用户名: 密码: 验证码:
有机功能分子材料软X射线谱和拉曼光谱理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料、能源和信息技术已经成为现代工业的三大支柱产业。与我们的生活息息相关的材料是能源和信息技术发展的重要基础。作为材料家族的新成员,有机功能分子材料在很多应用方面变得越来越重要。而通过理论模型对有机功能分子材料进行设计和表征在拓展其应用方面扮演着重要角色。本论文主要对三种不同的有机功能分子材料,自组装单层膜、富勒烯衍生物和氧杂蒽衍生物进行了理论研究。
     X射线谱和拉曼光谱是研究物质电子结构和几何结构的非常重要的两种工具。软X射线谱是研究有机功能分子材料化学结构和电子结构的一种强有力的工具,其主要探测核电子对应的激发和退激发过程。X射线谱的理论计算可以用来对大型系统的光谱进行正确的谱线标定。拉曼光谱主要探测分子的振动能级信息,该技术已经成为鉴定分子结构和分子相互作用的有力手段。X射线谱和拉曼光谱这二者分别在不同的方面,通过不同的方式对分子的电子结构、几何结构进行表征。
     本论文中,我们利用第一性原理分别研究了氨基硫醇自组装单层膜和富勒烯衍生物聚合物太阳能电池受体材料的X射线谱,包括X射线光电子谱和近边X射线吸收精细结构谱。针对氧杂蒽衍生物染料罗丹明系列分子,我们主要应用第一性原理研究其拉曼光谱。本论文的具体研究内容和基本结果如下:
     1.氨基硫醇自组装单层膜中氮原子X射线谱的理论研究
     氨基硫醇自组装膜是一类性能优异的有机功能分子材料。实验中测量的该单层膜的X射线光电子谱和近边X射线吸收精细结构谱出现了某些未知谱峰,而该未知谱峰在解释方面仍然存在着困难。多年以来,很多研究组对很多可能的结构做了很多假设,但争论仍然存在。在本文的工作中,我们的理论计算结果显示,在X射线光电子谱中的特殊谱峰是由一个名为伯胺盐的新基团导致的,该基团是一种结构介于质子化和氢键之间的构型。我们的研究还发现,对于自组装单层膜来讲,X射线辐射损伤是较为常见的现象。其产物会导致近边X射线吸收精细结构谱中未知谱峰的出现。我们计算的光谱准确地再现了实验过程中观测到的谱线,并且对实验中观察到的未知的谱峰进行了标定,确定了样品的精确结构,解决了长期困扰实验工作者在测量氨基硫醇自组装单层膜X射线光电子谱和近边X射线吸收精细结构谱中的难题。
     2.聚合物太阳能电池受体材料中碳原子X射线谱的理论研究
     聚合物太阳能电池材料是近二十年来发展最迅速的有机功能分子材料之一,其优秀的物理和化学性质决定了该材料在未来能源发展方面的广阔前景。本部分研究工作的主旨在于测试理论计算的富勒烯衍生物太阳能电池受体材料的X射线光电子谱和近边X射线吸收精细结构谱的精确程度,同时对这些谱线进行正确的理论标定。我们研究了六种典型的聚合物太阳能电池受体材料,PCnBM (n=60,70,84)、ThC60BM、DPM和bisPC60BM,给出了其特定的结构与光谱之间的关系。计算得到的谱线可以完美地与实验谱线相吻合。同时,我们在传统的“积木原理”方法的基础上提出了一种“修正积木原理”方法。这种新的计算方法可以通过将组成整体系统的两部分组件的谱线线性叠加的方式获得系统总的谱线。在确保计算精度的前提下,“修正积木原理”方法在计算较大分子体系,特别是基于富勒烯的太阳能电池受体材料的近边X射线吸收精细结构谱方面节约了大量的计算资源。
     3.罗丹明系列分子拉曼光谱及溶剂效应对拉曼光谱影响的理论研究
     罗丹明系列分子是一类光谱性质非常优秀的染料分子材料,经常被用来研究表面增强拉曼光谱。然而有实验结果显示,罗丹明B分子在溶液中的拉曼光谱与其在衬底上的表面增强拉曼光谱有较大的不同,这对研究表面增强拉曼光谱是个非常不利的因素。在溶液中时,罗丹明类分子的阳离子和阴离子是分离的,我们的结果显示三种罗丹明类分子,罗丹明6G、罗丹明123和罗丹明B分子的阳离子计算得到的气相中的拉曼光谱与溶液中的实验谱线符合较好。我们同时研究了溶剂对其拉曼光谱的影响,并发现溶剂效应对拉曼光谱没有太大的影响。为了模拟罗丹明分子在衬底上被电负性粒子中和的情况,我们选用氯离子与罗丹明阳离子形成中性分子,另外,选取四个水分子放在中性分子周围来模拟溶剂环境来研究其拉曼光谱。计算结果显示中性分子的谱线与表面增强拉面光谱的谱线区别较大,我们认为正是由于罗丹明B分子的结构在衬底表面发生了较大的变化,从而导致其光谱的明显变化。
     本论文共由以下八章内容组成:第一章为综述部分,简要介绍了几种有机功能分子材料的研究进展,同时介绍了研究有机功能分子材料的光谱技术。第二章介绍了与本论文的研究工作密切相关的一些基本的量子化学理论,其中重点介绍了密度泛函理论。同时还介绍了研究分子体系性质的方法,主要是对能量导数求解的过程。第三章简要地介绍了软X射线谱,尤其是X射线光电子谱和近边X射线吸收精细结构谱的计算方法和理论。第四章简单地介绍了拉曼光谱理论,以及理论计算拉曼光谱的方法。第五章研究了氨基硫醇自组装单层膜的X射线谱,包括氢键效应以及辐射损伤对自组装膜X射线谱的影响。第六章讨论了聚合物有机太阳能电池受体材料的X射线谱的计算方法,提出了一种既节省资源又不失计算精度的近似方法。在第七章中,我们研究了罗丹明系列分子的拉曼光谱,分析了溶剂效应对拉曼光谱的影响,同时研究了罗丹明B分子在溶液中与衬底表面上拉曼光谱的不同。第八章对本文工作进行了全面总结,并对有机功能分子材料X射线谱和拉曼光谱的理论计算前景进行了展望。
Nowadays, material, energy and information technologies are three pillar industries. Thematerials that have close relation with our life have also been the foundation for thedevelopment of energy and information technologies. As the new member of the materialfamily, functional molecular materials have become increasingly important for manyapplications, for which the design and characterization by the theoretical modeling haveplayed the vital role. In this thesis, three different categories of organic functional molecularmaterials, the self-assembled monolayers (SAMs), the fullerene derivatives and thexanthene derivatives have been studied theoretically.
