用户名: 密码: 验证码:
若干高对称性小分子的电子动量谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子动量谱学(EMS)是研究原子分子中电子结构和碰撞动力学的强有力的工具,其独特优势在于能够同时测量轨道电子的结合能和电子的动量分布。利用高性能的第三代电子动量谱仪,可以深入挖掘过去未能发现的实验现象,结合相关理论研究,进而揭示这些现象背后深刻的物理规律。
     论文编写了新的高斯拟合程序,并作了详细说明。实验数据处理过程中关键的一步是用高斯拟合方法对能量-角度二维谱的剥谱处理。新程序使用方便可靠,大大降低了多高斯峰拟合的工作量。
     具有高对称性的小分子电子结构相对简单,轨道之间重叠较小,因而在理论和实验上更容易揭示现象背后的物理本质。论文的主要工作是利用高性能的第三代谱仪对若干小分子进行的电子动量谱学研究。
     我们成功地在不同实验条件下对I2分子进行了测量。对于外价轨道,自旋轨道相对论方法最好地描述了实验动量分布。相关轨道的动量谱以及分支比变化表明,相对论效应对I2分子价轨道动量分布的影响是不可忽略的。对于内价轨道,SAC-CI General-R方法在含相对论膺势的基组下的计算较好地模拟了复杂的伴线结构和相应的动量谱。
     采用截谱方法,发现了Jahn-Teller效应对NH3分子轨道动量分布的影响。简并的1e轨道中,具有更高结合能的区域在低动量区具有更高的强度。而非简并的3a1轨道则没有这种差别。相关振动模式下原子坐标位移对动量谱影响的分析可以定性地解释这种现象。
     对CF4、CCl4和CBr4分子中的扭曲波效应进行了系统的研究。三种分子的最高占据轨道都有很高的对称性和多个结面,在实验中都发现了扭曲波效应的特征:在低动量区,实验动量分布相对于理论分布“上翘”,且入射能量越高,翘起的程度越低。在其它两个轨道中也发现了扭曲波效应。此外,它们外价第5个轨道理论和实验符合得不好,并呈现出特定共同规律,目前其物理机制还不清楚。
Electron Momentum Spectroscopy (EMS) is a powerful tool for investigating theelectronic structures and dynamics of electron scattering. It can measure the bindingenergy and the electron momentum distribution of each orbital simultaneously. With thehigh-performance3rdgeneration electron momentum spectrometer, we can explore thephenomena that can not be discovered in the past, and uncover the profound physicalmechanism behind those phenomena in cooperation with the theoretical study.
     A new Gaussian fitting program was compiled in the thesis for stripping the twodimensional energy-momentum spectra. The new program is robust and easy to use. Itgreatly reduces the complexity of Gaussian peak fitting.
     The highly symmetric small molecules usually have relatively simpleelectronic structures. As a result, it is easier to interpret the physical mechanismbehind the experimental phenomena. The main work of this thesis is toinvestigate a few small molecules using our high-performance EMSspectrometer.
     We successfully measured the I2molecule under different experimentalconditions. For the outer valence orbitals, the spin-orbit relativistic methodpresented the best descriptions for the experimental momentum distributions.The momentum spectra of related orbitals as well as the variation ofbranch-ratios manifest that the relativistic effect in I2can not be ignored. For theinner valence orbitals, the calculation using SAC-CI General-R method with thebasis set cooperating with the relativistic pseudo-potential can simulate thecomplicated satellites structures and their momentum distributions.
     The Jahn-Teller effect in the momentum distributions of NH3has beenobserved through comparing the distributions of the different slices. For thedegenerate1e orbital, the slice with a higher binding energy has a higherintensity in the low momentum region. This phenomenon has not been observedon the non-degenerate3a1orbital. It was found that the displacements of atomsunder different vibration modes can influence the momentum distributionsdifferently, which can qualitatively explain this phenomenon.
     We also systematically investigated the distorted wave effect (DWE) inCF4, CCl4, and CBr4molecules. The HOMOs of them are all highly symmetricwith many nodal planes, and the features of DWE have been observed in theexperimental momentum distribution: there is a turn-up in the low momentumregion, and experimental intensitiy decreases as the incident energy increases.The DWEs were also found in other two orbitals. Besides, in the5thorbitals ofthese molecules, a unique phenomenon was observed: the theoretical calculationdoes not well fit the experimental momentum distributions, and displays somecommon characteristics. The mechanism behind the phenomenon is still notclear.
