背景下,本文以电力系统节能减排为根本出发点,重点研究了与电力系统规划、运行密切相关的一些关键问题,主要包括计及线损和责任分摊的电力系统碳排放流分析、我国电力供应系统的碳排放转移分析、分布式电源在配电系统中的优化规划和优化重构和节能减排环境下的电力投资风险评估及不确定决策等内容。
     准确的碳排放核算和分析是制定节能减排政策的重要基础。为解决电力系统中的碳排放核算和分析问题,本文首先对电力系统碳排放流分析理论进行了改进和完善,建立了计及电网损耗和碳排放责任分摊的碳排放流实用分析模型和方法,为进一步完善和推广应用电力系统碳排放流分析理论提供了新的思路。采用改进的碳排放流分析模型,并结合全生命周期评价方法,对包括跨区域电煤运输和电力传输在内的我国电力供应系统进行了全生命周期碳排放核算和碳排放转移特性分析,将分析结果与已有的研究成果进行了比对,对我国电力供应系统节能减排政策的制定提出了分区域差别对待和建立碳排放责任分摊机制的建议,为我国电力系统的分地区统筹规划和发展提供了有价值的参考。
     在节能减排环境下,分布式电源在配电系统中正得到不断推广和应用。针对分布式电源在配电系统中的优化规划问题,构建了能够计及多种分布式电源和多种资源消耗与环境影响的综合优化规划模型。优化规划模型中采用全生命周期炯消耗作为综合指标衡量分布式电源所引起的资源消耗、环境影响以及替代传统电源和热源所造成的节能减排效益。通过同时优化全生命周期(?)消耗、经济成本和系统损耗,实现了分布式电源的多目标综合优化规划。采用机会约束条件和概率潮流分析计及了分布式电源出力和负荷不确定性的影响。为提高含分布式电源的配电系统概率潮流分析效率,提出了一种将拉丁超立方抽样方法与线性化潮流方程相结合的半线性化概率潮流分析方法,该方法以基于拉丁超立方抽样的概率潮流分析为基本框架,避免了解析概率潮流分析方法的不稳定性和误差,并在此基础上分别采用准确性高的线性化方程求取节点电压和精确的非线性方程计算支路潮流,在保证计算准确性的同时避免了耗时较多的潮流迭代求解过程。以所提出的半线性化拉丁超立方抽样概率潮流分析方法为基础,对含异步风力发电机的概率潮流分析方法进行了改进。同时,考虑分布式电源接入配电系统后的优化运行问题,以最小化线损期望值为优化目标建立了计及分布式电源出力不确定性的配电系统机会约束优化重构模型,并采用基因分块的思想改进了遗传算法求解该优化模型,避免了大量不可行解的生成,提高了优化重构的求解效率。以IEEE-33节点配电系统为例验证了所提出的模型与方法的合理性和有效性。
     考虑节能减排政策和分布式电源给电力投资带来更多的风险因素,采用Nataf变换在电力投资风险评估的随机模拟过程中计及了不确定因素之间的相关性,提高了电力投资风险评估的准确性。同时,在风险评估的基础上将不确定指标值和指标权重的概率特性加入到电力投资方案决策的灵敏度分析中,构建了电力投资方案决策的概率灵敏度分析指标和分析方法。最后,以实际应用案例说明了所提方法的有效性。
Since reform and opening, under the correct leadership of the CPC Central Committee, China, as the world's fastest growing developing country, has made remarkable brilliant achievements in economic and social development, improving the people's living standard significantly. However, due to long-standing inefficient use of energy, technical conditions backward, irrational industrial structure and other factors, China has been paying high cost of excessive resource consumptions and serious environmental damages for the achievements. The contradiction between the requirement for economic and social development and the crisis of energy shortage and environmental polutions is becoming increasingly obstructive to China's sustainable development. Energy conservation and emission reduction is the only way to ensure long-term interests of the Chinese nation, and also the response to the global energy crisis and climate change which is urgently needed.
     As the main consumer of primary energy and supplier of secondary energy, electricity system plays the most important role in the energy conservation and emission reduction task. Facing the deepening energy conservation and emission reduction projects, the power system is ushering in a new series of changes and new problems and requires some new approaches for research and analysis. In this context, this dissertation takes energy conservation and emission reduction as the fundamental starting point, and focuses on several key issues that are closely related with electric power system planning and operation, including the improvement and expansion of power system carbon emission flow analysis theory, life cycle analysis of carbon emission transfer in Chinese power supply system, optimal distributed generation planning, distribution system reconfiguration with distributed generatiors, and risk assessment and uncertain decision-making of power system investment.
     Firstly, the carbon emission flow analysis theory for power system is improved and expanded taking into account the power loss and carbon emission responsibility allocation in the dissertation. Combined with life cycle assessment methods, the improved carbon emission flow model is used to account the carbon emissions and analyse the characteristics of carbon emission transfer in China's power supply system, including cross-regional coal transport and electricity transmission. The analytical results are compared with previous research results. According to the results, differetiated treatments upon different regions and interregional economic ties from carbon emissions are suggested for the policy formulation of China's electricity supply system energy conservation and emission reduction.