     X-ray spectroscopy and Raman spectroscopy technologies are two useful tools to studythe electronic and geometric structures of mater. Soft X-ray spectroscopy is a powerful toolfor studying the chemical and electronic structures of organic functional molecular materials,it is usually used to investigate the process of excitation and deexcitation. Theoreticalcalculations have been proven to be extremely useful for providing correct assignments forspectra of large systems. Raman spectroscopy is usually used to obtain the information ofvibraitional energy levels, and it has been the powerful tool to identify the molecularstructure and interaction between the molecules. These two tools characterize the electronicand geometric structures of molecule in different ways.
     In this thesis, by means of the first principle mehods, we studied X-ray spectroscopyincluding the X-ray photoelectron spectra (XPS) and near-edge X-ray absorption finestructure (NEXAFS) of aminothiolates SAMs and the fullerene derivatives. For thexanthene derivatives especially the Rhodamine family, we studied their Ramanspectroscopy by means of first principle mehods. Following is the brief content of thisthesis:
     Amine-terminated SAMs are one kind of versatile functional materials. However, theirexperimental XPS and NEXFAS spectra have long been known to be difficult to explain because of the appearance of unexpected spectral features. Different structures orhypotheses have been put forward over the years from different groups. In this study, wehave shown from theoretical calculations that the extra spectral peak in XPS spectra isresulted from new specie, named as primary ammonium that is in between protonated andhydrogen bonded structures. The X-ray damage is found to be quite common for SAMs andits products can lead to the extra spectral features in NEXFAS spectra. The possiblephoto-damaged products have been identified by comparing the experimental and calculatedspectra. This study resolves a long standing controversy on structure determination of thisuseful system that has extensive applications in biotechnology.
     The polymer solar cell acceptor (PSCA) molecule is one kind of organic functionalmolecular materials which have great development in the past two decades. The outstandingphysical and chemical properties bring them the wide application in terms of thedevelopment of energy. The basic idea of this study is to examine how accurate thetheoretical modeling can be for XPS and NEXAFS spectra of fullerene-based solar cellacceptors and to provide correct spectral assignments for these spectra. Six typicalmolecules,[6,6]-phenyl-Cn+1-butyric acid methylester (PCnBM)(n=60,70,84),[6,6]-thienyl-C61-butyric acid methyl ester (ThC60BM), bis(4-methoxyphenyl)-methano[60]-fullerene (DPM) and bis[6,6]-phenyl-C61-butyric acid methyl ester (bisPC60BM) have beencalculated, which reveal the specific structure-spectrum relationship. The calculated resultsare in perfect agreement with the available experimental spectra. On the foundation ofconventional building block (BB) approach, we have proposed a modified building block(MBB) approach to quickly resemble the total spectrum of the entire system by summing upthose from two small species. It will allow obtaining the NEXFAS spectra of the largenumber of fullerene-based solar cell acceptors available with very little computationaleffort.
     Rhodamine family is one kind of dye material with excellent properties of spectroscopy,which is often used to investigate the surface-enhanced Raman spectroscopy (SERS). Oneexperimental study shows that the Raman spectroscopy of Rhodamine B (RhB) molecule inaqueous solution is with much difference with the SERS spectrum on substrate, which is a disadvantage for studying SERS spectrum. In solution, the cation and anion of Rhodaminemolecules are separated, our result shows that the calculated Raman spectra of the cation ofRhodamine molecules, Rhodamine6G (R6G), Rhodamine123(Rh123) and Rhodamine Bin gas phase match the experimental spectrum in solution very well. We also studied thesolvent effect, but the solvent plays a dispensable role. For simulating the situation thatcation of Rhodamine B molecule is neutralized by any an electronegative paticle, thechlorine ion was used to form the neutral form of Rhodamine B molecule, as well as fourwater molecules to simulate the solvent. However, the Raman spectroscopy of neutral formalso has much difference with the SERS spectrum. It's guessed that the geometric structureof Rhodamine B molecule gets a great change, which caused the difference of Ramanspectroscopy.