引文
[1] Weigold E, McCarthy I E. Electron Momentum Spectroscopy. New York: Kluwer Academic/Plenum Publishers,1999.
    [2] Brion C E. Looking at Orbitals in the Laboratory: the Experimental Investigation ofMolecular Wave-Functions and Binding-Energies by Electron Momentum Spectroscopy. Int.J. Quantum Chem.,1986,29(5):1397-1428.
    [3] McCarthy I E, Weigold E. Electron momentum spectroscopy of atoms and molecules. Rep.Prog. Phys.,1991,54:789-879.
    [4] Coplan M A, Moore J H, Doering J P.(e,2e) spectroscopy. Rev. Mod. Phys.,1994,66(3):985-1014.
    [5]陈学俊,郑延友.电子动量谱学的原理和应用.北京:清华大学出版社,2000.
    [6] Fukui K. Orbital Pattern Rationale in Chemical Empiricism. International J. Quantum Chem.,1977,12:277-288.
    [7]郁伟中.正电子物理及其应用.北京:科学出版社,2003:124-134.
    [8] Chamberlain O, Segre E. Proton-proton collisions within lithium nuclei. Phys. Rev.,1952,87:81-83.
    [9] Baker G A, McCarthy I E, Porter C E. Application of the phase space quasi-probabilitydistribution to the nuclear shell model. Phys. Rev.,1960,120:254-264.
    [10] Glassgold A E, Lalongo G. Angular distribution of the outgoing electrons in electronicionization. Phys. Rev.,1968,175:151-159.
    [11] Amaldi U, Egidi A, Marconero R, Pizzella G. Use of a two channeltron coincidence in a newline of research in atomic physics. Rev. Sci. Instrum.,1969,40:1001-1004.
    [12] Erhardt H, Schulz M, Te Kaat T, Willmann K. Ionization of helium: angular correlation ofthe scattered and ejected electrons. Phys. Rev. Lett.,1969,22:89-92.
    [13] Camilloni R, Guidoni A G, Tiribelli R. Coincidence measurements of qusifree scattering of9-keV electron on K and L shells of carbon. Phys. Rev. Lett.,1972,29:618-621.
    [14] Levin V G. Structure of wave-functions of atoms in (e,2e) reaction. Phys. Lett. A,1972, A39:125-126.
    [15] Weigold E, Hood S T, Teubner P J O. Energy and angular correlations of the scattered andejected electrons in the electron-impact ionization of argon. Phys. Rev. Lett.,1973,30:475-478.
    [16] Hood S T, Hamnett A, Brion C E. An (e,2e) Study of Ammonia: Binding-Energies andMomentum Distributions of Valence Electrons. Chem. Phys. Lett.,1976,39(2):252-256.
    [17] Weigold E, Hood S T, Fuss I, et al. Ionization of Atomic Hydrogen: Angular Correlations ofOutgoing Electrons. J. Phys. B: At. Mol. Phys.,1977,10(16): L623-627.
    [18] Weigold E, McCarthy I E, Dixon A J, et al. Ground State Correlations in H2Measured by (e,2e) Technique. Chem. Phys. Lett.,1977,47(2):209-212.
    [19] Moore J H, Coplan M A, Skillman T L, Brooks E D. Multichannel (e,2e) apparatus. Rev. Sci.Instrum.,1978,49:463-468.
    [20] Goruganthu R R, Coplan M A, Moore J H, Tossel J A.(e,2e) momentum spectroscopicstudy of the interaction of–CH3and–CF3groups with the carbon-carbon triple bond. J.Chem. Phys.,1988,89:25-33.
    [21] Takahashi M, Nagasaka H, Udagawa Y. Electron momentum spectrosopy study of lone pairorbitals of thiols and dimethyl sulfide. J. Phys. Chem. A,1977,101:528-532.
    [22] Todd B R, Lermer N, Brion C E. A high sensitivity momentum dispersive multichannelelectron momentum spectrometer for studies in experimental quantum chemistry. Rev. Sci.Instrum.,1993,65:349-358.
    [23] Cook J P D, McCarthy I E, Stelbovics A T, Weigold E. Non-coplanar symmetric (e,2e)momentum profile measurements for helium: an accurate test of helium wavefunctions, J.Phys. B: At. Mol. Phys.,1984,17:2339-2352.
    [24] Zheng Y, Neville J J, Brion C E, Wang Y, Davision E R. An electronic structure study ofacetone by electron momentum spectroscopy: A comparion with SCF MRSD-CI and densityfunctional theory. Chem. Phys.,1994,188:109-129.