     An integrated optimization model is built to solve the distributied generation planning problem in the distribution system. The objective functions not only take the economic costs and distribution system power losses into consideration, but also maximizes the benefits of energy conservation and emission reduction using life cycle exergy consumption as a unified indicator. This indicator comprehensively measures the resource consumptions and environmental impacts caused by distributed generation and the effect of substituting traditional energy sources. Chance constraints are used to simulate the uncertainties of distributed power output and load. The Latin hypercube sampling probabilistic load flow analysis is improved by conbining with linear load flow equations. The voltage vector is calculated by linear load flow equations which is proved to be efficient and accurate, avoiding time-consuming iteration process. The branch load flow vector is calculated by the nonlinear equations ensuring the accuracy. Based on the proposed semi-linear Latin hypercube sampling probabilistic load flow analysis method, the probabilistic load flow analysis method considering asynchronous wind power generators is improved. Based on such probabilistic load flow analysis method, an optimal reconfiguration model is established to solve the distribution system reconfiguration problem considering distributed generators and uncertain power loads. The genetic algorithm is improved to solve the optimization model. Finally, the IEEE-33bus distribution system is used to illustrate the proposed models and methods.
     The uncertainties of energy conservation and emission reduction polies bring more risks for electric power investments. To improve the accuracy of power investment risk assessment, the Nataf transformation is used in the stochastic simulation process to simulate the correlations of uncertain factors. Meanwhile, on the basis of risk assessment, probability characteristics of criterion values and criterion weights are added to the sensitivity analysis for power investment decision making, constructing probabilistic sensitivity analysis method. Practical case studies are carried out to illustrate the effectiveness and applicability of the proposed methods.
引文
[1]王海霞.节能减排的国际比较研究[D].东北林业大学,1998.
    [2]BP p.l.c.. Statistical Review of World Energy 2011 [EB/OL]. http://www.bp.com/assets/ bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_revi ew_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011. pdf
    [3]包冰.中国电力行业节能减排政策执行效应研究[D].哈尔滨工业大学,2010.
    [4]戴攀.电力行业环境效率评价及碳减排综合优化研究[D].浙江大学,2013.
    [5]Intergovernmental Panel on Climate Change (IPCC).2006 IPCC Guidelines for national greenhouse gas inventory [M]. Intergovernmental Panel on Climate Change,2006.
    [6]International Organization for Standardization (ISO).ISO14064-1:Greenhouse gases Part 1:Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals [S].2006 Switzerland, Geneva.
    [7]World Resources Institute (WRI), World Business Council for Sustainable Development (WBCSD). The Greenhouse Gas Protocol Initiative [EB/OL].2010 http://www.ghgprotocol.org/.
    [8]周天睿,康重庆,徐乾耀,陈启鑫.电力系统碳排放流分析理论初探[J].电力系统自动化,2012,36(7):38-43.
    [9]Munksgaard J., Pedersen K. A.. CO2 accounts for open economies:producer or consumer responsibility [J], Energy Policy,2001,29(4):327-334.
    [10]Guo J., Zhang Z., Meng L.. China's provincial CO2 emissions embodied in international and interprovincial trade [J]. Energy Policy,2012,42:486-497.
    [11]Atkinson G., Hamilton K., Ruta G., van der Mensbrugghe D.. Trade in 'virtual carbon': Empirical results and implications for policy [J]. Global Environmental Change,2011,21: 563-574.
    [12]Lenzen M., Murray J., Sack F., Wiedmann T.. Shared producer and consumer responsibility-Theory and practice [J]. Ecological Economics,2007,61:27-42.
    [13]Soimakallio S., Saikku L.. CO2 emissions attributed to annual average electricity consumption in OECD (the Organisation for Economic Co-operation and Development) countries [J]. Energy,2012,38:13-20.
    [14]Marriott J., Matthews H.S.. Environmental effects of interstate power trading on electricity consumption mixes [J]. Environmental Science & Technology,2005,39:8584-8590.
    [15]Kang C., Zhou T.,Chen Q.,et al.. Carbon emission flow in networks [J]. Scientific Reports, 2012,2,479.
    [16]周天睿,康重庆,徐乾耀,等.电力系统碳排放流的计算方法初探[J].电力系统自动化,2012,36(11):44-49.
    [17]周天睿,康重庆,徐乾耀,等.碳排放流在电力网络中分布的特性与机理分析[J].电力系统自动化,2012,36(15):39-44.
    [18]李保卫,胡泽春,宋永华,王广辉.电力碳排放区域分摊的原则与模型[J].电网技术,2012,36(7):12-18.
    [19]汪曾涛.碳税征收的国际比较与经验借鉴[J].理论探索,2009,(04):68-71.
    [20]Marques A., Rodrigues J., Lenzen M., et al.. Income-based environmental responsibility [J]. Ecological Economics,2012,84:57-65.
    [21]Zhang Y.. The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China [J]. Energy Economics, Available online 13 June 2013.
