用户名: 密码: 验证码:
一、DEHP对大鼠前列腺影响的实验研究 二、电阻抗成像系统监护小猪腹膜后出血的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     环境内分泌干扰物是指一些可能影响负责机体自稳、生殖和/或行为的天然激素的合成、分泌、转运、结合、作用或消除的外源性物质,具有亲脂性、不易降解、残留期长等特点,其对人类生殖健康的危害是当前人们关注的一个焦点。其中邻苯二甲酸二异辛酯,又名邻苯二甲酸二(2-乙基)己酯[Di-(2-ethylhexyl)phthalate(DEHP)],作为一种常用的塑料制品增塑剂,因其具有内分泌活性,已造成了全球性的严重污染,尤其对于男性生殖系统的影响最为显著,其对前列腺的生长、发育、分化及成年后前列腺疾病的发生有重大影响。本实验就DEHP对大鼠前列腺的影响进行初步探讨。
     研究方法:
     将SD大鼠随机分为4组,每组8只,(1个空白对照组和3个DEHP染毒组)。染毒组分别用DEHP浓度为50mg/(kg.d)、200mg/(kg.d)、500mg/(kg.d)。从5周龄开始,每天定时腹腔注射染毒8周。空白组、染毒组都自由进食、进水。于14周龄时处死大鼠,剖腹仔细分离后摘除前列腺,将剥离干净的前列腺置容积测量仪中,测量其体积(cm3);取出前列腺置滤纸上,吸干水后用电子天平称其湿质量(mg),并计算前列腺指数。前列腺指数=[前列腺湿质量(g)/大鼠体质量(g)]×100%。取相同部位前列腺组织,4%多聚甲醛溶液固定48h,逐级乙醇脱水、浸蜡,石蜡包埋,切片,片厚4μm,常规苏木精-伊红染色,在光学显微镜下观察前列腺组织结构的变化。采用SPSS12.0医学统计软件进行数据分析,各组间多组均数比较采用单因素方差分析,并作样本均数两两比较的q检验。
     研究结果:
     前列腺重量、体积及指数的测定染毒组大鼠前列腺重量、体积、前列腺指数均明显高于阴性对照组(P<0.05),并呈现一定的剂量相关性。镜下见正常对照组腺体排列清楚,腺腔无扩张,腺上皮单层柱状,可见少许基底细胞及明显基膜,腺体间可见较明显的间质。模型组腺体排列密集,部分腺腔扩张、变大,可见较多基底细胞,间质增多,尤以平滑肌增多明显,小血管扩张充血。符合前列腺增生的表现。
     研究结论:
     尽管前列腺增生发生的机制至今仍不完全清楚,但近年来的研究普遍认为,雌雄激素的比例失调是导致前列腺增生的主要原因之一。前列腺是人体最大的性腺附属器官,它的生长、发育、分化受雌雄激素的调节,在老年男性,随着年龄的增加,睾丸功能减退,体内雄激素水平下降,雌/雄激素比例失调,雌激素水平相对升高,从而导致前列腺增生。DEHP是一种环境内分泌干扰物,许多学者认为其对动物雌激素呈显著干扰效应,能够模拟雌激素的生理功能,与内源性雌激素竞争性结合血浆性激素结合蛋白,使之脱离血浆结合蛋白,引起内源性雌激素生物利用度增高,作用增强,从而干扰内分泌系统,使雌雄激素比例失调。因此我们推测,DEHP的摄入所引起的体内雌雄激素比例失调可能是其诱导前列腺增生的原因,其具体机制仍需进一步探讨。
     研究背景:
     战伤、车祸伤、手术或其他原因导致的腹膜后出血是常见的临床急症。因腹膜后间隙巨大且位置较深,可容纳大量的出血,故临床表现错综复杂,容易漏误诊,如诊疗不及时,可引起严重的后果或并发症,甚至死亡。但因腹膜后位置较深,临床症状不典型,一般的查体不易发现,因而易导致误诊及延误病情治疗。目前,对于创伤导致的腹膜后出血临床常用的检查和诊断方法有CT、B超、MRI等。但是,这些仪器均只能采集患者某一时间点的出血情况,诊断出血,而不能对患者的出血情况进行实时监控,对于疾病的转归、发展不能做的连续性监护。而且设备昂贵,不能行床旁检查,对于危重患者及不宜搬动的患者进行检查较困难,且风险较大。因此,临床上迫切需要一种便携、快速、廉价而且可以持续监测患者出血情况的仪器。目前,利用电阻抗成像技术(EIT)来监测出血是近年来才发展起来的一个新的监护手段。
     EIT的实现基础是生物体内细胞膜具有低的漏电特性的绝缘膜,不同组织、甚至同种组织的不同状态所表现的阻抗值都不同,因此,以生物体内电阻抗分布或变化为成像对象成为可能。EIT是一种非侵入式的医学成像方法。通过对成像目标周围的电极注入交变电流,并同步测量边界电压,来获得目标内部导电参数的分布,利用图像重构算法对相敏解调技术得到的变换阻抗数据进行重构,形成阻抗断层图像。因为同种组织的不同状态其阻抗值也不同,所以,利用EIT设备监测组织阻抗的变化就可以了解组织的生理或病理状态,如心博量、创伤、出血、肿瘤等等。且该设备具有非侵入性,无辐射,造价低廉,适用于对患者进行长期监护,而这些特性恰恰是目前多数临床成像手段难以达到的。
     研究方法:
     本研究利用EIT技术,对腹膜后出血变化状况进行仿真研究,通过建立两种不同的模型,即腹膜后注血模型和出血模型,对EIT监测腹膜后损伤的可靠性进行研究,旨在揭示小猪腹膜后出血情况与EIT图像之间的关联,为腹膜后出血诊断新方法的研究及应用于腹膜后出血的临床诊断提供实验基础。①使用B超引导穿刺置管至小猪腹膜后间隙,通过电子输液泵将同种异体抗凝血液按一定速度注入小猪腹膜后,同时使用EIT监测腹膜后注血情况,并行CT及解剖验证,以了解注血量与注血速度与EIT图像的关联;②使用B超引导穿刺小猪肾脏,同时将小猪全身肝素化,使用EIT监测腹膜后出血情况,并行CT及解剖验证,以了解出血量与EIT图像之间的关联。
     研究结果:
     1.注血组5头小猪在实验结束时均存活,小猪麻醉平稳,行CT扫描验证。结果发现小猪右侧腹膜后可见注血导管影及腹膜后血肿,位置局限。腹腔内脏器结构完整,未见腹腔内出血或积液。解剖发现5头小猪后腹膜均完整,未损伤,腹腔内未见血液。右侧腹膜后可见一处巨大血肿。打开后腹膜可见注血导管位于肾脏与腰大肌之间,肾脏、腰大肌与腹膜后大血管未见损伤。
     2.注血组实验开始时,EIT系统图像灰度均匀,随着小猪腹膜后注血量的增加,EIT图像的灰度都有明显的变化,图像上可见逐渐阻抗减小的区域,且与注血部位吻合。在每次更换注射器之间5-10分钟采集的图像稳定。
     3.出血组5头小猪在经肾脏穿刺后3小时均存活,实验后行CT及解剖发现5头小猪后腹膜均完整,未损伤,腹腔内未见血液。右侧腹膜后均有大量积血,积血量分别在100ml~180ml之间,出血率达100%。经统计计算,用此模型建造的出血量均数的95%可信区间为135.59ml±11.69ml。检查腹腔其他脏器及大血管,均未见损伤。实验结果表明,该小猪腹膜后出血模型的建立是成功的。
     4.出血组实验开始时,EIT系统图像灰度均匀,随着小猪监护时间的延长,EIT图像随着时间的变化EIT图像上可见逐渐阻抗减小的区域,图像灰度值不断变小,且与通过CT及解剖证实的右侧腹膜后出血部位吻合。
     结论:
     1.腹膜后注血模型穿刺位置一致,模型与真实的腹膜后出血类似;因采取定时、定量注血,可得到精确的图像变化与注血量的关系;模型穿刺位点恒定,注血速度、注血量可以量化控制,故实验的控制性和重复性较好;腹膜后出血模型具有穿刺位点恒定,定位精确,造成的肾脏出血可靠,与真实的腹膜后出血类似,实验的控制性和重复性好等优势。实验设备简单,可靠性高。实验结果表明,用这两种方法建立的动物模型是成功的,可满足无创性腹腔出血诊断方法研究的需要。
     2.电阻抗成像系统能够准确地反映出腹膜后阻抗变化的情况,并能测出阻抗变化区域,系统成像清楚,出血与未出血图像比较反差大,图像对比度明显,并随出血量的增多图像灰度反差增大。且该设备简单,可靠性高,具有非侵入性,无辐射,造价低廉的特点,适用于进行长期监护。
The Endocrine disrupting chemicals (EDCs)are exogenous material which candisturb hormone synthesis, secretion, transport and effect. They are lipophilicify andhard to degradation. It can damage human’s reproduction. The Di-(2-ethylhexyl)phthalate (DEHP)is a kind of plasticizer that has hormone activity has made severepollution all over the world. DEHP can disturb male’s reproductive ability specificallyand it can influence prostate grown, development, differentiation and cause prostatediseases. So we designed this experiment to research the relationship between DEHPand prostate.
     Thirty-three SD rats were divided into four groups randomly : normal controlgroup , low dose DEHP group [50 mg/(kg·d)] , middle dose DEHP group[(200mg/(kg·d)], and high dose DEHP group [500 mg/(kg·d)]. Different dosages of DEHPwere administered to SD rats with injection of abdominal cavity from the fifth weeksafter birth to thirteen weeks . After the rats were killed , the prostate was dissected andweighted , the prostate volume was measured and the prostate index was calculated.Prostatic tissues were stained by hemoloxylin, eosin and immunohistochemistry, thenmorphological changes of prostate tissues were observed by light microscope.
     In comparison with normal group , prostatic volumes and weight as well as theprostate index were significantly increased ( P < 0. 05) with glands expanded andinterstitial tissues increased, and the degree of prostatic hyperplasia show a positivecorrelation with the dose of DEHP. Exposure to DEHP on male rat during the period ofadolescent age may induce prostate hyperplasia which manifests enlargement ofglandular lumen accompanied by hyperplasia of interstitial tissues.