     This thesis consists of eight chapters as follows: The first chapter introduces thedevelopment of three kinds of organic functional molecular materials, as well as thespectroscopy technologies for study them. The second chapter, we have briefly introducedthe fundamental theories of quantum chemistry theory which are relevant to this thesis,especially the density functional theory (DFT), as well as the methods to study theproperties of molecule. In chapter three, the basic theory of X-ray spectroscopy is shown,especially the methods to calculate the X-ray photoelectron spectroscopy and near edgeX-ray absorption fine structure specstroscopy. Chapter four is the brief introduction ofRaman spectroscopy and the computional method to calculate the Raman spectroscopy. Inchapter five, we researched the effects of protonation, hydrogen bonding, andphotodamaging on X-ray spectroscopy of the amine terminal group in aminothiolatemonolayers. In chapter six, we show the study of core excitations of fullerene-basedpolymer solar cell acceptors. Chapter seven is the study of of solvent effect on Ramanspectra of Rhodamine molecules. The last chapter draws a conclusion for the whole work ofthis thesis, and gives a prospect on the development of theoretical study for organicfunctional molecular materials' X-ray spectroscopy and Raman spectroscopy.
引文
[1] D. Wrobel, A. Dudkowiak, Mol. Cryst. Liq. Cryst.,2006,448,15.
    [2] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev.,2005,105,1103.
    [3] I. Ratera, J. Veciana, Chem. Soc. Rev.,2012,41,303.
    [4] A. Ulman, Chem. Rev.,1996,96,1533.
    [5] W. Bigelow, D. Pickett, Zisman, W. J. Colloid Sci.,1946,1,513.
    [6] R. Nuzzo, D. Allara, J. Am. Chem. Soc.,1983,105,4481.
    [7] R. K. Smith, P. A. Lewis, P. S. Weiss, Prog. Surf. Sci.,2004,75,1.
    [8] N. Graf, E. Yegen, T. Gross, A. Lippitz, W. Weigel, S. Krakert, A. Terfort, W. E.Unger, Surf. Sci.,2009,603,2849.
    [9] M. Kind, C. Woll, Prog. Surf. Sci.,2009,84,230.
    [10] X. Huang, H. Huang, N. Wu, R. Hu, T. Zhu, Z. Liu, Surf. Sci.,2000,459,183.
    [11] H. Klein, N. Battaglini, B. Bellini, P. Dumas, Mater. Sci. Eng. C,2002,19,279.
    [12] G. T. Hermanson, Bioconjugate Techniques,2nd revised ed. Academic Press(Elsevier), London,2008.
    [13] H. Hamoudi, F. Chesneau, C. Patze, M. Zharnikov, J. Phys. Chem. C,2011,115,534.
    [14] M.Huels, P. C. Dugal, L. Sanche, J. Chem. Phys.,2003,118,11168.
    [15] A. Shaporenko, M. Zharnikov, P. Feulner, D. Menzel, J. Phys.: Condens. Matter,2006,18, S1677.
    [16] M. Zharnikov, J. Electron. Spectrosc. Relat. Phenom.,2010,178,380.
    [17] K. Heister, M. Zharnikov, Grunze, M. Langmuir,2001,17,8.
    [18] H. Hamoudi, K. Doring, F. Chesneau, H. Lang, M. Zharnikov, J. Phys. Chem. C,2012,116,861.
    [19] D. Pacilé, M. Papagno, A. Fraile Rodríguez, M. Grioni, L. Papagno, Phys. Rev. Lett.,2008,101,066806.
    [20] H. K. Jeong, H. J. Noh, J. Y. Kim, L. Colakerol, P. A. Glans, M. H. Jin, K. E. Smith,Y. H. Lee, Phys. Rev. Lett.,2009,102,099701.
    [21] W. Hua, B. Gao, S. Li, H. gren, Y. Luo, Phys. Rev. B,2010,82,155433.
    [22] W. H. Zhang, V. Carravetta, Z. Y. Li, Y. Luo, J. L. Yang, J. Chem. Phys.,2009,131,244505.
    [23] P. M. Dietrich, N. Graf, T. Gross, A. Lippitz, S. Krakert, B. Schupbach, A. Terfort,W. E. S. Unger, Surf. Interface Anal.,2010,42,1184.
    [24] H. W. Kroto, J. R. Heath, S. C. O’brien, R. F. Curl, R. E. Smalley, Nature,1985,318,162.
    [25] http://nobelprize.org.
    [26] Q. Kong, J. Zhuang, X. Li, R. Cai, L. Zhao, S. Qian, Y. Li, Appl. Phys. A,2002,75,367.
    [27] A. W. Jensen, S. R. Wilson, D. I. Schuster, Bioorg. Med. Chem.,1996,4,767.
    [28] D. Chapin, C. Fuller, G. Pearson, J. Appl. Phys.,1954,25,676.
    [29] D. Wohrle, D. Meissner, Adv. Mater.,1991,3,129.
    [30] H. Kallmann, M. Pope, J. Chem. Phys.,1959,30,585.
    [31] C. W. Tang, Appl. Phys. Lett.,1986,48,183.
    [32] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science,1992,258,1474.
    [33] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science,1995,270,1789.
    [34] T. R. Andersen, T. T. Larsen-Olsen, B. Andreasen, A. P. L. Bottiger, J. E. Carl, M.Helgesen, E. Bundgaard, K. Norrman, J. W. Andreasen, M. J rgensen, F. C. Krebs,ACS Nano,2011,5,4188.
    [35] A. Anctil, C. W. Babbitt, R. P. Raffaelle, B. J. Landi, Environ. Sci. Technol.,2011,45,2353.