    [22]侯萍,王洪涛,张浩,等.用于组织和产品碳足迹的中国电力温室气体排放因子[J].中国环境科学,2012,32(6):961-967.
    [23]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [24]丁明,王敏.分布式发电技术[J]..电力系统自动设备.2004,24(7):31-36.
    [25]雷金勇,谢俊,甘德强.分布式发电供能系统能量优化及节能减排效益分析[J].电力系统自动化,2009,33(23):29-36.
    [26]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [27]Tan W.-S., Hassan M.Y., Majid M.S., et al.. Optimal distributed renewable generation planning:A review of different approaches [J]. Renewable and Sustainable Energy Reviews,2013,18:626-645.
    [28]Ackermann T., Andersson G., Soder L.. Distributed generation:a definition [J]. Electric Power Systems Research,2001,57(3):195-204.
    [29]Pepermans G., Driesen J., Haeseldonckx D., et al.. Distributed generation:definition, benefits and issues [J]. Energy Policy,2005,33(6):787-798.
    [30]Barin A., Pozzatti L. F., Canha L.N., et al.. Multi-objective analysis of impacts of distributed generation placement on the operational characteristics of networks for distribution system planning [J]. International Journal of Electrical Power & Energy Systems,2010,32(10): 1157-1164.
    [31]Falaghi H., Singh C., Haghifam M.-R., et al.. DG integrated multistage distribution system expansion planning [J]. International Journal of Electrical Power & Energy Systems,2011, 33(8):1489-1497.
    [32]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.
    [33]Toledo M., Filho D.O., Diniz A. S. A. C. Distributed photovoltaic generation and energy storage systems:A review [J]. Renewable and Sustainable Energy Reviews,2010,14(1): 506-511.
    [34]Liu Z., Wen F., Ledwich G.. Optimal siting and sizing of distributed generators in distribution systems considering uncertainties [J]. IEEE Transactions on Power Delivery, 2011,26(4):2541-2551.
    [35]文升,顾洁,程浩忠,陈彬,张功林.分布式电源的准入容量与优化布置的实用方法[J].电力自动化设备,2012,32(10):109-114.
    [36]Rotaru F., Chicco G., Grigoras G., et al.. Two-stage distributed generation optimal sizing with clustering-based node selection [J]. International Journal of Electrical Power and Energy Systems,2012,40(1):120-129.
    [37]Payasi R. P., Singh A. K., Singh D.. Review of distributed generation planning:objectives, constraints, and algorithms [J]. International Journal of Engineering, Science and Technology,2011,3(3):133-153.
    [38]Viral R., Khatod D. K.. Optimal planning of distributed generation systems in distribution system:a review [J].Renewable and Sustainable Energy Reviews,2012,16(7):5146-5165.
    [39]王守相,王慧,蔡声霞.分布式发电优化配置研究综述[J].电力系统自动化,2009,33(18):110-115.
    [40]朱勇,杨京燕,张冬清.基于有功网损最优的分布式电源规划[J].电力系统保护与控 制,2011,39(21):12-16.
    [41]叶承晋,黄民翔.基于改进粒子群算法的分布式电源经济性最优规划[J].电力系统保护与控制,2012,40(19):126-132.
    [42]邓威,李欣然,刘志勇,等.考虑无功补偿影响因素的间歇性分布式电源综合优化配置[J].中国电机工程学报,2012,32(10):80-88.
    [43]Golshan M. E. H., Arefifar S. A.. Optimal allocation of distributed generation and reactive sources considering tap positions of voltage regulators as control variables [J]. European Transactions on Electrical Power,2007,17(3):219-239.
    [44]陈琳,钟金,倪以信,甘德强.联网分布式发电系统规划运行研究[J].电力系统自动化,2007,31(9):26-31.
    [45]唐勇俊,刘东,阮前途,陆融.计及节能调度的分布式电源优化配置及其并行计算[J].电力系统自动化,2008,32(7):92-97.
    [46]任龙霞,雷金勇,甘德强.计及配电网节点/支路边际容量成本的分布式电源规划[J].电力系统自动化,2010,34(21):34-39.
    [47]欧阳武,程浩忠,张秀彬.基于配电网节点边际容量成本的分布式电源规划[J].电力系统自动化,2009,33(18):28-32.
    [48]Arya L.D., Koshti A., Choube S.C.. Distributed generation planning using differential evolution accounting voltage stability consideration [J]. International Journal of Electrical Power and Energy Systems,2012,42(1):196-207.
    [49]Novoa C., Jin T.. Reliability centered planning for distributed generation considering wind power volatility [J]. Electric Power Systems Research,2011,81(8):1654-1661.
    [50]Banerjee B., Islam S. M.. Reliability based optimum location of distributed generation [J]. International Journal of Electrical Power & Energy Systems,2011,33(8):760-771.
    [51]Abdi Sh., Afshar K.. Application of IPSO-Mone Carlo for optimal distributed generation allocation and sizing [J]. International Journal of Electrical Power & Energy Systems,2013, 44(1):786-797.