     The prostate is biggest sex gland organ and it is controlled by sex hormone. TheDEHP is a kind of EDCs, so it disturb the normal sex hormone’s function. So we thinkthe DEHP can lead prostate hyperplasia, but the mechanisms we need to investigatefurther.
     Retroperitoneal bleeding is very common in clinic. Because of the space ofretroperitoneal is very huge and deep, it can contain many blood, so clinicalmanifestation is very complicated. It can induce very severe consequences andcomplications, even death. But the diagnostic methods of retroperitoneal bleedinginclude CT, ultrasound, MRI etc. But all of those methods can’t monitor the patients’real time bleeding, they can’t be used at bedside. It’s very high risks for the patients whocan’t move. So we need a equipment that can continue monitoring the bleeding. Now,the electrical impendence tomography (EIT) is a new tool to monitor bleeding.
     The EIT base on the cellular membrane is a kind of insulation membrane that havevery low electrical leakage character. Different tissues, even different condition of sametissues have different electrical impedances. So we can use this character to make thetomography to monitor the bleeding. This equipment is non-invasive, it can monitor theelectrical impedances of tissues that we can know the physiological functions andpathological conditions of tissues. This equipment is suitable, no radiation, non-invasiveand can get the bleeding message real time, all of those characters are very difficult for most medical equipments.
     We use the EIT technology to monitor retroperitoneal bleeding and we use twodifferent models, the retroperitoneal inject blood model and retroperitoneal bleedingmodel. We want to reveal the relationship between retroperitoneal bleeding and EIT, andwe hope to find a new method to diagnose retroperitoneal bleeding. The first model, weinsert a vessel into retroperitoneal and inject blood to simulate retroperitoneal bleedingand use EIT monitoring the pigs. When we finish monitoring, all pigs are inspected byCT and anatomy. The second model, pigs retroperitoneal bleeding model is establishedby the puncturatio of kidney from outside with fine needles guided by ultrasound, andpigs are heparinized at same time. All those pigs are inspected by CT and anatomy too.
     The 5 pigs of retroperitoneal inject blood model are all survival when the monitor isover. All pigs’anesthesia are steady. The CT tomography reveal that the rightretroperitoneal of pigs have the vessel and hematoma, and the hematoma is localized.The organs in abdominal cavity are integrity and no blood or fluid in there. The anatomyresults find all pigs’post peritonaeum is integrity, no blood in abdominal cavity, and onehuge hematoma is in retroperitoneal cavity. The vessel between the kidney and greaterpsoas muscle, the kidney, greater psoas muscle and great vessels are not injured. Thegray scale of EIT images are uniformity before we inject blood and the gray scale of EITimages change enormously when the more and more blood are injected intoretroperitoneal cavity. We can see the area that the electrical impendence decreasegradually, and the images are steady when we change the injector.
     The 5 pigs of retroperitoneal bleeding model are all survival when the kidney hasbeen punctured three hours. The CT and anatomy all find that every pigs’postperitonaeum is integrity, no blood in abdominal cavity, and the volume of hematoma inretroperitoneal cavity is from 100ml~180ml, bleeding rate is 100%. All the other organs and vessels are not injured. When EIT start monitoring, the gray scale of EIT images areuniformity and decrease enormously when the monitoring time prolong. The area isconsistent with the CT and anatomy.
     The retroperitoneal inject blood models have same site to puncture, and the modelsparallel the real retroperitoneal bleeding. We inject blood with determinate time andspeed, so we can get precise relationships between images and blood volume. We cancontrol the speed, blood volume, so we can repeat the experiment easily. Theretroperitoneal bleeding models cause kidney bleeding is very similar real retroperitonealbleeding. The EIT equipment is simple, suitable and reliable. The consequences of twomodels reveal the models are successful, they can fit the need to study the retroperitonealbleeding.
     The EIT can monitor the retroperitoneal bleeding sensitively and can monitor thebleeding area, the images are clear and easy to read. The contrast increases when theblood volume increase or bleeding time prolong. Because of its simple, reliable, noninvasiveand no radiation, the EIT refer to long time monitoring at bedside.