    [36] F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm, P. W. M. Blom, J.C. Hummelen, Chem. Mater.,2006,18,3068.
    [37] X. Wang, E. Perzon, J. L. Delgado, P. Cruz, F. Zhang, F. Langa, M. Andersson, O.Inganas, Appl. Phys. Lett.,2004,85,5081.
    [38] T. Sternfeld, C. Thilgen, R. E. Hoffman, M. R. C. Heras, F. Diederich, F. Wudl, L.T. Scott, J. Mack, M. Rabinovitz, J. Am. Chem. Soc.,2002,124,5734.
    [39] Y. He, Y. Li, Phys. Chem. Chem. Phys.,2011,13,1970.
    [40] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater.,2005,4,864.
    [41] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C.Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater.,2006,5,197.
    [42] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger,Science,2007,317,222.
    [43] Y. Li, Y. Zou, Adv. Mater.,2008,20,2952.
    [44] Y. He, H. Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc.,2010,132,1377.
    [45] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens,L. Sanchez, J. C. Hummelen, Adv. Funct. Mater.,2001,11,374.
    [46] Z. L. Guan, J. B. Kim, H. Wang, C. Jaye, D. A. Fischer, Y. L. Loo, A. Kahn, Org.Electron.,2010,11,1779.
    [47] B. Watts, S. Swaraj, D. Nordlund, J. Luning, H. Ade, J. Chem. Phys.,2011,134,024702.
    [48] P. F. Bazylewski, K. H. Kim, J. L. Forrest, H. Tada, D. H. Choi, G. S. Chang, Chem.Phys. Lett.,2011,508,90.
    [49] M. Fleischman, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett.,1974,26,163.
    [50] R. D. Combes, R. B. Haveland-Smith, Mutation Research,1982,98,101.
    [51]C. Fanga, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M.V. Garland, N. Balasubramanian, D. L. Kwong, Biosensors and Bioelectronics,2008,24,216.
    [52] D. Li, D. W. Li,Y. Li, J. S. Fosseyb and Y. T. Long, J. Mater. Chem.,2010,20,3688.
    [1] J. C. Slater, Phys. Rev.,1929,34,1293.
    [2] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Introduction to AdvancedElectronic Structure Theory, Dover Publications Inc.,2000.
    [3] J. A. Pople, Rev. Mod. Phys.,1999,71,1267.
    [4] W. Kutzelnigg, J. Mol. Struc. Theochem.,1988,181,33.
    [5] F. Jensen, Introduction to computational chemistry, John Wiley and Sons,2007.
    [6] G. D. Purvis, R. J. Bartlett, J. Chem. Phys.,1982,76,1910.
    [7] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett.,1989,157,479.
    [8] T. V. Voorhis, M. Head-Gordon, J. Chem. Phys.,2001,115,5033.
    [9] L. H. Thomas, Math. Proc. Cambridge Phil. Soc.,1927,23,542.
    [10] E. Fermi, Rend. Acad. Nat. Lincei,1927,6,602.
    [11] P. Hohenberg, W. Kohn, Phys. Rev.,1964,136, B864.
    [12]丁迅雷,金团簇上小分子吸附的第一性原理研究,安徽,中国科学技术大学,2004,
    [13] W. Kohn, L. J. Sham. Phys. Rev.,1965,140, A1133.
    [14]李宗良,分子功能器件的设计与性质研究,济南,山东师范大学,2007.
    [15]蔺丽丽,分子器件弹性和非弹性电子输运性质的理论研究,济南,山东师范大学,2011.
    [16]邹斌,分子器件非弹性电子隧穿谱的理论研究,济南,山东师范大学,2008.
    [17]李震宇,新材料物性的第一性原理研究,合肥,中国科技大学,2004.
    [18]谢希德,陆栋.固体能带理论,上海,复旦大学出版社,1998,8.
    [19]李正中,固体理论(第二版),北京,高等教育出版社,2002,334.
    [20] S. F. Boys, Proc. R. Soc., A.1950,200(1063),542.
    [21] C. C. J. Roothaan, Rev. Mod. Phys.,1951,23,69.
    [22] A. Szabo, N. S. Ostlund. Modern Quantum Chemistry, Introduction to AdvancedElectronic Structure Theory. Dover Publications,1996.
    [23] R. McWeeny, Methods of Molecular Quantum Mechanics., Academic Press Inc,1989,2nd edn.
    [24] T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley,2000.
    [25] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory,Wiley-VCH Verlag GmbH,2001,2nd edn.
    [26] I. N. Levine, Quantum Chemistry, Prentice Hall,1999,5th edn.
    [27] P. Pulay, Mol. Phys.,1969.17,197.
    [28] P. Pulay, Mol. Phys.,1970.18,473.
    [29] J. Gerratt, I. M. Mills, J. Chem. Phys.,1968.49,1791.
    [30] R. Fournier, J. Chem. Phys.,1990.100,5422.
    [31] J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quantum Chem.,1979.Suppl. S-13,225.
    [32] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules. OxfordUniversity Press, USA,1994.
    [33] R. Fournier, J. Andzelm, D. R. Salahub, J. Chem. Phys.,1989.90,6371.
    [34] B. G. Johnson, M. J. Fisch, J. Chem. Phys.,1994.100,7429.
    [35] P. Saxe, Y. Yamaguchi, H. F. Schaefer III, J. Chem. Phys.,1982.77,5647.
    [36] J. Almlof, P. R. Taylor, Int. J. Quantum Chem.,1985.27,743.