    [52]张立梅,唐巍,王少林,等.综合考虑配电公司及独立发电商利益的分布式电源规划[J].电力系统自动化,2011,35(4):23-28.
    [53]付丽伟,王守相,张永武,等.多类型分布式电源在配电网中的优化配置[J].电网技术,2012,36(1):79-84.
    [54]Zangeneh A., Jadid S., Rahimi-Kian A.. Promotion strategy of clean technologies in distributed generation expansion planning [J]. Renewable Energy,2009,34(12): 2765-2773.
    [55]杨毅,韦钢,周冰,等.含分布式电源的配电网模糊优化规划[J].电力系统自动化,2010,34(13):19-23.
    [56]Zangeneh A., Jadid S., Rahimi-Kian A.. A fuzzy environmental-technical-eco-nomic model for distributed generation planning [J]. Energy.2011,36(5):3437-3445.
    [57]El-Zonkoly A. M.. Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation [J].IET Generation, Transmission and Distribution,2011,5(7):760-771.
    [58]Qian K., Zhou C., Allan M., et al.. Effect of load models on assessment of energy losses in distributed generation planning [J]. International Journal of Electrical Power & Energy Systems,2011,33(6):1243-1250.
    [59]Singh D., Singh D., Verma K. S.. Multiobjective optimization for DG planning with load models [J]. IEEE Transactions on Power Systems.2009,24(1):427-436.
    [60]Atwa Y.M., El-Saadany E.F., Salama M.M.A., Seethapathy R.. Optimal renewable resources mix for distribution system energy loss minimization [J]. IEEE Transactions on Power Systems,2010,25(1):360-370.
    [61]Khalesi N., Rezaei N., Haghifam M.-R.. DG allocation with application of dynamic programming for loss reduction and reliability improvement [J]. International Journal of Electrical Power & Energy Systems,2011,33(2):288-295
    [62]徐迅,陈楷,龙禹,程浩忠,倪炜,王自桢,王晓丹.考虑环境成本和时序特性的微网多类型分布式电源选址定容规划[J].电网技术,2013,37(4):914-921.
    [63]杨琦,张建华,刘自发,夏澍.风光互补混合供电系统多目标优化设计[J].电力系统自动化,2009,33(17):86-90.
    [64]王建国,杨秀苔.考虑分布式电源接入的新农村电网规划模型[J].电网技术,2012,36(3):264-268.
    [65]Willis H. L.. Analytical methods and rules of thumb for modeling DG-distribution interaction [J]. Proceedings of the Power Engineering Society Summer Meeting,2000,3: 1643-1644.
    [66]Wang C., Nehrir M. H.. Analytical approaches for optimal placement of distributed generation sources in power systems [J]. IEEE Transactions on Power Systems,2004, 19(4):2068-2076.
    [67]Gozel T., Hocaoglu M. H.. An analytical method for the sizing and siting of distributed generators in radial systems [J]. Electric Power Systems Research,2009,79(6):912-918.
    [68]Sutthibun T., Bhasaputra, P.. Multi-objective optimal distributed generation placement using simulated annealing.2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON),2010,810-813.
    [69]Abou El-Ela A. A., Allam S. M, Shatla M. M.. Maximal optimal benefits of distributed generation using genetic algorithms [J]. Electric Power Systems Research,2010,80(7): 869-877.
    [70]Arya L.D., Koshti A., Choube S.C.. Distributed generation planning using differential evolution accounting voltage stability consideration [J]. International Journal of Electrical Power and Energy Systems,2012,42(1):196-207.
    [71]Khatod D. K., Pant V., Sharma J.. Evolutionary programming based optimal placement of renewable distributed generators [J]. IEEE Transactions on Power Systems,2013,28(2): 683-695.
    [72]Sheidaei F., Shadkam M., Zarei M.. Optimal Distributed Generation allocation in distribution systems employing ant colony to reduce losses [C]. Universities Power Engineering Conference,2008,1-5.
    [73]王瑞琪,李珂,张承慧,等.基于多目标混沌量子遗传算法的分布式电源规划[J].电网技术,2011,35(12):183-189.
    [74]Gandomkar M., Vakilian M., Ehsan M.. A genetic-based tabu search algorithm for optimal DG allocation in distribution networks [J]. Electric Power Components and Systems,2007, 33(12):1351-1362.
    [75]Moradi M.H., Abedini M.. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems [J]. International Journal of Electrical Power and Energy Systems,2011,34(1):66-74.
    [76]Popovic D.H., Greatbanks J.A., Begovic M., et al.. Placement of distributed generators and recloser for distribution networks security and reliability [J]. International Journal of Electrical Power and Energy Systems,2005,27(5-6):398-408.
    [77]Gautam D., Mithulananthan N.. Optimal DG placement in deregulated electricity market [J]. Electric Power Systems Research,2007,77(12):1627-36.
    [78]陈雁.含大规模风电场电力系统的运行与规划方法研究[D].华中科技大学,2012.
    [79]李雪.考虑负荷和风电随机变化的电力系统概率最优潮流问题研究[D].上海大学,2009.