    [25] Deng J K, Li G Q, He Y, Huang J D, Deng H, Wang X D, Zhang Y A, Ning C G, Gao N F,Wang Y, Chen X J, Zheng Y. Investigation of orbital momentum profiles of methylpropane(isobutane) by binary (e,2e) spectroscopy. J. Chem. Phys.,2001,114:882-888.
    [26]杨炳忻,陈向军,庞文宁,陈淼华,张芳,田宝利,徐克尊.(e,2e)电子动量谱仪研制和若干原子分子的电子动量谱测量.物理学报,1997,46:862-869.
    [27] Brunger M J, Adcock W. High-resolution electron momentum spectroscopy of molecules. J.Chem. Soc., Perkin Trans,2002,2:1-22.
    [28] Jones D B, Bolorizadeh M A, Brunger M J, Saha S, Wang F, Gleiter R, Bueber J, Winkler DA. An experimental and theoretical study into the valence electronic structure ofbicyclo[2.2.1]hepta-2,5-dione. J. Phys. B: At. Mol. Opt. Phys.,2006,11:2411-2429.
    [29] Dixon A J, Dey S, McCarthy I E, Weigold E, Williams G.(e,2e) spectroscopy ofH2O—separation energy spectra and valence orbital electron momentum distributions. Chem.Phys.,1977,21:81-88.
    [30] Bawagan A O, Brion C E, Davison E R, Feller D. Electron momentum spectroscopy of thevalence orbitals of H2O and D2O: quantitative comparisions using Hartree-Fock limit andcorrelated wavefunctions. Chem. Phys.,1987,113:19-42.
    [31] Zheng Y, McCarthy I E, Weigold E, Zhang D. Direct observation of the momentum-densityprofile of excited and priented sodium atoms. Phys. Rev. Lett.,1990,64:1358-1360.
    [32] Zheng Y, Neville J J, Brion C E. Imaging the electron-density in the highest occupiedmolecular-orbital of glycine. Science,1995,270:786-788.
    [33] Storer P, Caprari R S, Clark S A C, Vos M, Weigold E. Condensed matter electronmomentum spectrometer with parallel detection in energy and momentum. Rev. Sci. Instrum.,1994,65:2214-2226.
    [34] Vos M, Cornish G P, Weigold E. High-energy (e,2e) spectrometer for the study of thespectral momentum density of materials. Rev. Sci. Instrum.,2000,71:3831-3840.
    [35] Zheng Y, Cooper G, Tixier S, Todd B R, Brion C E.2π gas phase multichannel electronmomentum spectrometer for rapid orbital imaging and multiple ionization studies. J. ElectronSpectrosc. Relat. Phenom.,2000,112:67-91.
    [36] Takahashi M, Saito T, Matsuo M, Udagawa Y. A high sentivity electron momentumspectrometer with simultaneous detection in energy and momentum. Rev. Sci. Instrum.,2002,73:2242-2248.
    [37] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F, Li G Q.(e,2e) electronmomentum spectrometer with high sentivity and high resolution. Rev. Sci. Instrum.,2005,76:063103.
    [38] Shan X, Chen X J, Zhou L X, Li Z J, Liu T, Xue X X, Xu K Z. High resolution electronmomentum spectroscopy of dichlorodifluoromethane: Unambiguous assignments of outervalence molecular orbitals. J. Chem. Phys.,2006,125:154307.
    [39] Tian Q G, Wang K D, Shan X, Chen X J. A high-sensitivity angle and energy dispersivemultichannel electron momentum spectrometer with2pi angle range. Rev. Sci. Instrum.,2011,82:033110.
    [40] Yamazaki M, Satoh H, Ueda M, et al.. A highly sensitive electron momentum spectrometerincorporating a multiparticle imaging detector. Meas. Sci. Technol.,2011,22:075602.
    [41]任雪光.第三代电子动量谱仪的研制和若干样品的实验研究:[博士学位论文].北京:清华大学物理系,2005.
    [42]张书峰.第三代电子动量谱仪的改进及若干样品的实验研究:[博士学位论文].北京:清华大学物理系,2007.
    [43]宁传刚.第三代电子动量谱仪的改进及其应用:[博士学位论文].北京:清华大学物理系,2007.
    [44] Hargreaves L R, Colyer C, Stevenson M A, Lohmann B, Al-Hagan O, Madision D H, NingC G.(e,2e) study of two-center interference effects in the ionization of N2. Phys. Rev. A,2009,80:062704.