引文
1. Danzo—B J.Environmental xenobiotics may disrupe normal endocrine functionby interfering with the binding of physiological ligands to steroidreceptors and binding proteins[J].Environ—Health—Perspect,1997,105(3):294-301.
    2. Kelce—W R,Gray L E,Wilson E M,et a1.Antiandrogens as environmentalendocrine disruptors[J].Reprod Fertil Dev,1998,10(1):105-1l1.
    3. IEH. Information Exchange and International Co-ordination on EndocrineDisrupters - An IEH report for the European Commission September-An IEHreport for the European Commission. Report for DG Environment,EuropeanCommission,IEH Ref. 2003,9:No 3/9/7.
    4. COM. Communication from the Commission to the Council and the EuropeanParliament: Community Strategy for Endocrine Disrupters - a range ofsubstances suspected of interfering with the hormone systems of humans andwildlife. COM .Brussels,Dec 1999,11:706.
    5. Knudsen FR Pottinger TG. Interaction of endocrine disrupting chemicals ,singly and in combination ,with estrogen- , androgen- , and corticosteroidbindingsites in rainbow trout (Oncorhynchus) mykiss[J].Aquat Toxicol ,1999,44 :159 -170.
    6. Blount BC ,Milgram KE ,Silva MJ ,et al. Quantitative detection of eightphthalate metabolites in human urine using HPLC-APCI- MS/ MS[J].Anal Chem,2000 ,72 (17) :4127-4134.
    7. Yuan SY,Liu C ,Liao CS ,et al. Occurrence and microbial degradation ofphthalate esters in Taiwan river sediments[J]. Chemosphere ,2002 ,49 (10):1295-1299.
    8. Jonsson S ,Ejlertsson J ,Ledin A ,et al. Mono2 and diesters from ophthalicacid in leachates from different European landfills[J].Water Research ,2003,37 (3) :609-617.
    9.吴平谷,韩关根,王惠华,等.饮用水中邻二苯二甲酸酯类的调查[J].环境与健康杂志,1999 ,16 (6) :338-339.
    10. Guillette LJ . Developmental abnormalities of gonad and abnormal sexhormone concentration in juvenile alligators from contaminated lakes inFlorida[J ] . Environ Health Perp ,1994 ,102 :680-688.
    11. Carlsen E,Giwercman A,Keiding N,et a1.Evidence for decreasing quality of semen during past 50 years[J].Br Med J,1992,305:609-6l3.
    12.张树成,王弘毅,王介东.1981-1996年我国有生育力男性精液质量的变化分析[J].生殖与避孕,1999,19(1):27-33.
    13. Jacques Auger.Decline in Semen Quality Among Fertile Men in Paris Duringthe Past 20 Vears[J].New England Journal of Medicine,1995,332(2):281-285.
    14.侯中林,王红,范凌松,等.邻苯二甲酸二-2-乙基已酯对雄性大鼠的生殖毒性[J].卫生毒理学杂志1999,13(2):72-75.
    15.李积胜,易建华,汪超,等.镉对大鼠睾丸生精细胞凋亡的影响及锌的保护作用[J].卫生研究2000,29(3):157-160.
    16. Xu G G,Jiang X Z.Male Reproductive Toxicity Induced by CadmiumChloride[J].Chin J Pub Health。1996,15(1):17-18.
    17. Gouveia M A.The testis in cadmium intoxication:morphological and vascularaspects[J].Andrologia,1988,20(3):225-231.
    18.李卫华,范奇元,申立军,等.环境内分泌干扰物2-溴丙烷对大鼠睾丸毒性的研究[J].生殖与避孕,2001,21(3):243-245.
    19.李佳圆,栾荣生.环境内分泌干扰物与人群健康的关系[J].国外医学(卫生学分册),2001,28(4):193-196.
    20.郑刚.环境雌激素对机体的影响[J].国外医学(卫生学分册),2001,28(4):197-200.
    21.余楠,舒为群,朱毅,等.环境雌激素辛基酚对人MCF-7细胞凋亡调控基因bcl-2mRNA表达的影响[J].环境与健康杂志,2002,19(5):335-360.
    22. Colbron-T,Vom Saal F S,SotoAM,eta1.Developmental efects of endocrinedisruptingchemicals in wild life and humans [J]. Environ-Health-Perspect,1993,101(5):378-384.
    23. Mably T A,Sjerke D L,Moore R W,et a1.In utero and lactational exposure ofmale rats to 2,3,7,8-tetrachlorodibenzo-P-dioxin.3.Efects onspermatogenesis and reproductive capability[J].Toxicol Appl Pharmacol,1992,1 14:1 18-126.
    24. Marttinen SK, Haenninen K, Rintala ,JA. Removal of DEHP in composting andaeration of sewage sludge[J].Chemosphere , 2004 ,54 (3) :265-272.
    25. Wolfe NL ,Steen WC ,Burns LA. Phthalate ester hydrolysis linear free energyrelationships[J]. Chemosphere ,1980 ,9 :403 - 408.
    26. Stales CA , Peterson RD , Parkerton TF ,et al. The environmental fate ofphthalate esters : A literature review[J]. Chemosphere , 1997, 35 :667 -749.
    27. Gledhill WE ,Kaley RG,Adams WJ ,et al. An environmental safety assessmentof butyl benayl phthalate[J].Environ Sci Technol , 1980, 14: 301-305.
    28. Howard PH. Handbook of environmental degradation rats [ M] .Lewis Publishers Inc Chelsea ,MI ,1991 :725.
    29. Meylan WM ,Howard PH. Computer estimation of the atmospheric gas phasereaction rate of organic compounds with hydroxyl radicals and ozone[J].Chemophere ,1993 ,26 :2693 - 2699.
    30. Kawaguchi H. Photodecomposition of bis222ethylhexylphthalate[J].Chemosphere, 1994 ,28 :1489 - 1493.
    31. Balabanovich AI ,Schnabel W. On the photolysis of phthalic acid dimethyland diethyl ester : a product analysis study[J].J Pho2 tochem Photobiol AChem ,1998 ,113 :145 - 153.
    32. Hizal G,Zhu QQ ,Fischer Ch2H ,et al. On the photoysis of phthalic aciddialkyl esters :a product analysis study[J].J Photochem Photobiol A ,1993,72 :147 - 152.
    33.戴树桂,张东梅,张仁江,等.固相萃取技术预富集环境水样中邻苯二甲酸酯[J].环境科学,2000 ,21(2) :66-69.
    34. Gabriela P ,Katerina H ,Jan P ,et al . Development of a solid-phasemicroextraction method for the determination of phthalic acid esters inwater. [J]. Analy Chim Acta , 2002 ,457 :211-223.
    35. Helaleh MIH , Takabayashi Y, Fujii S ,et al . Gas chromatographic-massspectrometric method for separation and detection of endocrine disruptorsfrom environmental water samples. [J].Analy Chim Acta ,2001 ,428 :227-234.
    36. Mol H ,Sunarto S ,Steijger OM. Determination of endocrine disruptors inwater after derivatization with N-methyl- N-tert-butyldimethyltrifluoroacetamide using gas chromatography with mass spectrometric detection[J].JChromatogr A ,2000 ,879 :97-112.