    [37] B. D’Acunto. Computational Methods For PDE In Mechanics (Series on Advancesin Mathematics for Applied Sciences) Chapter Finite differences. World ScientificPublishing Company,2004.
    [1] J. Stohr, NEXAFS Spectroscopy Springer Verlag: Berlin, Heidelberg, New York,1992.
    [2] J. J. Sakurai, Modern Quantum Mechanics Addison-Wesley Publishing Company,1999.
    [3] S. Svanberg, Atomic and molecular spectroscopy: basic aspects and practicalapplications, fourth edition Springer-Verlag: Berlin, Heidelberg,2004.
    [4] U. von Barth, G. Grossman, Solid State Commun.,1979,32,645.
    [5] U. von Barth, G. Grossmann, Phys. Rev. B,1982,25,5150.
    [6] Privalov, T. F. Gel'mukhanov, H. gren, Phys. Rev. B,2001,64,165115.
    [7] T. Privalov, F. Gel'mukhanov, H. gren, Phys. Rev. B,2001,64,165116.
    [8] J. C. Slater, Quantum theory of Molecules and Solids Mc Graw Hill, USA,1974.
    [9] H. gren, V. Carravetta, O. Vahtras, L. G. M. Pettersson, Chem. Phys. Lett.,1994,222,75.
    [10] H. gren, V. Carravetta, L. G. M. Pettersson, O. Vahtras, Physica B,1995,208,477.
    [11] W. Kutzelnigg, U. Fleischer, M. Schindler, NMR Basic Principles and ProgressSpringer Verlag, Heidelberg,1990, Vol23, p165.
    [12] K. Hermann, et al., STOBE-DEMON, version3.0.2007.
    [13] D. Prendergast, G. Galli, Phys. Rev. Lett.,2006,96,215502.
    [14] C. P. Schwartz, J. S. Uejio, A. M. Dun, A. H. England, D. N. Kelly, D. Prendergast,R. J. Saykally, Proc. Natl. Acad. Sci. U.S.A.,2010,107,14008.
    [15] J. S. Uejio, C. P. Schwartz, R. J. Saykally, D. Prendergast, Chem. Phys. Lett.,2008,467,195.
    [16] C. P. Schwartz, J. S. Uejio, R. J. Saykally, D. Prendergast, J. Chem. Phys.,2009,130,184109.
    [17] O. Plashkevych, T. Privalov, H. gren, V. Carravetta, K. Ruud, Chem. Phys.,2000,260,11.
    [18] B. Brena, Y. Luo, M. Nyberg, S. Carniato, K. Nilson, Y. Alfredsson, J. Ahlund, N.Martensson, H. Siegbahn, C. Puglia, Phys. Rev. B,2004,70,195214.
    [19] W. Hua, H. Yamane, B. Gao, J. Jiang, S. Li, H. S. Kato, M. Kawai, T. Hatsui, Y.Luo, N. Kosugi, H. gren, J. Phys. Chem. B,2010,114,7016.
    [20] M. Nyberg, Y. Luo, L. Triguero, L. G. M. Pettersson, H. gren, Phys. Rev. B,1999,60,7956.
    [21] B. Gao, Z. Y. Wu, H. gren, Y. Luo, J. Chem. Phys.,2009,131,034704.
    [22] W. Hua, B. Gao, S. Li, H. gren, Y. Luo, Phys. Rev. B,2010,82,155433.
    [23] B. Gao, J. Jiang, K. Liu, Y. Luo, BIONANO-LEGO, version2.0. Royal Institute ofTechnology: Sweden,2008.
    [24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E.Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.Fox,2009, Gaussian09, Revision A.02.
    [25] L. Triguero, L. G. M. Pettersson, H. gren, Phys. Rev. B,1998,58,8097.
    [26] J. C. Slater, Adv. Quant. Chem.,1972,6,1.
    [27] J. C. Slater, K. H. Johnsson, Phys. Rev. B,1972,5,844.
    [28] M. Leetmaa, M. P. Ljungberg, A. Lyubartsev, A. Nilsson, L. G. M. Pettersson, J.Electron Spectrosc. Relat. Phenom.,2010,177,135.
    [29] A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys Rev. B,1998,58,7565.
    [30] A. L. Ankudinov, J. J. Rehr, Phys Rev. B,2000,62,2437.
    [31] P. W. Langho, In Electron Molecule and Photon Molecule Collisions Rescigno, Eds.Plenum: New York,1979p183.
    [32] http://nobelprize.org.
    [1] A. Smekal, Naturwissenschaften,1923,43,873.
    [2] C.V. Raman, K.S. Krishnan, Nature,1928,121,501.
    [3] M. Di Ventra, S. T. Pantelides, N. D. Lang, Phys. Rev. Lett.,2000,84,979.
    [4] D. A. Long. The Raman Effect: A Unified Treatment of the Theory of RamanScattering by Molecules, John Wiley&Sons Ltd,2002
    [5] J. Neugebauer, M. Reiher, C. Kind, B. A. Hess, J. Comput. Chem.,2002,23(9),895.
    [6] W. Koch, M. C. Holthausen. A Chemist’s Guide to Density Functional Theory,Wiley-VCH Verlag GmbH,2001,2nd edn.
    [7] I. N. Levine, Quantum Chemistry, Prentice Hall,1999,5th edn.
    [8] D. J. Griffiths, Introduction to Electrodynamics, Benjamin Cummings,1999,3rd edn.