    [45] Colyer C J, Bellm S M, Lohmann B, Hanne G F, Al-Hagan O, Madison D H, Ning C G.Dynamical (e,2e) studies using tetrahydrofuran as a DNA analog. J. Chem. Phys.,2010,133:124302.
    [46] Nixon K L, Andrew J Murray, Hari Chaluvadi, Ning C G, Madision D H. Low energy (e,2e)studies from CH4: Results from symmetric coplanar experiments and molecular three-bodydistorted wave theory. J. Chem. Phys.,2011,134:174304.
    [47] Deng J K, Li G Q, Wang X D, et al. Orbital electron densities of ethane: Comparison ofelectron momentum spectroscopy measurements with near Hartree-Fock limit and densityfunctional theory calculations. J. Chem. Phys.,2002,117:4839-4845.
    [48] Ren X G., Ning C G, Deng J K, et al. Direct observation of distorted wave effects inethylene using (e,2e) reaction. Phy. Rev. Lett.,2005,94:163201.
    [49] Su G L, Ning C G, Zhang S F, et al. An electron momentum spectroscopy study of thehighest occupied molecular orbital of difluoromethane. Chem. Phys. Lett.,2004,390:162-165.
    [50] Ning C G, Ren X G, Deng J K, Su G L, Zhang S F, Knippenberg S, Deleuze M S. ProbingDyson orbitals with Green Function theory and Electron Momentum Spectrosopy. Chem.Phys. Lett.,2006,421:52-57.
    [51] Ning C G, Ren X G, Deng J K, Zhang S F, Su G L, Huang F, Li G Q. Investigation of thehighest occupied molecular orbital of1,3-cyclohexadiene by a (e,2e) spectrometer. Chem.Phys. Lett.,2005,407:423-426.
    [52] Ning C G, Ren X G, Deng J K, Su G L, Zhang S F, Li G Q. Turn-up effects at lowmomentum for the highest occupied molecular orbital of oxygen at various impact energiesby electron momentum spectroscopy. Phys. Rev. A,2006,73:022704.
    [53]刘文剑.相对论量子化学新进展.化学进展,2007,19:833-851.
    [54] Ren X G, Ning C G, Deng J K, Su G L, Zhang S F, Huang Y R.(e,2e) study ondistorted-wave and relativistic effects in the inner-shell ionization processes of xenon4d5/2and4d3/2. Phys. Rev. A,2006,73(4):042714.
    [55]刘昆.重元素体系的电子动量谱学研究:[博士学士论文].北京:清华大学物理系,2010.
    [56] Liu K, Ning C G, Deng J K. Combining relativistic quantum-chemistry theories andelectron-momentum spectroscopy to study valence-electron structures of molecules. Phys.Rev. A,2009,80:022716.
    [57]刘昆,宁传刚,邓景康. UF6分子价轨道相对论效应的理论电子动量谱学研究.原子与分子物理学报,2010,27:195.
    [58] Ning C G, Ren X G, Deng J K, et al. Investigation of valence orbitals of propene by electronmomentum spectroscopy. J. Chem. Phys.,2005,122:224302.
    [59] Yang T C, Ning C G, Su G L, Deng J K, Zhang S F, Ren X G, Huang Y R. Experimental andtheoretical investigation of valence orbitals in1,4-dioxane by electron momentumspectroscopy. Chin. Phys. Lett.,2006,23(5):1157-1160.
    [60] Ning C G, Luo Z H, Huang Y R, Hajgato, Morini F, Liu K, Zhang S F, Deng J K, Deleuze MS. Investigation of the molecular conformations of ethanol using electron momentumspectroscopy. J. Phys. B: At. Mol. Opt. Phys.,2008,41:175103.
    [61]石砳磊,宁传刚,邓景康.苯甲醇分子HOMO和N-HOMO轨道的电子动量谱学研究.原子与分子物理学报,2010,27:211.
    [62]石砳磊.芳香族化合物的电子动量谱学研究:[博士学位论文].北京:清华大学物理系,2011.
    [63] Su G L, Ning C G, Deng J K, et al. Direct observations of the chemical shift and electronmomentum distributions of core shell in N2O. Chem. Phys. Lett.,2006,422:308-312.
    [64]苏国林.用电子动量谱学研究分子芯轨道及一些基本物理化学问题:[博士学位论文].北京:清华大学物理系,2005.
    [65]黄艳茹.单电子格林函数在电子动量谱学中的应用:[博士学位论文].北京,清华大学物理系,2008.