    37. Yoshihiro Y,John WB ,Tsunehisa M, et al . Measurement of bisphenol A inhuman serum by gas chromatography/mass spectrometry[J].Analy Chim Acta ,2002 ,458 :331-336.
    38. Cai YQ ,Jiang GB ,Liu JF ,et al . Multi-walled carbon manotubes packedcartridge for the solid-phase extraction of several phthalate esters fromwater samples and their determination by high performance liquidchromatography[J].Analy Chim Acta , 2003 ,494 :149-156.
    39. Jeannot R , Sabik H , Saurard E , et al . Determination of endocrinedisruptingcompounds in environmental samples using gas and liquidchromatography with mass spectrometry[J].J Chromatogr A ,2002 ,974 :143.
    40. Zhao MP , Li ZY, Guo ZQ , et al . A new competitive enzyme-linkedimmunosorbent assay(ELISA) for determination of estrogenic bisphenols[J].Talanta, 2002, 57: 1205-1210.
    41. Regan F , Moran A ,Fogarty B ,et al . Development of comparative methodsusing gas chromatography-mass spectrometry and capillary electrophoresisfor determination of endocrine disrupting chemicals in bio-solids[J].JChromatogr B , 2002 ,770 :243-253.
    42.李海燕,施银桃,曾庆福.胶束电动毛细管色谱测定塑料工业废水中的邻苯二甲酸丁苄酯[J].环境工程,2004 ,22(1) :59-60.
    43. Lehmann KP , Phillips S , Sar M, et al. Dose-dependent alterations in geneexpression and testosterone synthesis in the fetal testes of male ratsexposed to di ( n-butyl ) phthalate[J].Toxicol Sci ,2004 ,81 :60-68.
    44. Marsman DS. NTP technical report on toxicity studies of dibutyl phthalate(CAS No. 84-74-2) administered in feed to F344 rats and B6C3F1 mice. 1995,NIH Publication 95-3353[J].Toxicity Series No. 30, 232427-232495.
    45. Shultz VD , Phillips S , Sar M, et al. Altered gene profiles in fetal rattestes after in utero exposure to di(n-butyl) phthalate[J].Toxicol Sci,2001 ,64 :233-242.
    46. Barlow NJ , Phillips SL , Wallace DG, et al. Quantitative changes in geneexpression in fetal rat testes following exposure to di (n-butyl)phthalate[J]. Toxicol Sci ,2003 ,73 :431-441.
    47. Duty SM, Singh NP , Silva MJ , et al. 2003. The relationship betweenenvironmental exposures to phthalates and DNA damage in human sperm usingthe neutral comet assay[J].Environ Health Perspect , 111 :1164-1169.
    48. Hauser R , Meeker JD , Duty S , et al. Altered semen quality in relation tourinary concentrations of phthalate monoester and oxidative metabolites[J].Epidemiology, 2006 ,17 : 682-691.
    49. Swan SH , Main KM, Liu F , et al. Decrease in anogenital distance amongmale infants with prenatal phthalate exposure[J]. Environ Health Perspect ,2005 ,113 :1056-1061.
    50. Main KM, Mortensen GK, Kaleva MM, et al. Human breast milk contaminationwith phthalates and alterations of endogenous reproductive hormones ininfants three months of age[J].Environ Health Perspect , 2006 , 114 :270-276.
    51. Edle L , Poirier K. , Dourson M, et al. Mathematical modeling andquantitative methods[J].Food Chem Toxicol , 2002 , 40 , 283-326.
    52. Gephart LA , Salminen WF , Nicolich MJ , et al. Evaluation of subchronictoxicity data using the benchmark dose approach[J].Regul Toxicol Pharmaco,2001, 33: 37-59.
    53. Bokkers BG, Slob W. A comparison of ratio distributions based on the NOAELand the benchmark approach for subchronic-to-chronicextrapolation[J].Toxicol Sci, 2005 , 85 :1033-1040.
    54. Mylchreest E , Sar M, Cattley RC , et al. Disruption of androgen -regulatedmale reproductive development by di ( n-butyl ) phthalate during lategestation in rats is different from flutamide[J].Toxicol Appl Pharmacol ,1999 ,156 : 81– 95.
    55. Mylchreest E , Sar M, Wallace DG, et al. Fetal testosterone insufficiencyand abnormal proliferation of Leydig cells and gonocytes in rats exposed todi (n-butyl) phthalate[J]. Repro Toxicol , 2002 , 16:19-28.
    56. NTP (National Toxicology Program) . NTP technical report on toxicitystudies of dibutyl phthalate adminstered in feed to F344/ N rats and B6C3F1mice[J]. Toxicity Report Series Number 30. NIH publiation , 1995.9533531.
    57. Fisher JS , Macpherson S , Marchetti N , et al1Human‘testicular dysgenesissyndrome’:a possible model using in - utero exposure of the rat to dibutylphthalate[J].Human Reprod , 2003 , 18 : 1-13.
    58. Barlow NJ, Phillips SL, Wallace DG, et al. Quantitative changes in geneexpression in fetal rat testes following exposure to di (n-butyl) phthalate[J].Toxicol Sci, 2003, 73(2): 431- 441.
    59. Omura T ,Morohashi K. Gene regulation of steroidogenesis[J]. J SteroidBiochem Mol Bio ,1995 ,53 (1-6) :19-25.
    60. Barlow NJ ,Phillips SL ,Wallace DG,et al . Quantitative changes in geneexpression in fetal rat testes following exposure to di (n2butyl) phthalate[J]. Toxicol Sci ,2003 ,73 (3) :431-441.
    61. Kleymenova E, Swanson C, Boekelheide K, et al. Exposure in utero to di(nbutyl)phthalate alters the vimentin cytoskeleton of fetal rat Sertolicells and disrupts Sertoli cellgonocyte contact[J].Biol Reprod, 2005, 73(3):482- 490.
    62. Meehan T, Schlatt S, O'Bryan MK, et al. Regulation of germ cell and Sertolicell development by activin, follistatin, and FSH [J]. Dev Biol, 2000,220(2): 225- 237.
    63. Ramaswamy S , Plantt M, Marshall GR1Pulsatile stimulation with recombinantsingle chain human luteinizing hormone elicits precocious Sertoli cellproliferation in the juvenile male rhesus monkey (Macaca mulatta) [J].BiolReprod , 2000, 63 : 82-88.
    64. Allan CM, Garcia A , Spalivero J , et al1Complete Sertoli cellproliferation induced by follicle- stimulating hormone (FSH) independentlyof luteinizing hormone activity : evidence from genetic models of isolatedFSH action[J].Endocrinology, 2004, 145:1587 -1593.
    65. Shultz VD ,Phillips S ,Sar M,et al . Altered gene profiles in fetal rattestes after in utero exposure to di ( n-buty) phthalate[J]. Toxicol Sci,2001, 64(2) :233 - 242.
    66. Ahmad S ,Nozomu T ,Vivette D ,et al . Early effects of castration on thevascular systemof the ventral prostate gland [J]. Endocrinology, 1999,140(4): 1920-1926.