    [9] E. B. Wilson Jr., J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory ofInfrared and Raman Vibrational Spectra, Dover Publications,1980
    [10] S. Califano. Vibrational States. John Wiley&Sons Ltd,1976
    [1] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G.M. Whitesides, Chem. Rev.,2005,105,1103.
    [2] M. Kind, C. Woll, Prog. Surf. Sci.,2009,84,23.
    [3] H. Zhu, M. Snyder, Curr. Opin. Chem. Biol.,2003,7,55.
    [4] M. Dhayal, D. M. Ratner, Langmuir,2009,25,2181.
    [5] G. T. Hermanson, Bioconjugate Techniques,2nd revised ed. Academic Press(Elsevier): London,2008.
    [6] J. Stohr, NEXAFS Spectroscopy, Springer Verlag: Berlin,Heidelberg, New York,1992.
    [7] P. M. Dietrich, N. Graf, T. Gross, A. Lippitz, S. Krakert, B. Schupbach, A. Terfort,W. E. S. Unger, Surf. Interface Anal.,2010,42,1184.
    [8] J. E. Baio, T. Weidner, J. Brison, D. J. Graham, L. J. Gamble, D. G. Castner, J.Electron Spectrosc. Relat. Phenom.,2009,172,2.
    [9] K. Ozawa, T. Hasegawa, K. Edamoto, K. Takahashi, M. J. Kamada, Phys. Chem. B,2002,106,9380.
    [10] Y. Zubavichus, M. Zharnikov, A. Schaporenko, M. J. Grunze, Electron Spectrosc.Relat. Phenom.,2004,134,25.
    [11] N. Graf, E. Yegen, T. Gross, A. Lippitz, W. Weigel, S. Krakert, A. Terfort, W. E. S.Unger, Surf. Sci.,2009,603,2849.
    [12] S. Rangan, F. Bournel, J. J. Gallet, S. Kubsky, K. L. Guen, G. Dufour, F. Rochet, F.Sirotti, G. Piaszenski, R. Funke, M. Kneppe, U. Kohler, J Phys. Chem. B,2005,109,12899.
    [13] A. G. Shard, J. D. Whittle, A. J. Beck, P. N. Brookes, N. A. Bullett, R. A. Talib, A.Mistry, D. Barton, S. L. McArthur, J. Phys. Chem. B,2004,108,12472.
    [14] P. M. Dietrich, N. Graf, T. Gross, A. Lippitz, B. Schüpbach, A. Bashir, C. Woll, A.Terfort, W. E. S. Unger, Langmuir,2010,26,3949.
    [15] A. A. Pavlychev, K. H. Hallmeier, C. Hennig, L. Hennig, Chem. Phys.,1995,201,547.
    [16] M. Magnuson, J. H. Guo, S. M. Butorin, A. Agui, C. Sathe, J. Nordgren, A. P.Monkman, J. Chem. Phys.,1999,111,4756.
    [17] D. Zerulla, T. Chasse, Langmuir,1999,15,5285.
    [18] H. Hamoudi, F. Chesneau, C. Patze, M. Zharnikov, J. Phys. Chem. C,2011,115,534.
    [19] L. G. M. Pettersson, H. gren, B. L. Schurmann, A. Lippitz, W. E. S. Unger, Int. J.Quantum Chem.,1997,63,749.
    [20] M. Nyberg, Y. Luo, L. Triguero, L. G. M. Pettersson, H. gren, Phys. Rev. B,1999,60,7956.
    [21] B. Brena, Y. Luo, M. Nyberg, S. Carniato, K. Nilson, Y. Alfredsson, J. Ahlund, N.Martensson, H. Siegbahn, C. Puglia, Phys. Rev. B,2004,70,195214.
    [22] W. Hua, H. Yamane, B. Gao, J. Jiang, S. Li, H. S. Kato, M. Kawai, T. Hatsui, Y.Luo, N. Kosugi, H. gren, Phys. Chem. B,2010,114,7016.
    [23] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B,1988,37,785.
    [24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E.Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J.Fox,2009, Gaussian09, Revision A.02.
    [25] K. Hermann, et al., StoBe-deMon, Version3.0StoBe Software: Stockholm, Sweden,2007.
    [26] L. Triguero, O. Plashkevych, L. G. M. Pettersson, H. gren, J. Electron Spectrosc.Relat. Phenom.,1999,104,195.
    [27] P. S. Bagus, Phys. Rev.,1965,139, A619.
    [28] A. D. Becke, Phys. Rev. A,1988,38,3098.
    [29] J. P. Perdew, Phys. Rev. B,1986,33,8822.
    [30] W. Kutzelnigg, U. Fleischer, M. Schindler, NMR Basic Principles and Progress,Springer Verlag: Heidelberg,1990, Vol23.
    [31] D. Nolting, E. F. Aziz, N. Ottosson, M. Faubel, I. V. Hertel, B. Winter, J. Am.Chem. Soc.,2007,129,14068.
    [32] B. D. Ratner, D. G. Castner, Biomaterials1990,11,143.
    [1] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J.Heeger, Science,1995,270,1789.
    [2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. E mery, Y. Yang, Nat. Mater.,2005,4,864.
    [3] Y. Kim, Nat. Mater.,2006,5,197.
    [4] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger,Science,2007,317,222.
    [5] Y. Li, Y. Zou, Adv. Mater.,2008,20,2952.
    [6] Y. He, H. Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc.,2010,132,1377.