    [66] Huang Y R, Hajgato B, Ning C G, Zhang S F, Liu K, Luo Z H, Deng J K, Deleuze M S.Study of the Valence Wavefunction of Thiophene with High Resolution Electron MomentumSpectroscopy and Advanced Dyson Orbital Theories. J. Phys. Chem. A,2008,112(11):2339-2354.
    [67] Huang Y R, Ning C G, Deng J K, Deleuze M D. Study of the Photoelectron and ElectronMomentum Spectra of Cyclopentene using Benchmark Dyson Orbital Theories. Phys. Chem.Chem. Phys.,2008,10:2374-2389.
    [68]苗雨润.用SAC-CI理论计算分子电离能谱和电子动量谱:[博士学位论文].北京:清华大学物理系,2011.
    [69] Miao Y R, Ning C G, Liu K, Deng J K. Dyson orbitals of N2O: Electron momentumspectroscopy and symmetry adapted cluster-configuration interaction calculations. J. Chem.Phys.,2011,134:204304.
    [70] Miao Y R, Ning C G, Deng J K. Calculation of Dyson orbitals using asymmetry-adapted-cluster configuration-interaction method for electron momentumspectroscopy: N2and H2O. Phys. Rev. A,2011,83:062706.
    [71] Liu K, Ning C G, Luo Z H, Shi L L, Deng J K. An experimental and theoretical study of theHOMO of W(CO)6: Vibrational effects on the electron momentum density distribution. Chem.Phys. Lett.,2010,497:229-233.
    [72] Miao Y R, Deng J K, Ning C G. Vibrational effects on the electron momentum distributionsof valence orbitals of formamide. J. Chem. Phys.,2012,136:124302.
    [73] Born M, Oppenheimer R. Zur Quantentheorie der Molekeln, Annalen der Physik,1927,389:457-484.
    [74] Casida M E, Chong D P. Quasi-particle equation from the configuration-interaction (CI)wave-function method. Int. J. Quan. Chem.,1991,40:225-242.
    [75] Szabo A, Ostlund S. Modern Quantum Chemistry. New York: McGraw-Hill,1989.
    [76] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B,1964,136: B864-B871.
    [77] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects.Phys. Rev.,1965,140: A1133-A1138.
    [78] Duffy P, Chong D P. Assessment of Kohn-Sham density-functional orbitals as approximateDyson orbitals for the calculation of electron-momentum spectroscopy scattering crosssections. Phys. Rev. A,1994,50:4707-4728.
    [79] Pople J A, Headgordon M, Raghavachari K. Quadratic Configuration-Interaction–a GeneralTechnique for Determining Electron Correlation Energies. J. Chem. Phys.,1987,87:5968-5975.
    [80] Nakatsuji H. Cluster expansion of wavefunction–excited-states. Chem. Phys. Lett.,1978,67:362-364.
    [81] Nakatsuji H. Cluster expansion of the wavefunction–electron correlations in ground andexcited-states by SAC (symmetry-adapted-cluster) and SAC-CI theories. Chem. Phys. Lett.,1979,67:329-333.
    [82] Nakatsuji H. Description of two-and many-electron processes by the SAC-CI Method.Chem. Phys. Lett.,1991,177:331-337.
    [83] Nakatsuji H. Exponentially generated configuration-interaction theory–descriptions ofexcited, ionized, and electron attached states. J. Chem. Phys.,1991,94:6716-6727.
    [84] Nakatsuji H. Structure of the exact wave function. J. Chem. Phys.,2000,113:2949-2956.
    [85] Pyykko P. Relativistic quantum chemistry. In: Lowdin P,(eds.) advances in quantumchemistry. New York: Academic press,1978:353-409.
    [86] Duffy P, Casida, Brion C E, Chong D P. Assessment of Gaussian-weighted angularresolution functions in the comparision of quantum-mechanically calculated electronmomentum distributions with experiment. Chem. Phys.,1992,159:347-363.
    [87] Bischof P, Hashmall J A, Heibronner E, Harnung V. Photoelectron spectroscopy ofinteraction between non-conjugated double bonds. Helv. Chim. Acta.,1969,52:1745.
    [88] Bieri G, Burger F, Heibronner E, Maier J P. Valence ionization energies of hydrocarbons.Helv. Chim. Acta.,1977,60:2213-2223.
    [89] Getzlaff M, Schonhense G. Electronic structure of terpene derivatives. J. Electron Spectrosc.Relat. Phenom.,1998,224:225-230.