    [80]Allan R. N., Silva da A. M. L., Burchett R. C.. Evaluation Methods and Accuracy in Probabilistic Load Flow Solutions [J]. IEEE Transactions on Power Apparatus and Systems,1981,100(5):2539-2546.
    [81]Sanabria L.A., Dillon T.S.. Stochastic power flow using cumulants and Von Mises functions [J]. International Journal of Electrical Power & Energy Systems,1986,8(1):47-60.
    [82]Tian W. D., Sutanto D., Lee Y. B., et al.. Cumulant based probabilistic power system simulation using Laguerre polynomials [J]. IEEE Transactions on Energy conversion,1989, 4(4):567-574.
    [83]Ruiz-Rodriguez F.J., Hernandez J.C., Jurado F.. Probabilistic load flow for radial distribution networks with photovoltaic generators [J]. Renewable Power Generation,2012, 6(2):110-121.
    [84]董雷,程卫东,杨以涵.考虑支路随机断线的概率潮流方法及应用[J].电力系统保护与控制,2010,38(20):79-84.
    [85]周建华,袁越.含风电场电力系统的Cornish-Fisher级数概率潮流计算[J].电力自动化设备,2011,31(12):68-71.
    [86]Ruiz-Rodriguez F.J., Hernandez J.C., Jurado F.. Probabilistic load flow for photovoltaic distributed generation using the Cornish-Fisher expansion [J]. Electric Power Systems Research,2012,89:129-138.
    [87]Power Systems Engineering Research Center. Uncertain power flows and transmission planning [R]. PSERC Publication,2007.
    [88]Usaola J.. Probabilistic load flow with wind production uncertainty using cumulants and Cornish-Fisher expansion [J]. International Journal of Electrical Power & Energy Systems, 2009,31(9):474-481.
    [89]Fan M., Vittal V., Heydt G.T., Ayyanar R.. Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants [J]. IEEE Transactions on Power Systems,2012,27(4):2251-2261.
    [90]Su C.-L.. Probabilistic load-flow computation using point estimate method [J]. IEEE Transactions on Power Systems [J].2005,20(4):1843-1851.
    [91]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(11):10-14.
    [92]刘志鹏,文福拴,薛禹胜,等.计及可入网电动汽车的分布式电源最优选址和定容[J].电力系统自动化,2011,35(18):11-16.
    [93]周阳洋.重要抽样法在概率潮流中的应用[D].北京:华北电力大学,2011.
    [94]于晗,钟志勇,黄杰波,等.采用拉丁超立方抽样的电力系统概率潮流计算方法[J].电力系统自动化,2009,33(21):32-35.
    [95]Yu H., Chung C.Y, Wong K.P., et al.. Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition [J]. IEEE Transactions on Power Systems,2009,24(2):661-667.
    [96]Chen Y., Wen J., Cheng S.. Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling [J]. IEEE Transactions on Sustainable Energy,2013,4(2): 294-301.
    [97]Usaola J.. Probabilistic load flow with correlated wind power injections [J]. Electric Power Systems Research,2010,80(5):528-536.
    [98]Morales J.M., Baringo L., Conejo A.J., et al.. Probabilistic power flow with correlated wind sources [J]. IET Generation,Transmission & Distribution,2010,4(5):641-651.
    [99]石东源,蔡德福,陈金富,等.计及输入变量相关性的半不变量法概率潮流计算[J].中国电机工程学报,2012,32(28):104-113.
    [100]杨欢,邹斌.含相关性随机变量的概率潮流三点估计法[J].电力系统自动化,2012,36(15):51-56.
    [101]毕鹏翔,刘健,刘春新,等.配电网络重构的改进遗传算法[J].电力系统自动化,2002,26(2):57-61.
    [102]邓佑满,张伯明,相年德.配电网络重构的递归虚拟流理论和算法[J].清华大学学报:自然科学版,1997,37(7):113-116.
    [103]Civanlar S., Grainger J. J., Yin B., et al.. Distribution Feeder Reconfiguration for Loss Reduction [J]. IEEE Transactions on Power Delivery,1988,3(3):1217-1223.
    [104]Goswami S., Basu S.. A new algorithm for the reconfiguration of distribution feeders for loss minimization [J]. IEEE Transactions on Power Delivery,1992,7(3):1484-1491.
    [105]毕鹏翔,刘健,张文元.以提高供电电压质量为目标的配网重构[J].电网技术,2002,26(2):41-43.
    [106]余健明,蔡利敏,杨文字.基于提高系统可靠性降低网损的配电网络重构[J].电工技术学报,2004,19(10):70-73.
    [107]张李盈,范明天.配电网综合规划模型与算法的研究[J].中国电机工程学报,2004,24(6):59-64.
    [108]李海峰,张尧,钱国基,黄健.配电网故障恢复重构算法研究[J].电力系统自动化,2001,25(8):34-37.
    [109]刘健,石晓军,程红丽,徐精求.配电网大而积断电供电恢复及开关操作顺序生成[J].电力系统自动化,2008,32(2):76-83.
    [110]张浩,和敬涵,薄志谦,等.基于动态规划算法的故障恢复重构[J].电工技术学报,2011,26(12):162-167.