    [7] Y. He, Y. Li, Phys. Chem. Chem. Phys.,2011,13,1970.
    [8] G. Chidichimo, L. Filippelli, Int. J. Photoenergy,2010,2010,123534.
    [9] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev.,2009,109,5868.
    [10] G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater.,2009,21,1323.
    [11] J. St hr, NEXAFS Spectroscopy, Springer Verlag: Berlin,1992.
    [12] Z. L. Guan, J. B. Kim, H. Wang, C. Jaye, D. A. Fischer, Y. L. Loo, A. Kahn, Org.Electron.,2010,11,1779.
    [13] B. Watts, S. Swaraj, D. Nordlund, J. Luning, H. Ade, J. Chem.Phys.,2011,134,024702.
    [14] P. F. Bazylewski, K. H. Kim, J. L. Forrest, H. Tada, D. H. Choi, G. S. Chang, Chem.Phys. Lett.,2011,508,90.
    [15] Y. Luo, H. gren, F. Gel’mukhanov, J. Guo, P. Skytt, N. Wassdahl, J. Nordgren,Phys. Rev. B,1995,52,14479.
    [16] J. Guo, P. Skytt, N. Wassdahl, J. Nordgren, Y. Luo, O. Vahtras, H. gren, Chem.Phys. Lett.,1995,235,152.
    [17] M. Nyberg, Y. Luo, L. Triguero, L. Pettersson, H. gren, Phys. Rev. B,1999,60,7956.
    [18] B. Gao, L. Liu, C. Wang, Z. Wu, Y. Luo, J. Chem. Phys.,2007,127,164314.
    [19] T. Zhao, B. Gao, L. Liu, Q. Ye, W. S. Chu, Z. Y.Wu, Chin. Phys. C,2009,33,954.
    [20] J. Qi, W. Hua, B. Gao, Chem. Phys. Lett.,2012,539,222.
    [21] B. Brena, Y. Luo, J. Chem. Phys.,2003,119,7139.
    [22] L. Liu, B. Gao, W. Chu, D. Chen, T. Hu, C. Wang, L. Dunsch, A. Marcelli, Y. Luo, Z.Wu, Chem. Commun.,2008,4,474.
    [23] W. Hua, B. Gao, S. Li, H. gren, Y. Luo, Phys. Rev. B,2010,82,155433.
    [24] B. Gao, Z. Y. Wu, H. gren, Y. Luo, J. Chem. Phys.,2009,131,034704.
    [25] A. P. Hitchcock, M. Tronc, A. Modelli, J. Phys. Chem.,1989,93,3068.
    [26] J. L. Jordan-Sweet, C. A. Kovac, M. J. Goldberg, J. F. Morar, J. Chem. Phys.,1988,89,2482.
    [27] L. G. M. Pettersson, H. gren, B. L. Schurmann, A. Lippitz, W. E. S. Unger, Int. J.Quantum Chem.,1997,63,749.
    [28] O. Plashkevych, L. Yang, O. Vahtras, H. gren, L. G. Petterson, Chem. Phys.,1997,222,125.
    [29] W. Hua, H. Yamane, B. Gao, J. Jiang, S. Li, H. S. Kato, M. Kawai, T. Hatsui, Y. Luo,N. Kosugi, J. Phys. Chem. B,2010,114,7016.
    [30] C. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B,1988,37,785.
    [31] M. J. Frisch, et al., Gaussian09, revision A.02Gaussian Inc.: Wallingford, CT,2009.
    [32] K. Hermann, L. G. M. Pettersson, M. E. Casida, C. Daul, A. Goursot, A. Koester, E.Proynov, A. St-Amant, D. R. Salahub, StoBe-deMon version3.0StoBe Software:Stockholm, Sweden,2007.
    [33] W. Hua, B. Gao, Y. Luo, Prog. Chem.,2012,24,964.
    [34] W. Hua, B. Gao, S. Li, H. gren, Y. Luo, J. Phys. Chem. B,2010,114,13214.
    [35] W. Hua, Y. J. Ai, B. Gao, H. Li, H. gren, Y. Luo, Phys. Chem. Chem. Phys.,2012,14,9666.
    [36] A. D. Becke, Phys. Rev. A,1988,38,3098.
    [37] J. P. Perdew, Phys. Rev. B,1986,33,8822.
    [38] O. Takahashi, L. G. M. Pettersson, J. Chem. Phys.,2004,121,10339.
    [39] W. Hua, Ph.D. Dissertation, Structure and spectroscopy of bioand nano-materialsfrom first-principles simulations. Royal Institute of Technology, Stockholm,2011,38.
    [40] H. Li, W. Hua, Z. Lin, Y. Luo, J. Phys. Chem. B,2012,116,12641.
    [41] W. Zhang, V. Carravetta, O. Plekan, V. Feyer, R. Richter, M. Coreno, K. C. Prince, J.Chem. Phys.,2009,131,035103.
    [42] X. Song, Y. Ma, C. Wang, P. M. Dietrich, W. E. S. Unger, Y. Luo, J. Phys. Chem. C,2012,116,12649.
    [43] D. P. Chong, P. Aplincourt, C. Bureau, J. Phys. Chem. A,2002,106,356.
    [44] C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen, R. J. Saykally, J. Phys. Chem.A,2007,111,4776.
    [45] W. Kutzelnigg, U. Fleischer, M. Schindler, NMR Basic Principles and ProgressSpringer Verlag: Heidelberg,1990Vol.23.