    [90] Knippenberg S, Nixon K L, Brunger M J, Maddern T, Campbell L, Trout N, Wang F.Norbornane: An investigation into its valence electronic structure using electron momentumspectroscopy, and density functional and Green’s function theories. J. Chem. Phys.,2004,121:10525-10540.
    [91] Ahuja r, Blomqvist A, Larsson P, Pyykko P, Zaleski-Ejgierd P. Relativity and the Lead-AcidBattery. Phys. Rev. Lett.,2011,106:018301.
    [92] Cook J P D, Mitroy J, Weigold E. Direct Observations of Relativistic Effects inSingle-Electron Momentum Distributions in Xenon Outer Shells. Phys. Rev. Lett.,1984,52:1116-1118.
    [93] Cook J P D, McCarthy I E, Mitroy J, et al. Electron momentum spectroscopy of Xenon-Adetailed analysis. Phys. Rev. A,1986,33(1):211-221.
    [94] Frost L, Mitroy J, Weigold E. The electron momentum spectroscopy of lead. J. Phys. B: At.Mol. Phys.,1986,19:4063-4074.
    [95] Bonfert J, Graf H, Nakel W. Relativistic (e,2e) processes on atomic inner shells. J. Phys. B:At. Mol. Phys.,1991,24:1423-1434.
    [96] Li Z, Chen X, Shan X, et al. Experimental observation of relativistic effects on electronicwavefunction for iodine lone-pair orbital of CF3I. Chem. Phys. Lett.,2008,457:45-48.
    [97] Conrnford A B, Frost D C, McDowell C A, Ragle J L, Stenhouse I A. Photoelectron spectraof halogens. J. Chem. Phys.,1971,54:2651-2657.
    [98] Salaneck, Bigelow R W, Freund H J, Plummer E W. X-ray photoelectron spectroscopy ofgaseous and solid I2: Ion-state-enhanced intermolecular interactions. Phys. Rev. B,1981,24:2403-2411.
    [99] Bieri G, Asbrink L, von Niessen W.30.4nm He(II) photoelectron spectra of organicmolecules7: miscellaneous compounds. J. Electron Spectrosc. Relat. Phenom.,1982,27:129-178.
    [100] Yencha A J, Cockett M C R, Goode J G, Donovan R, Hopkirk A, King G C. Thresholdphotoelectron spectroscopy of I2. Chem. Phys. Lett.,1994,229:347-352.
    [101] Grisogono A M, Pascual R, Weigold E, Bawagan A O, Brion C E, Tomasello P, von NiessenW. Orbital momentum distributions and binding-energies for the complete valence shell ofmolecular iodine. Chem. Phys.,1988,124:121-130.
    [102] Gurvich L V. Reference books and data banks on the thermodynamic properties of individualsubstances. Pure. Appl. Chem.,1989,61:1027-1031.
    [103] Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formaluinto a functional of the electron-density. Phys. Rev. B,1988,37:785-789.
    [104] Peterson K A, Shepler B C, Figgen D, Stoll H. On the Spectroscopic and ThermochemicalProperties of ClO, BrO, IO, and Their Anions. J. Phys. Chem. A,2006,110:13877.
    [105] BASIS SET EXCHANGE. https://bse.pnl.gov/bse/portal.
    [106] ADF2008.01(SCM, Vrije Universiteit, Theoretical Chemistry, Amsterdam, The Netherlands,2008).
    [107] Vanlenthe E, Baerends E J, Snijders J G. J. Chem. Phys.,1994,101:9783-9792.
    [108] Jahn H A, Teller E. Stability of Polyatomic Molecules in Degenerate Electronic States. Proc.R. Soc. A,1937,161:220-235.
    [109] Barckholtz T. A, Miller T. A. Quantitative insights about molecules exhibiting Jahn-Tellerand related effects. International Reviews in Physical Chemistry,1998,17(4):435-524.
    [110] Bersuker I B. The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry. NewYork: Plenum,1984.
    [111] Rabalais J W, Karlsson L, Werme L O, Bergmark T, Siegbahn K. Analysis of vibrationalstructure and Jahn-Teller effects in electron spectrum of ammonia. J. Chem. Phys.,1973,58:3370-3372.
    [112] Koppel H, Cederbaum L S, Domcke W, Niessen W V. Jahn-Teller effect in NH3+. Mol.Phys.,1978,35:1283-1299.
    [113] Haller E, Cederbaum L S, Domcke W, Koppel H.2-Mode Jahn-Teller effect in NH3+. Chem.Phys. Lett.,1980,72:427-431.