    67.杨金瑞,黄循,杨竹林,等.前列腺增生和前列腺癌组织细胞凋亡及Bcl22 ,Bax基因表达的研究[J].中华泌尿外科杂志,2000 ,21(8) :485-487.
    68. Andriole G,Bruchovsky N ,Chung LW,et al . Dihydrotestosterone and theprostate: the scientific rationale for 5 alpha - reductase inhibitors inthe treatment of benign prostatic hyperplasia [J]. J Urol , 2004 , 172 ( 4Pt 1) :1399- 1403.
    69. Lu ML ,Schneider MC ,Zheng Y,et al . Caveolin - 1 interacts with androgenreceptor. A positive modulator of androgen receptor mediatedtransactivation [J].J Dial Client ,2001 ,276 :13442-13451.
    70.吴刚,那彦群,孔样田,等. BPH组织中雄激素受体与转化生长因子-P I型受体表达的相关性研究[J].中华泌尿外科杂志,1999 ,20 :302 - 305.
    71. Xia SJ ,Hao GY, Tang XD. Androgen receptor isoforms in human and ratprostate [J].Asian J Androl ,2000 ,2 :307-310.
    72. Xia SJ ,Tang XD ,Ma QZ. Androgen receptor isforms in human prostatic cancertissue and LNCaP cell line [J].Asian J Androl ,2001 ,3 :223-225.
    73. Kuiper GG, Ruiter PE ,Brinkmann AO. Androgen receptor heterogeheity inLNCaP cells is caused by a hormone independent phosphorylation step [J].Steroid Biochem Mol Biol ,1992 ,41 :697-700.
    74. Wilson M, Mcphaul J. A and B forms of the androgen receptor are expressedin a variety of human tissues[J].Mol cell Endocrinol,1996, 120(1): 51.
    75.夏术阶,马庆铮,许纯孝.前列腺增生和前列腺癌组织雄激素受体亚群的研究[J].中华泌尿外科杂志,1996,17(6):368.
    76. Faber PW,van Rooij HI.van der Korput HG,et al Characterisation of thehuman androgen receptor transcription unit [J]J Bid Chemistry,1991,266(17):10743.
    77. M alley B.The steroid receptor superfamily: more excitement predicted forthe future[J]. Mol en&xrinol,1990.78(4):363.
    78. Kuiper GGJM, Ruiter P.Stober J,et al. Synthesis and posttranslationalmodification of the androgen receptor_in LN-CaP cell [J]. Moceeular andEndocrinol, 1991,80(1): 65.
    79. Xia SJ ,Xu CX,Tang XD ,et al . Apoptosis and hormonal milieu in ductalsystem of normal prostate and benign prostatic hyperplasia[J].Asian JAndrol, 2001, 3 :131 - 134.
    80. Krieg M,Nass R ,Tunn S. Effect of aging on endogenous level of 5a-dihydrotestisterone,testosterone ,estradiol and estrogen in epithelium andstroma of normal and hyperplastic human prostate[J]. J Clin EndocrinolMetab ,1993 ,77(2) :375-381.
    81.朱刚,王建业,刘俊达,等.雌雄激素对前列腺基质细胞增殖的影响[J].中华泌尿外科杂志,2000 ,21(6) :361-363.
    82.顾方六主编,现代前列腺病学[M] .北京:人民军医出版社,2002. 49-50.
    83. Suzuki K. Endocrine environment of benign prostatic hyperplasiarelationships of sex hormone level with the size of prostate [J]. J NipponHinyokiki Gakkai Zassh ,1992 ,83 (5) :664 - 671.
    84. Krieg M,Nass R ,Tunn S. Effect of aging on endogenous lelvel of 5 -αdihydrotesterone ,testosterone ,estrogen in epithelium and stromal ofnormal and hyperplastic human prostate [J]. J Clin Endocrinal Metab ,1993,77(2) :375 - 381.
    85. Royuela M,de Miguel MP ,Bethencourt FR ,et al . Estrogen receptors alphaand beta in the normal ,hyperplastic and careinamatous human protate [J]. JEndocrinol ,2001 ,168 (3) :447-454.
    86. Bodker A ,Bruun J ,Balslev E ,et al . Estrogen receptors in the human maleprostatic urethra and prostate in protatic cancer and benign prostatichyperplasia [J]. J Urol Nephrol ,1999, 33(4) :237 - 242.
    87. Salazar EL ,Mercado E ,Calzada L. Prostatic cancerPbenign prostatichypertrophy. Subcellular distribution of estradiol/androgen receptors[J].Arch Androl ,2005 ,51 (2) :135 - 139.
    88. Boone K,Barber DC,Brown BH.et al.Imaging withelectricity:review of theeuropean concerted action 0n impedance tomography[J].Journal of MedicalEngineering&Technology.1997:21(6)::201-232.
    89. Isaacson D.DistinquishabiIity of conductivity by electric current computedtomography [J].IEEE Trans.,1986,M I-5(2):91- 95.
    90. Barber 13(2,Brown BH.Applied potential Tomography[J].J.Phsy.E.Sci.instrum,1984,(17):723-733.
    91. Brown BH.Medical impedance tomography and process impedance tomography:abrief review[J].Measurement Science and Technology,2001,(12):991-996.
    92.任超世.生物电阻抗测量技术[J].中国医疗器械信息,2004,10(1):2l-25.
    93. DONG X ZH.The development of the bioelectric impedance technologies[J].Chinese Journal of Medical Physics,2004, 21(6):311-317.
    94. McAdams E T and Jossinet J.Tissue impedance:a historicalovert4ew[J].Physiol Meas,1995 16(A):A1-A13.
    95. Kiksal A,Eyuboghl BM.Determination of optimum injected current patterns inelectrical impedance tomography[J].Physiol Meas,1995:16(A):99-109.
    96. Bayfordy RH,Boone KG,Hanquan Y,et a1.Improvement of the positional accuracyof EIT images of the head using a Lagrange multiplier reconstructionalgorithm with diametric excitation[J].Physiol Meas,1996;17:A49-A57.
    97. Peter Metherall BEng(Hons)M M edSci.Three dimensional electrical impedancetomography of the human thorax[D].Department of Medical Physics andClinica1 Engineering,University of Sheffield, January, 1998.
    98.董秀珍,付峰,尤富生,等.生物电阻抗断层成像技术的基础研究[J].中国医学研究与临床,2O04,2(13):1-3.
    99. Barber DC,Seagar AD.Fast reconstruction of resistance images [J].Clin PhysPhysiol Meaz,1987,8(2A): 47.
    100. Tang M,Peng CL.Bioimpedance measurement theory and technology [J].J BiomedEng,1997,14(2):152.
    101. Vauhkonen PJ,Vauhkonen M,Kaipio JP.Fixed-lag smoothing and state estimationin dynamic electrical impedance tomography [J].Int J Numer Meth Engng,200l,50:2195-2209.
    102. Brandstatter B.Jacobian calculation for electrical impedance tomographybased on the reciprocity principle [J].IEEE Trans Magnetics,2003,39(3):1309-1312.
    103. Clay MT,Ferree TC.Weighted regularization in electrical impedancetomography with applications to acute cerebral strokeⅢ[J].IEEE Trans MedImag,2002,21(6):629-637.