    [111]孙健,江道灼.一种多目标配电网络重构新算法[J].电力系统自动化,2003,27(20):57-61.
    [112]Shirmohammadi D, Wayne Hong H. Reconfiguration of Electric Distribution Networks for Resistive Line Losses Reduction [J]. IEEE Transactions on Power Delivery,1989,4(2): 1492-1498.
    [113]Sarma N D R, Prakasa Rao K S. A New 0-1 Integer Programming Method of Feeder Reconfiguration for Loss Minimization in Distribution Systems [J]. Electric Power System Research,1995,33:125-131.
    [114]张炳达,刘洋.应用进化规划变异算子的配电网重构算法[J].电网技术,2012,36(4):202-206.
    [115]Lucas S. M. Guedes, Adriano C. Lisboa, Douglas A. G. Vieira, Rodney R. Saldanha. A Multiobjective Heuristic for Reconfiguration of the Electrical Radial Network [J]. IEEE Transactions on Power Delivery,2013,28(1):311-319.
    [116]Abdelaziz A., Mohamed F., Mekhamer S., et al.. Distribution system reconfiguration using a modified Tabu search algorithm [J]. Electric Power Systems Research,2010,80(8): 943-953.
    [117]向小蓉,刘涤尘,向农,等.基于并行禁忌搜索算法的配电网重构[J].电网技术,2012,36(8):100-105.
    [118]熊宁,程浩忠.基于开关组的禁忌算法在配电网动态重构中的应用[J].电力系统自动化,2008,32(11):56-59.
    [119]吕林,王佳佳,刘俊勇,谢连方.基于多粒子群分层分布式优化的配电网重构[J].电 力系统保护与控制,2009,37(19):56-60.
    [120]王淳,程浩忠.基于模拟植物生长算法的配电网重构[J].中国电机工程学报,2007,27(19):50-55.
    [121]于永哲,黄家栋.基于改进模拟植物生长法的配电网络重构[J].电力系统保护与控制,2010,38(2):40-43.
    [122]Niknam T.. An efficient multi-objective HBMO algorithm for distribution feeder reconfiguration [J]. Expert Systems with Applications,2011,38(3):2878-2887.
    [123]江东林,刘天琪,李樊.采用时段动态划分和分层优化策略的配电网重构[J].电网技术,2012,36(2):153-157.
    [124]刘栋,陈允平,沈广,樊友平.负荷随机性对网损计算和配电网重构的影响[J].电力系统自动化,2006,30(9):25-28.
    [125]崔金兰,刘天琪,李兴源.含有分布式发电的配电网重构研究[J].电力系统保护与控制,2008,36(15):37-40.
    [126]王林川,梁峰,李漫,姜瀚书.含有分布式电源配电网重构算法的研究[J].电力系统保护与控制,2011,39(5):41-50.
    [127]李秀卿,李文,杨云鹏.含有风力发电机组配电网多目标重构的研究[J].电力系统保护与控制,2012,40(8):63-67.
    [128]李传健,刘前进.考虑风力发电随机性的配电网重构[J].电力系统自动化,2010,34(20):34-38.
    [129]Zhang H., Ma S., Xu G. Network Reconfiguration of Distribution System with Distributed Generation Using State Graph [C]. Asia-Pacific Power and Energy Engineering Conference,2012,1-4.
    [130]杨高峰,康重庆,谷兴凯,等.电力市场中基于情景分析的电网规划方案适应性评估[J].电网技术,2006,30(14):64-70.
    [131]Heinricha G., Bassibc L., Cohena B., et al, Ranking and selection of power expansion alternatives for multiple objectives under uncertainty [J]. Energy,2007,32 (12): 2350-2369.
    [132]郑风雷,文福栓,吴复立.电力市场环境下的输电投资与扩展规划[J].电力系统自动化,2006,30(10):80-87.
    [133]杨高峰,康重庆,Li Furong,等.电网规划方案的适应性与风险评估[J].电力系统保护与控制,2008,36(23):1-7.
    [134]张少敏,栗军,王保义.竞争电力市场下的电网公司经营风险综合评价模型[J].电力系统保护与控制,2011,39(8):70-74.
    [135]刘敏,吴复立.基于实物期权理论的风电投资决策[J].电力系统自动化,2009,33(21):19-23.
    [136]赵新宇,王锡凡,陈皓勇.火电厂投资风险决策的模型与整体框架[J].中国电机工程学报,2004,24(8):7-11.
    [137]赵新宇,王锡凡,陈皓勇.火电厂投资风险决策的算法和灵敏度分析[J].中国电机工程学报,2004,24(10):15-20.
    [138]丁伟,李星梅.电力市场中发电项目投资风险研究[J].现代电力,2006,23(03):84-88.
    [139]郭晨,王锡凡,张显,基于效用函数的火电厂投资风险决策[J].电力系统自动化,2006,30(4):11-16.
    [140]王绵斌,谭忠富,张蓉,等.基于“增量法”下的电网投资风险评估模型[J].电工技术学报,2006,21(9):18-24.