    [114] Rossi A R, Avouris P. Theoretical studies of the electronic structure and spectra of low-lyingstates in NH3+. J. Chem. Phys.,1983,79:3413-3420.
    [115] Krier C, Praet M t, Lorquet J C. Unimolecular decay paths of electronically excitedspecies.6. the A2E state of NH3+. J. Chem. Phys.,1985,82:4073-4075.
    [116] Allen J M, Ashfold M N R, Stickland R J, Western C M. The B1E state of NH3–TheJahn-Teller effect revealed by infrared optical double-resonance. Mol. Phys.,1991,74:49-60.
    [117] Bersuker I B. Modern aspects of the Jahn-Teller effect theory and applications to molecularproblems. Chem. Rev.,2001,101:1067-1114.
    [118] Woywod C, Scharfe S, Krawczyk R, Domcke W, Koppel H. Theoretical investigation ofJahn-Teller and pseudo-Jahn-Teller interactions in the ammonia cation. J. Chem.. Phys.,2003,118:5880-5893.
    [119] Viel A, Eisfeld W, Neumann S, Domcke W, Manthe U. Photoionization-induced dynamics ofammonia: Ab initio potential energy surfaces and time-dependent wave packet calculationsfor the ammonia cation. J. Chem. Phys.,2006,124:214306.
    [120] Turner D W, Baker C, Baker A D, Brundle C R. Molecular Photoelectron Spectroscopy.London: Wiley,1970.
    [121] Potts A W, Price W C. Photoelectron spectra and valence shell orbital structures of Groups-Vand VI hydrides. Proc. R. Soc. London Ser. A,1972,326:181.
    [122] Banna M S, Shirley D A. Molecular photoelectron spectroscopy at132.3eV–2nd-rowhydrides. J. Chem. Phys.,1975,63:4759-4766.
    [123] Kimura K, Katsumata S, Achiba Y, Yamazaki T, Twata S. Handbook of He I PhotoelectronSpectra of Fundamental Organic Molecules. New York: Halsted,1981.
    [124] Argen H, Reineck, Veenhuizen H, Maripuu R, Arnerberg R, Karlsson L. A theoreticalinvestigation of the UV excited1A1-]2A1photoelectron spectra of NH3and ND3. Mol.Phys.,1982,45:477-492.
    [125] Bieri G, Asbrink L, von Niessen W.30.4nm He(II) photoelectron spectra of organicmolecules.7. miscellaneous compounds. J. Electron Spectrosc. Relat. Phenom.,1982,27:129-178.
    [126] Piancastelli M N, Cauletti C, Adam M Y. Angle-resolved photoelectron spectroscopic studyof the outer-valence and inner-valence shells of NH3in the20-80eV photo energy-range. J.Chem. Phys.,1987,87:1982-1986.
    [127] Locht R, Hotmann K, Hagenow G. The threshold-photoelectron spectrum of NH3. Chem.Phys. Lett.,1992,190:124-129.
    [128] Edvardsson D, Baltzer P, Karlsson L, Wannberg B, Hooland D M P, Shaw D, Rennie E E. Aphotoabsorption, photodissociation and photoelectron spectroscopy study of NH3and ND3. J.Phys. B,1999,32:2583-2609.
    [129] Vanhise J R, McDonald D N. Electron momentum distribution in NH3. J. Chem. Phys.,1974,61:2339-2341.
    [130] Camilloni R, Stefani G, Giardiniguidoni A, Tiribelli R, Vinciguerra D. Electron momentumdistribution of valence states of NH3and2-sigmag state of N-2as measured by (e,2e)experiments. Chem. Phys. Lett.,1976,41:17-20.
    [131] Bawagan A O, Brion C E. Orbital imaging of the lone pair electrons in N(CH3)3, NH3andNF3by electron momentum spectroscopy. Chem. Phys. Lett.,1987,137:573-577.
    [132] Bawagan, Mullerfiedler R, Brion C E, Davidson E R, Boyle C. The valence orbitals of NH3by electron momentum spectroscopy–quantitative comparisions using Hartree-Fock limitand correlated wavefunctions. Chem. Phys.,1988,120:335-347.
    [133] Dunning T H. Gaussian-basis sets for use in correlated molecular calculations.1. the atomsboron through neon and hydrogen. J. Chem. Phys.,1989,90:1007-1023.
    [134] Tossell J A, Moore H H, Coplan M A. Molecular distortions and electron momentumdistributions. Chem. Phys. Lett.,1979,67:356-358.