    104. Mueller JL,Sihanen S,Isaacson D.A direct reconstruction algorithm forelectrical impedance tomography [J].IEEE Trans Med Imag,2002,21(6):555-559.
    105. Bagshaw AP,Liston AD,Bayford RH,et a1.Electrical impedance tomography ofhuman brain function using reconstruction algorithms based on the finiteelement method [J].Neurolmage,2003,20:752-764.
    106. Kim MC,Kim KY,Lee KJ,et a1.Electrical impedance imaging of phase boundaryin two -phase systems with adaptive mesh regeneration technique[J].International Communications in Heat and Mass Transfer,2005,32:954-963.
    107. Simone BCD,Sicilian o R,Pachi A,et a1.Electrical impedance tomography viafiltered-back projection of fan current distribution:a numerical simulation[J].Bioelectromagnetics,2002,23:516-521.
    108. WANG CH,WANG H X,WANG J.A multi.Frequency EIT system based onDSP[J].Chinese Journal of Scientific Instrument,2002.23(4):347—350.
    109. SHI X T,YOU F SH,FU F,et a1.A multi·frequency electrical impedancetomography system working in four frequencies simultaneously[J].SpaceMedicine & Medical Engineering,2006,19(1):47-50.
    110. TUFTS D W,GE H.Digital estimation of frequencies of sinusoid from wide bandunder sampled data[J].IEEE International Conference on Acoustics Speech andSignal Processing,1995(5):3155—3158.
    111. LI H G,CAI M J.The research on signal process principle of non-Nyqistsampling of super high frequency period signal[J].Chinese Journal ofSensors and Actuators. 2001,4: 360-365.
    112. YERWORTH R J,BAYFORD R H,CUSICK G.et a1.Design and performance of the UCLHMark 1 b 64 channel electrical impedance tomography(EIT)system,optimizedfor imaging brain function[J].Physiological Measurement,2002(1):149-158.
    113. Barber DC.An overview of image reconstruction:Clinical and physiologicalApplications of electrical impedance Tomography. London: UCL Press.1993:47.
    114. Barber DC,Seagar AD.Fast reconstruction of resistance images[J].Clin PhysPhysiol Meas.1987:8(A):47.
    115. Berber DC.Brown BH.Avis NJ.Image reconstruction in electrical impedancetomography using filtered back—projection[J].Proc Ann Int Conf IEEE EMBS(Paris.France).1992:14:1691.
    116. Bertrand M.Boulay C.Guardo R,et a1.An experimental study in electricalimpedance tomography using back projection reconstruction[J].IEEE TransBiomed Eng.1991;38(7): 617.
    117. Thomas J.Yorkey.John G.et a1.Comparing reconstruction algorithms forelectrical impedance tomography[J].IEEE Trans Biomed Eng.1987:34(11):843.
    118. Boone K,Barker D,Brown B,et a1.Imaging with electricity:report of theeuropean concerted action on impedance tomography[J].Journal of MedicalEnineering &t echnology,1997,21(6):201-232.
    119. Murai T,Kagawa Y.Electrical impedance computed tomography based on a finiteelement model[J].IEEE Trans Biomed Eng,1985,BME 32(3):177- 184.
    120. Brown BH,Seagar AD,The Sheffield Data Collection System,Clin, Phys[J].Physio1,Meas,1987,8(A):91-97.
    121. C S Koukourlis et al,A 32一Electrode Dam Collection System for ElectricalImpedanc Tomography[J].IEEE Trans.BME,1995,42(6):632-636.
    122. C W Denyer,F J Lidgey,Q S Zhu et al,A high output impedance currentsource[J]. Physio,Meas, 1994,15:A79-A82.
    123. W.Q.Yang,T.A.Yore,New AC—based Capacitance Tomography System[J].IEEProc.Sci.Meas.Techna1.1999,146(1).
    124.宋万杰,罗丰.CPLD技术及其应用.西安:西安电子科技大学出版社,1999.
    125.赵雅兴.FPGA原理、设计与应用.天津:天津大学出版社,1998.
    126. Mueller JL,Sihanen S,Isaacson D.A direct reconstruction algorithm forelectrical impedance tomography [J].IEEE Trans Med Imag,2002,21(6):555-559.
    127. Bagshaw AP,Liston AD,Bayford RH,et a1.Electrical impedance tomography ofhuman brain function using reconstruction algorithms based on the finiteelement method [J].Neuroimage,2003,20:752-764.
    128. Kim MC,Kim KY,Lee KJ,et a1.Electrical impedance imaging of phase boundaryin two -phase systems with adaptive mesh regeneration technique[J].International Communications in Heat and Mass Transfer,2005,32:954-963.
    129. Simone BCD,Sicilian o R,Pachi A,et a1.Electrical impedance tomography viafiltered-back proj ection of fan current distribution:a numericalsimulation [J]. Bioelectromagnetics, 2002, 23: 516-521.
    130. Jaakko Malmivuo,Robert Plonsey.Bioelectromagnetism-Pfinciples andApplications of Bioelectric and Biomagnetic Fields,Webversion.New York:Oxford University Press.1995.633-634.
    131. Itkis ML,Roberts JK,et a1.A Square Signal Wave Method for Measurement ofBrain Extra—and Intracellular Water Content[J].Acta Neurcchir.1994,24(60):l77-l84.
    132. Suga S,Mitani S,Shimamoto Y,et a1.In vivo measurement of intra—andextracellular space of brain tissue by electrical Impedance Method[J]. ActaNeurochir,1990,5l(1):22-24.
    133.龙门,田海燕,姚德贵,等.阻抗法无创脑水肿监测的实验研究.见:重庆生物医学工程学会第一届会员代表会议论文,l999.105-110.
    134. MicheI Assenheimer.Orah Laver-Moskovitz.The T-SCANTM technology:electricalimpedance as a diagnostic tool for breast cancer detection [J].PhysiolMeas.2001,22(1):1-8.
    135. A.Malich.T.Fritsch.R.Anderson,et a1.Electrical impedance scanning forclassifying suspicious breast lesions:first results[J].Europeanradiology.2000(10):1555—1561.
    136. Chaudhary SS,Mishra RK,Swamp A,et a1.Dielectric properties of normal andmalignant human breast tissues at radiowave and microwavefrequencies[J].Indian J Biochem Biophys,1984,21: 76-79.
    137. Campbell AM,Land DV.Dielectric properties of female breast tissue measuredin vitro at 3.2 GHz[J].Phys Med Biol,1992,37:193—210.
    138. Jossinet J.The impedivity of freshly excised human breast tissue[J].PhysiolMeas,1998,19(1):61-65.
    139. Jossinet J.Variability of impedivity in normal and pathological breasttissue[J]. Med Biol Eng Comput,1996;34:346—350.
    140. Surowiec AJ,Stuehly SS,Barr JR,et a1.Dielectric properties of breastcarcinoma and the surrounding tissues[J].IEEE Tram BiomedEng, 1988, 35 (4):257-263.
    141. Heinitz J,Minet O.Dielectric properties of female breasttumors[A].Proceedings of Ninth International Conference on Electrical Bio-Impedance[C].Heidelberg:University of Heidelberg,1995,356-359.