    [141]黄超,达庆利.电价不确定环境下发电商的最优投资时机及其概率分析[J].系统工程理论与实践,2007,(6):105-110.
    [142]王勇,文福拴,钟志勇,等.基于实物期权理论的发电投资决策和容量充裕性评估[J].电力系统自动化,2005,29(19):1-9.
    [143]Munoz J.I., Contreras J., Caamano J., etal. Risk assessment of wind power generation project investments based on real options [C].2009 IEEE Bucharest Power Tech,2009: 1-8.
    [144]Su J., Wu F. F.. Risk assessment of generation investment [C].2005 15th Power Systems Computation Conference (PSCC),2005, session 15, paper 2.
    [145]周辉,侯云鹤,吴耀武,等.现货市场中考虑系统运行约束的发电投资风险估计[J].中国电机工程学报,2008,28(13):99-105.
    [146]刘国中,文福拴,薛禹胜.计及温室气体排放限制政策不确定性的发电投资决策[J].电力系统自动化,2009,33(18):17-22.
    [147]刘国中,文福拴,董朝阳.市场环境及CO2排放政策变化下的发电投资决策[J].华南理上大学学报:自然科学版,2010,38(3):101-108.
    [148]杨高峰,康重庆,LI Furong,等.电网规划方案的适应性与风险评估[J].电力系统保护与控制,2008,36(23):1-7.
    [149]徐国新,夏清,康重庆.电网抗灾投资决策方法研究[J].电力自动化设备,2010,30(2): 22-27.
    [150]张勇军,许亮,吴成文.计及多因素的电网冰灾风险评估模型研究[J].电力系统保护与控制,2012,40(15):12-17.
    [151]聂宏展,聂耸,乔怡,等.基于主成分分析法的输电网规划方案综合决策[J].电网技术,2010,34(6):134-138.
    [152]吕盼,乔怡,葛丽婷.基于熵权TOPSIS法的输电网规划综合决策[J].华北电力大学学报,2010,37(4):24-28.
    [153]范利国,左峰,刘吉东,等.基于灰色关联度和理想解法的输电网规划综合决策研究[J].华北电力大学学报,2007,34(5):38-43.
    [154]韦钢,吴伟力,刘佳,等.基于SE-DEA模型的电网规划方案综合决策体系[J].电网技术,2007,31(24):12-16.
    [155]肖峻,罗凤章,王成山.一种基于区间分析的电网规划项目决策方法[J].电网技术,2004,28(7):62-67.
    [156]林振智,文福拴,薛禹胜.黑启动决策中指标值和指标权重的灵敏度分析[J].电力系统自动化,2009,33(9):20-25.
    [157]徐玖平,吴巍.多属性决策的理论与方法[M].北京:清华大学出版社.2006.
    [158]Bialek J. Tracing the flow of electricity [J]. IEE Proceedings:Generation, Transmission and Distribution,1996,143(4):313-320.
    [159]Department of Electrical Engineering at the University of Washington. IEEE-14 Bus Power Flow Test Case [EB/OL]. http://www.ee.washington.edu/research/pstca/pf14/ieee14cdf.txt.
    [160]Lindner S., Liu Z., Guan D., et al.. CO2 emissions from China's power sector at the provincial level:Consumption versus production perspectives [J]. Renewable and Sustainable Energy Reviews,2013,19:164-172.
    [161]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012.
    [162]Mou D., Li Z.. A spatial analysis of China's coal flow [J]. Energy Policy,2012,48: 358-368.
    [163]国家统计局.中国统计年鉴(2011)[M].北京:中国统计出版社,2011.
    [164]国家统计局能源统计司.中国能源统计年鉴(2011)[M].北京:中国统计出版社,2011.
    [165]交通运输部.中国交通运输统计年鉴(2011)[M].北京:人民交通出版社,2011.
    [166]Dones R., Bauer C., Bolliger R., et al.. Life Cycle Inventories of Energy Systems:Results for Current Systems in Switzerland and other UCTE Countries [R]. Ecoinvent report No.5. Swiss Centre for Life Cycle Inventories, Villigen and Uster, CH.,2007.
    [167]Frischknecht R., Althaus H.-J., Doka G., et al.. Overview and methodology [R]. Ecoinvent report No.1. Swiss Centre for Life Cycle Inventories, Duebendorf, CH.,2007.
    [168]Itten R., Frischknecht R., Stucki M.. Life Cycle Inventories of Electricity Mixes and Grid [EB/OL]. http://www.esu-services.ch/fileadmin/download/publicLCI/itten-2012-electricity-mix.pdf.
    [169]侯萍.中国电网的电力生命周期评价研究[D].四川大学,2012.
    [170]亿科环境.中国生命周期基础数据库[DB/OL]. http://www.itke.com.cn/blog/downloads?did=26.
    [171]Frischknechta R., Gerald R.. The ecoinvent database system:a comprehensive web-based LCA database [J]. Journal of Cleaner Production,2005,13(13-14):1337-1343.