    [135] Li Z J, Chen X J, Shan X, Liu T, Xu K Z. Electron momentum spectroscopy study ofJahn-Teller effect in cyclopropane. J. Chem. Phys.,2009,130:054302.
    [136] Ribbegard G. Chem. Complex between ammonia and chlorine studied at20degrees K in anitrogen matrix. Phys. Lett.,1974,25:333-337.
    [137] Siegbahn K, Nordling C, Hohansson G, et al.. ESCA Applied to Free Molecules. Lodon:Amersterdam,1969.
    [138] Potts A W, Lempka H J, Streets D G, et al.. Photoelectron spectra of halides of elements inGroup-III, Group-IV, Group-V and Group-VI. Phil. Trans. R. Soc. Lond. A,1970,268:59-76.
    [139] Green J C, Green M L H, Joachim P J, et al.. Study of bonding in Group-IV tetrahalides byphotoelectron spectroscopy. Phil. Trans. R. Soc. Lond. A,1970,268:111-130.
    [140] Brundle C R, Robin M B, Basch H. Electronic energies and electronic structures offluoromethanes. J. Chem. Phys.,1970,53:2196-2213.
    [141] Banna M S, Mills B E, Davis D W, et al.. X-ray photoemission molecular-orbitals ofhydrogen-fluoride and fluorinated methanes. J. Chem. Phys.,1974,61:4780-4786.
    [142] Bieri G, Asbrink L, vonNiessen W.30.4-nm He(II) photoelectron-spectra of organicmolecules.4. Fluoro-compounds (C,H,F). J. Electron Spectrosc. Relat. Phenom.,1981,23:281-322.
    [143] Carlson T A, Fahlman A, Svensson W A, et al.. Angle-resolved photoelectron cross-sectionof CF4. J. Chem. Phys.,1984,81:3828-3824.
    [144] Novak I, Potts A W, et al.. Photlelectron asymmetry measurements for CHF3and CF4inthe photo energy-range19to80eV. J. Phys. B: At. Mol. Opt. Phys.,1985,18:1581-1588.
    [145] Yates B W, Tan K H, Bancroft G M, et al.. Photoelectron study of the valence levels of CF4and SiF4from20to100eV. J. Chem. Phys.,1985,83:4906-4916.
    [146] Cambi R, Ciullo G, Sgamellotti A, et al.. Ionization of fluoromethanes–CHF3and CF4–AGreen-Function study and an (e,2e) spectroscopic investigation. Chem. Phys. Lett.,1982,90:445-452.
    [147] Leung K T, Brion C E. Experimental and calculated momentum densities for the valenceorbitals of carbon tetrafluoride. Chem. Phys.,1984,91:43-58.
    [148] Watanabe N, Chen X J, Takahashi M. Interference Effects on (e,2e) Electron MomentumProfiles of CF4. Phys. Rev. Lett.,2012,108:173201.
    [149] Ohta T, Kuroda H. X-ray photoelectron spectroscopy of chloromethanes and chloroethanes.Bulletin of the Chemical Society of Japan,1976,49:2939-2945.
    [150] Carlson T A, Krause M O, Grimm F A, et al.. Angle-resolved photoelectron spectroscopy ofCCl4–the cooper minimum in molecules. J. Chem. Phys.,1982,77:5340-5347.
    [151] Grisogono A M, Pascual r, vonNiessen W, et al.. The polychloromethanes–an experimentaland theoretical investigation of their valence electronic structure. Chem. Phys.,1989,135:317-346.
    [152] Computational Chemistry Comparison and Benchmark DataBase. National Institute ofStandards and Technology. http://cccbdb.nist.gov.
    [153] Kuchitsu K. Structure of Free Polyatomic Molecules: Basic Data. Belin: Springer,1998.
    [154] Yamamoto S, Takami M, Kuchitsu K. Diode laser spectroscopy of the (nu)3band of carbontetrachloride (C35Cl4) Stark modulation and cold jet infrared absorption spectrum. J. Chem.Phys.,1984,81:3800-3804.
    [155] Kuchitsu K. Landolt-Bornstein: Group II: Molecules and Radicals Volume23: StructureData for Free Polyatomic Molecules. Berlin: Springer,1995.
    [156] Niessen W V, Schirmer J, Cederbaum L S. Computational methods for the one-particleGreen-Function. Comput. Phys. Rep.,1984,1:57-125.
    [157] Ortiz J V. Computational chemistry: reviews of current trends. Singapore,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700