    [46] L. Triguero, L. G. M. Pettersson, H. gren, Phys. Rev. B,1998,58,8097.
    [47] L. Triguero, O. Plashkevych, L. G. M. Pettersson, H. gren, J. Electron Spectrosc.Relat. Phenom.,1999,104,195.
    [48] P. S. Bagus, Phys. Rev.,1965,139,619.
    [49] P. W. Langhoff, In Electron Molecule and Photon Molecule Collisions, Rescigno, T.N., McKoy, B. V., Schneider, B., Eds. Plenum: New York,1979, p183.
    [50] P. W. Langhoff, C. T. Corcoran, J. Chem. Phys.,1974,61,146.
    [51] P. W. Langhoff, C. T. Corcoran, J. S. Sims, F. Weinhold, R. M. Glover, Phys. Rev. A,1976,14,402.
    [52] S. Hagstrom, C. Nording, K. Sieghbahn, Phys. Lett.,1964,9,235.
    [53] W. Hua, L. Xu, Y. Luo, S. Li, ChemPhysChem,2011,12,1325.
    [1] M. Beija, C. A. M. Afonso, J. M. G. Martinho, Chem. Soc. Rev.,2009,38,2410.
    [2] C. Yu, J. Zhang, R. Wang, L. Chen, Org. Biomol. Chem.,2010,8,5277.
    [3] Y. Gong, X. Zhang, Z. Chen, Y. Yuan, Z. Jin, L. Mei, J. Zhang, W. Tan, G. Shen, R.Yu, Analyst,2012,137,932.
    [4] W. Lin, X. Cao, Y. Ding, L. Yuan, L. Long, Chem. Commun.,2010,46,3529.
    [5] J. Mao, Q. He, W. Liu, Talanta,2010,80,2093.
    [6] C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V.Garland, N. Balasubramanian, D. L. Kwong, Biosens.&Bioelectron.,2008,24,216.
    [7] J. Sarkar, J. Chowdhury, P. Pal, G. Talapatra, Vib. Spectrosc.,2006,41,90.
    [8] A. F. McCabe, D. Graham, D. McKeown, W. E. Smith, J. Raman. Spectrosc.,2005,36,45.
    [9] J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C.Schatz, R. P. Van Duyne, J. Am. Chem. Soc.,2009,131,849.
    [10] X. Xiao, J. Nogan, T. Beechem, G. A. Montano, C. M. Washburn, J. Wang, S. M.Brozik, D. R. Wheeler, D. B. Burckel, R. Polsky, Chem. Commun.,2011,47,9858.
    [11] J. Huang, K. H. Kim, N. Choi, H. Chon, S. Lee, J. Choo, Langmuir,2011,27,10228.
    [12] E. S. Thrall, A. C. Crowther, Z. Yu, L. E. Brus, Nano Lett.,2012,12,1571.
    [13] A. K. Tyagi, J. Ramkumar, O. D. Jayakumar, Analyst,2012,137,760.
    [14] H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, J. Yoon, Chem. Soc. Rev.,2008,37,1465.
    [15] X. Qian, Y. Xiao, Y. Xu, X. Guo, J. Qian, W. Zhu, Chem. Commun.,2010,46,6418.
    [16] A. J.Weerasinghe, C. Schmiesing, S. Varaganti, G. Ramakrishna, E. Sinn, J. Phys.Chem. B,2010,114,9413.
    [17] A. Kudelski, Chem. Phys. Lett.,2005,414,271.
    [18] J. Chen, T. M_artensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuelson, H. Xu,Nanotechnology,2008,19,275712.
    [19] C. B. Milojevich, D. W. Silverstein, L. Jensen, J. P. Camden, J. Phys. Chem. C,117,3046.
    [20] B. N. Khlebtsov, V. A. Khanadeev, M. Y. Tsvetkov, V. N. Bagratashvili, N. G.Khlebtsov, J. Phys. Chem. C,2013,117,23162.
    [21] X. Kong, Q. Chen, Z. Sun, Chem. Phys. Lett.,2013,564,54.
    [22] G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K.Singh, J. Gracio, Chem. Mater.,2009,21,4796.
    [23] X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z.Liu, Nano Lett.,2010,10,553.
    [24] X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, J. Hou, ACS nano,2011,5,952.
    [25] D. Li, D. W. Li, Y. Li, J. S. Fossey, Y. T. Long, J. Mater. Chem.,2010,20,3688.
    [26] I. Arbeloa, K. Rohatgi-Mukherjee, Chem. Phys. Lett.,1986,128,474.
    [27] P. Chandra Jha, Y. Wang, H. gren, ChemPhysChem,2008,9,111.
    [28] H. Watanabe, N. Hayazawa, Y. Inouye, S. Kawata, J. Phys. Chem. B,2005,109,5012.
    [29] D. Setiawan, A. Kazaryan, M. A. Martoprawiro, and M. Filatov, Phys. Chem. Chem.Phys.,2010,12,11238.
    [30] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev.,2005,105,2999.
    [31] A. D. Becke, Phys. Rev. A,1988,38,3098.
    [32] J. P. Perdew, Phys. Rev. B,1986,33,8822.
    [33] M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys.,1984,80,3265.
    [34] M. Reiher, J. Neugebauer, B. A. Hess, Z. Phys. Chem,2003,217,91.
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E.Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J.Fox,2009, Gaussian09, Revision A.02.
    [36] L. Jensen, G. C. Schatz, J. Phys. Chem., A,2006,110,5973.
    [37] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B,1988,37,785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700