    [172]Meng L., Guo J., Chai J.. Zhang Z.. China's regional CO2 emissions:characteristics, inter-regional transfer and emission reduction policies [J]. Energy Policy,2011,39(10): 6136-6144.
    [173]Lindner S., Liu Z., Guan D., et al.. CO2 emissions from China's power sector at the provincial level:Consumption versus production perspectives [J]. Renewable and Sustainable Energy Reviews,2013,19:164-172.
    [174]国家能源局.可再生能源发展“十二五”规划[EB/OL]. http://www.nea.gov.cn/2012-08/ 08/c 131767651.htm.
    [175]Chen Q., Kang C., Xia Q., et al.. Preliminary exploration on low-carbon technology roadmap of China's power sector [J]. Energy,2011.36(3):1500-1512.
    [176]郭小江,马世英,申洪,丁剑.大规模风电直流外送方案与系统稳定控制策略[J].电力系统自动化,2012,36(15):107-115.
    [177]Zhu F., Zheng Y., Guo X., et al.. Environmental impacts and benefits of regional power grid interconnections for China [J]. Energy Policy,2005,33(14):1797-1805.
    [178]国家发改委,能源办.关于加快关停小火电机组若干意见的通知[OL/EB]. http://www. sdpc.gov.cn/zcfb/zcfbqt/2007qita/t20070131_115037.htm.
    [179]Wang W., Zmeureanu R., Rivard H.. Applying multi-objective genetic algorithms in green building design optimization [J]. Building and Environment,2005,40(11):1512-1525.
    [180]Sciubba E.. Beyond thermoeconomics? The concept of Extended Exergy Accounting and its application to the analysis and design of thermal systems [J]. Exergy, An International Journal,2001,1(2):68-84.
    [181]Szargut J.. International progress in second law analysis [J]. Energy,1980,5(4-5):709-718.
    [182]Szargut J., Morris D. R., Steward F. R.. Exergy analysis of thermal, chemical, and metallurgical processes[M]. Stanford, CA, U.S.A.:Hemisphere Publishing Corporation, 1988.
    [183]Torio H., Angelotti A., Schmidt D.. Exergy analysis of renewable energy-based climatisation systems for buildings:A critical view [J]. Energy and Buildings,2009,41(3): 248-271.
    [184]Corrado A., Fiorini P., Sciubba E.. Environmental assessment and extended exergy analysis of a "zero CO2 emission", high-efficiency steam power plant [J]. Energy,2006,31(15): 3186-3198.
    [185]Chen G..Q., Chen B.. Extended-exergy analysis of the Chinese society [J]. Energy,2009, 34(9):1127-1144.
    [186]Sciubba E., Bastianoni S., Tiezzi E.. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy [J]. Journal of Environmental Management,2008,86(2):372-382
    [187]Becerra-Lopez H. R., Golding P.. Dynamic exergy analysis for capacity expansion of regional power-generation systems:Case study of far West Texas [J]. Energy,2007,32(11): 2167-2186.
    [188]Hepbasli A.. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future [J]. Renewable and Sustainable Energy Reviews.2008, 12(3):593-661.
    [189]Koroneos C., Spachos T., Moussiopoulos N.. Exergy analysis of renewable energy sources [J]. Renewable Energy,2003,28(2):295-310.
    [190]Dai J., Fath B., Chen B.. Constructing a network of the social-economic consumption system of China using extended exergy analysis [J]. Renewable and Sustainable Energy Reviews,2012,16(7):4796-4808.
    [191]Hetzer J., Yu D.C., Bhattarai K.. An economic dispatch model incorporating wind power [J]. IEEE Transactions on Energy Conversion,2003,23(2):603-611.
    [192]King D. L., Boyson W. E., Kratochvil, J. A.. Photovoltaic array performance model [R]. Sandia National Laboratories, Albuquerque, NM, USA,2004.
    [193]Deb K., Pratap A., Agarwal S., Meyarivan T.. A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197.
    [194]Baran M, Wu F. Network reconfiguration in distribution systems for loss reduction and load balancing [J]. IEEE Transactions on Power Delivery,1989,4(2):1401-1407.
    [195]Bernardon D.P., Garcia V.J., Ferreira A.S.Q., Canha L.N.. Multicriteria distribution network reconfiguration considering subtransmission analysis [J]. IEEE Transactions on Power Delivery,2010,25(4):2684-2691.
    [196]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化.2005,29(24):39-44.
    [197]Baker E.J.. Adaptive Selection Methods for Genetic Algorithms[C]. Proceedings of the 1st International Conference on Genetic Algorithms, Hillsdale,1985:101-111.
    [198]Kiureghian A.D., Liu P.L.. Structural reliability under incomplete probability information [J]. Journal of Engineering Mechanics,1986,112(1):85-104.
    [199]Liu P L, Kiureghian A.D.. Multivariate distribution models with prescribed marginals and covariances [J]. Probabilistic Engineering Mechanics,1986,1(2):105-112.
    [200]Li H. S., Lii Z.Z., Yuan X.K.. Nataf transformation based point estimate method [J]. Chinese Science Bulletin,2008,53(17):2586-2592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700