    142. Morimoto T,Kinouchi Y,lritani T,et a1.Measumment of the electrical bioimpedanceof breast tumors[J].Eur Surg Res,1990, 22: 86-92.
    143. Morimoto T,Kimura S,Konishi Y,et a1.A study of the electrical bio-impedanceof tumors [J].J Invest Surg,1993,6:25-32.
    144. Ohmine Y,Morimoto T,Kinouchi Y,et a1.Noninvasive measurement of theelectrical bio-impedance of breast tumors[J].Anticancer Res,2000,20(3B):1941-1946.
    145. Seholz B,Anderson R.On electrical impedance scanning principles andsimulations[J ].Electromedia,2000, 68: 35-44.
    146. McAdams E T,Jossinet J.Epidermal AC impedance:low frequency distortions[J].Engineering in Medicine and Biology Society,1993,1497-l498.
    147. Esrela da Silva J,de Sa JP,Jossinet J,et a1.Classification of breast tissueby electrical impedance spectroscopy[J],Medical& Biol 0gical Engineering&Computing,2000, 38:26-30.
    148. Malich A,Fritsch T,Anderson R,et a1.Electrical impedance scanning forclassifying suspicious breast lesions:first results[J].European radiology,2000, (10):1555-1561.
    149. Assc nheimer M,Laver-Moskovitz O, Malonek D. et a1. The T-SCAN TMtechnology:electrical impedance as a diagnostic tool for breast cancerdetection [J]. Physiol Meas. 2001, (22): 1-8.
    150. Scholz B.Anderson R.On electrical impedance scanning—principles andsimulations [J].Electromedica,2000,68(1):35-44.
    151. Kneeshaw PJ,Drew PJ,Hubbard A.ElectricaI impedance scanning:a new imagingtechnique for evaluating microcalcification in the breast[J].Breast CancerRes. 2002. 4(1):20-25.
    152. Tvna A Hope,Sian E lies.Technology review:The use of electrical impedancescanning in the detection of breast cancer[J].Breast Cancer Res,2004,6(1):69-74.
    153. Todd E Kerner.Alex Hartov.Imaging the breast with EIS:an initial study ofexam consistency[J].Physiol Meas, 2002, 23(2):22l-236.
    154. Gonzalo Martin,Rocio Martin.ElectricaI impedance scanning in breastcancer imaging:correlation with mammographic and histologicdiagnosis[J].Eur Radiol,2002,l1(12):1471-1478.
    155. H Dehghai,D C Barber.,l Basarrab-Horwath.Incorporating a priori anatomicalinformation into image reconstruction in electrical impedance tomography[J].Physio1.Meas,1999, 20:87-102.
    156.吴小明,董秀珍.人胸部电阻抗成像和铜测量电极系统初步研究[J].第四军医大学学报,2001,22(2):22-23.
    157. Holder Temple.Effectiveness of the Sheffield EIT system indisting uishingpatients with pulmonary pathology from a series of normal subjects.In:Holder DS.Clinical and Physiological Applications of Electrical ImpedanceTomography.London:UCL Press,1993.
    158. Watanabe R,Kotoura H,Morishita Y.CT analysis of the use of the electricalimpedance technique to estimate local oedema in the extremities in patientswith lymphatic obstruction[J].Med Biol EngCom put,1998,36:60-64.
    159. Barber D C,Brown B H.Applied potential tomography:a new technique formonitoring pulmonary function[J].Clin.Phys.Physio1.Meas.1988,9(A):79—85.
    160. Holder D S,Brown B H.Biomedical applications of EIT:a critical review [M]//Clinical and Physiological Applications of Electrical Impedance Tomography.London:UCL Press,1993:6-40.
    161. Holder D S,Temple A J.Effectiveness of the Sheffield EIT system indistinguishing patients with pulmonary pathology from a series of normalsubjects[M]/Clinical an d Physiological Applications of ElectricalImpedance Tomography.London:UCL Press,1993:277-298.
    162. Adler A,Amyot R,Guardo et a1.Monitoring changes in lung air and liquidvolumes with electrical impedance tomography [J].App1.Phys.1997,83:1762-1767.
    163. Adler A,Guardo R,Berthiaume Y.Impedance imaging of lung ventilation:do weneed to account for lung expansion [J].IEEE Trans.Biomed. Eng. 1996, 43:414-420.
    164. Kunst P W A,de Vries P M J M,Postmus P E,et a1.Evaluation of electricalimpedance tomography in the measurement of PEEP-induced changes in lungvolume [J].Chest,1999,115:1102一l 106.
    165. Kunst P W A,Vonk Noordegraaf A,Hoekstra O S,et a1.Ventilation and perfusionimaging by electrical impedance tomography:a comparison with radionuclidescanning [J].Physiol Meas.1998, 19: 481-490.
    166. Frerichs I,Hellige G,Golisch W,et a1.Monitoring perioperative changes indistribution of pulmonary ventilation detected by functional electricalimpedance tomography[J].Acta.Anaesthesio1.Scand.1998,42:721-726.
    167. S Nebuyal,M Noshiro1.Study of the optimum level of electrode placement forthe evaluation of absolute lung resistivity with the Mk3.5 EIT system[J].Physiol Meas.2006,27:S129-S137.
    168. Goncalves S,de Munck JC,Verbunt JPA.et al In vivo measurement of the brainand skull resistivities using an E1T—based method and the combinedanalysis of SEF/SEP data[J] IEEE Trans Biomed Eng,2003,50(9):1124-1128.
    169. Murrieta-Lee JC,Pomfrett CJD,Beatty PCW,et al. EIT voltage changes on thehuman scalp due to brain stimulus [J] .Proceedings of the 15thInternational Conference on Electronics [C].Communications and Computers(CONIELECOMP 2005).
    170. Yerworth Pd,Bayford RH,CusickG,et a1.Design and performance of the UCLHMark 1 b 64 channel electrical impedance tomography (EIT)system optimizedfor imaging brain function[J] Physiol Meas,2002,23(2):149—158.
    171. LIU L X,DONG W W,JI XM,et a1.A new method of noninvasive brain-edemamonitoring in stroke:cerebral electrical impedancemeasurement[J].Neurological Research,2OO6,28(1):31-37.
    172.王健,杨浩,王平,等.高血压性脑出血及血肿周围组织水肿的无创性检测[J].中华医学杂志,2003,83(6):471-474.
    173. Barber DC,Brwon BH.Applied potential tomography[J].J Phys E:Sci Instrum,1984,17:723-733.
    174. McArdh FJ,Brown BH,Angd A.Imaging resistivity changes of the adult brainduring the cardisc cycle[C].Proc.ABnu.Inf.Conf.IEEE Engineering in Medicineand Biology Society,1989,11480-11481.
    175. Towers CM,Mccann H,Wang M,et a1.3D simulation of EIT for monitoringimpedance variations within the human head [J].Physiol Meas.2000, 21: 119-124.
    176. Tarassenko L Use of digital techniques to process cerebral electricalimpedance signals in the newborn[J].Med & Biol Eng & Comput,1984:22(3):55.
    177. Geddes L。Baker L.Principles of applied biomedical instrumentation[J].NewYork:John Wiley&Sons Ltd.1975 :133-135.
    178. Guo BH.An experimental study on mechanism of citrus aurantium effect on therabbits REG.Proceedings of Vith ICEBI[J].Zadar.1983:57-58.
    179. Geddes LA,Baker LE. The specific resistaance of biological material-acompendium of data for the biomedical engineer and physiologist[J].Med BiolEng.I967. 5(3):271-293.
    180. Bonovas PM.Kyriacou GA.Sahalos JN A realistic three dimensional FEM of thehuman head [J] Physiol Meas,1995,16(S3A):111-112.
    181. Povill R, Pere Riu.Quantification in multifrequency tomography[J].PhysiolMeas.1995. 16(3A):69-78.
    182. Bernard R,Leila H,Mol~med RF, et a1.In vitro tissue characterization andmodelling using electrical impedance measurements in the 100 Hz~10 MHzfrequency range[J].PhysM MetLs.1995.16 (3A):AI5-A28.
    183. Tideswel1.A.,Gibson A.Bayford R.H.et a1.Three—Dimensional ElectricalImpedance Tomography of Human Brain Activity[J].Neurolmage,2001(13):283-294.
    184. Liston A.D.,Bayford R.H.,Tidswell A.T.et a1.A multi—shell algorithm toreconstruct EIT images of brain function [J].Physiol Meas,2002(23):105-119.
    185. M.Cheney,D.Isaacson,J.C.Newell ,et a1.NOSER:An algorithm for solving theinverse conductivity problem[J].1nt.J.1mag.Syst.Tech nol,1990(2):66-75.
    186. G.R.McClelland,J.A.Sutton,Epigastric impedance:a non-invasive method forthe assessment of gastric emptying an d motility[J].Gut.1985,26,607-614.
    187. B.O. Familoni,Y. J. Kingma,K. L. Bowes,Noninvasive assessment of humangastric motor function[J].IEEE Trans.Biome.Engn, 1987, 34(1):30-36.
    188. Bharati Kothapalli,Origin of changes in the epigastric impedance signal asdetermined by a three-dimensional model[J].IEEE Trans.Biome.Engn,1992,39(10):1005-1010.
    189. D.B.Murphy,A.Sutton,L.F.Prescott et al,A comparison of the effects oftramadol and morphine on gastric emptying in man[J].Anaesthesia, 1997, 52,1212-1229.
    190. Yasuyuki Nakae,Hatsumi Onoushi,Mieko Kagaya,Effects of aging and gastriclipolysis on gastric emptying of lipid in liquidmeal[J].J.Gastroenterology,1999,34:445-449.
    191. N.A.Hadi,A.Giouvanodi,R.morton et al. Variations in gastric emptying timesof three stomach regions for simple and complex meals using scintigraphy[J].Trans. Nuclear Science,2002,49(5): 2328—2331.
    192. A.Giouvanoudi,W.B.Amaee,J.A.Sutton et al,Physiological interpretation ofelectrical impedance epigastrography measurements[J].Physio1. Meas. 2003,23, 45-55.
    193. Chen Ri Xin,Wan Dong Ru,Further investigation of reliability on impedance gastrography for continuous measurement of human gastric contractileactivity,Proceedings of the 8th international conference on electrical bioimpedance,1992, 7:28-31.
    194.潘正,连至诚,三道导纳胃动图的原理、方法与意义[J].中国医学往来学杂志,Vo1.21,No.2(2004):114—124.
    195.张锋,蒋大宗,以阻抗法实现胃运动功能的测量[J].中国医疗器械杂志,2001年,25卷第4期,209-212.
    196.赵瑞珍,郑建勇,宋国乡,小波变换方法检测胃动力[J].第四军医大学学报,2001:22(18),1700-1703.
    197. Z.S.Wang,J.Y.Cheung,J.D.Z.Chen,Blind separation of multichannelelectrogastrograms using independent component analysis based on a neuralnetwork[J].Medical&Biological Engineering&Computing,1999,37,80-86.
    198. Y F Mangnall,A J Baxter,R Avill et al,Applied potential tomography:Anew non invasive technique for measuring gastric function[J].Clin.Phys.Physio1.Meas, 1987, 8, (A):119-129.
    199. Y F Mangnall,C Bamish,B H Brown,Comparison of applied potential tomographyand impedance epigastrography as method s of measuring gastricemptying[J].Clin.Phys.Physio1.Meas, 1988,9(3):249-254.
    200. R H Smallwood,S Nour,Y Mangnall,Proceedings of the Annual InternationalConference of the IEEE[J]. Physio1.Meas.1992, 5:1748—1749.
    201. R H Smallwood,Y F Mangnall,A D Leathard,Transport of gastric contents[J].Physio1.Meas.1994(15),A175-A188.
    202. Milnes AR,Bowden GH,Gales D et a1. Normal microbiota on the teeth ofpreschool children[J].Microb Eeol Health Dis,1 993,6:2l3-227.
    203. Douglas CW.Heath J,Hampton KK,et a1.Identiry of viridans streptococciisolated from cases 0f infective endocarditis [J]. J Med Mierobiol l993.39: l79-182.
    204. Kruithof EK,Agay D,Mestries JC,et a1.The efect of factor Xa/phospholipidinfusion on the acute phase response in baboons [J]. Thromb Haemostasisl997, 77: 308-311.
    205. Herzberg MC,Meyer MW.Efects of oral flora on platelets:Possibleconsequences in cardiovascular disease[J].Periodental J 1996, 1138-1142.
    206.尤富生,董秀珍,史学涛,等.电阻抗断层成像中临近和对向驱动模式的研究[J].第四军医大学学报,2004,25 (1):88—91.
    207. Frerichs I,Hahn G,Schfod er T,et a1.Electrical impedance tomography inmonitoring experimental lung injury Intensive[J].Care Med,1998,24: 829-836.
    208. Sadleir RJ,Fox RA.Detection and quantification of intraperitoneal fluid using electrical impedance tomography[J].IEEE Trans Biomed Eng.2001;48(4):484-491.
    209. PovilI R.Pere R.Quantification in multifrequency tomography [J].PhysiolMeas,1995,16(S3):A69-A78.
    210. Foster KR,Schwan HP.Dielectric properties of tissues and biologicalmaterials:a criticaI review CRC crit rev [J].Biomed Eng,1989,17(1):25-104.
    211. FU Feng,ZANG Yimin,DONG Xiuzhen.et al.The measurement system oncharacteristic of complex impedance frequency(100 Hz一10 MHz)of some invitro tissues of animals and preliminary results [J].J Fourth Mil Med Univ,1999. 20(3):220—222.
    212. LIN Xin,DONG Xiuzhen,FU Feng, et al.Research of effect of straycapacitance on measurement accuracy in tissue Impedance spectroscopymeasurement [J ].Chinese MedicaI Equipment JournaI,2004,25(6):92-94.
    213. Bernard R,Leila H,Mohamed RF,et a1.In vitro tissue characterization andmodelling using electrica I impedance measurements in the 100Hz-10MHzfrequency range[J].Physiol Meas. 1995, 16(S3):A15一A28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700