用户名: 密码: 验证码:
微生物对粉煤灰的改良及采煤塌陷地复垦的生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济、能源行业的快速发展,粉煤灰的污染治理已经成为了能源行业面临的重要问题。利用微生物技术对粉煤灰基质进行改良,对粉煤灰堆放场进行原位修复,加速植被恢复,是改善堆放场生态环境一个重要途径。神东煤矿是我国特大型煤田之一,大规模的开采,造成了大面积的采空塌陷区,对当地脆弱的生态环境带来严重的破坏。
     通过人为接种微生物,利用微生物和植物根际的生命活动,挖掘废弃物的潜在肥力,加速其向有利于生态重建的方向转化,有益于人与自然界生态系统的和谐发展。本论文的研究内容及获得的主要结果包括以下几个方面:
     1从京郊菜园土中分离得到一株菌株,初步鉴定为胶质芽孢杆菌,经驯化后其在粉煤灰基质中的释钾率可达27%。不但能显著提高粉煤灰基质中速效钾含量,而且明显降低了基质的pH。并对该菌株的生理生化特性和不同施菌量对粉煤灰释钾效果的影响进行了研究,以5%接菌量最好。
     2通过盆栽试验种植紫花苜蓿,比较筛选出的解钾菌株对粉煤灰的改良作用及其对植物生长的影响。以中科院买来的菌株Bacillus mucilaginasus为对照,经过在粉煤灰基质中的驯化培养,结果表明,筛选出的菌株C6对粉煤灰中速效钾的释放效果最明显,降低了基质pH,显著地促进了植物的生长。
     3通过两室盆栽试验对筛选出来的释钾菌及本实验室保存的解磷细菌与丛枝菌根和根瘤菌(中国农科院提供)的协同作用对植物生长及粉煤灰基质的影响实验。结果表明,释钾菌+菌根+解磷菌、释钾菌+菌根+解磷菌+根瘤菌的微生物组合处理的植物的生物量有了明显提高,促进了粉煤灰基质的有效磷、钾的释放,降低了基质的pH。
     4通过两室盆栽试验,研究了微生物的联合作用对基质及植株重金属的影响。结果表明,所有非接种菌根处理的丝室基质重金属浓度均显著高于根室。接菌根处理的植株地上部分重金属浓度均高于非接种菌根处理。所有非接种菌根处理的地下部分的重金属浓度明显高于地上部分。接种菌根处理的地下部分除Zn外,均低于非接种菌根处理。研究发现,只有适宜的微生物组合才能有效促进植株对重金属的吸收。微生物联合技术的运用为研究粉煤灰重金属污染的修复开辟了新的途径。
     5通过在沉陷区建立微生物复垦基地,对接种菌根的间作向日葵+蚕豆+M与非接种菌根的间作向日葵+蚕豆CK、单播向日葵CK及单播蚕豆CK的生态效应进行了研究。结果显示,接种菌根的间作小区里向日葵的产量、株高、花盘直径、茎粗、籽粒饱满度都有了明显的提高,接种菌根后,菌根侵染率及根际菌丝长度远远高于对照。
As China's economy and energy industry development, fly ash has become the important environmental issue in energy industry. There is an important way to use of microbial technology to improve the matrix of fly ash, to repair fly ash dumps in situ, to speed up the restoration of vegetation, to improve the ecological environment dumps. Shendong Coal Mine is one of China's super-sized coal mines. However, the large-scale exploitation leading to a wide range of ground subsidence and the fragile ecological environment has been severely damaged. Seeking the potential fertility of wastes and accelerating their transformation to ecological reconstruction through the life activities of the rhizosphere and artificial inoculation of microbes are beneficial to the sustainable development of ecosystems.
     The main objectives and results obtained are listed as follows:
     1 One strain selected from the garden soil of Beijing suburbs. It release available K rate is 27.2% after domesticated in coal fly ash. It not only can significantly improve the fly ash available K content, but also significantly reduces the fly ash pH. The physiological and biochemical characteristics of strain and the effects of additive bacteria amount to available K content were studied. Tests showed that bacteria in 5% are the best effective volume.
     2 Two strains had been selected from soil and one bought strain Bacillus mucilaginasus. They can release K+ from the fly ash in the laboratory. A pot experiment was carried out to study the ecological effects of the potsssium-dissolving strain on coal fly ash. The results showed that one strain named C6 can improve plant growth, release potassium, decrease pH significantly.
     3 A two rooms pot culture experiment was carried out to study the combined effects of micro-organisms on plant growth and the impact of fly ash matrix by use phosphate-solubilizing bacteria (PSB), Potassium-dissolving bacteria, arbuscular mycorrhiza and rhizobium. Studies have shown that some micro-organisms combined can improve plant dry weight significantly, improved matrix available phosphorus and potassium content, and reducing the matrix pH.
     4 Through two rooms pot culture experiment to study the impact of heavy metal elements on plant and fly ash matrix by use phosphate-solubilizing bacteria (PSB), Potassium-dissolving bacteria, arbuscular mycorrhiza and rhizobium. The results show that, the heavy metal elements concentration of root room matrix is significantly higher than hyphae room. The metal elements concentration of stem leaf with mycorrhizal treatmentss is higher than other treatmentss. The root heavy metal elements concentration is significantly higher than stem leaf. The mycorrhizal treatmentss root heavy metal elements concentration is lower than other microbial treatmentss except Zn. The study found that only the appropriate combination of micro-organisms treatmentss can effectively promote the absorption of heavy metals elements by plant.
     5 One micro-organisms reclamation base has been established to study the ecological effects in mixed sowing sunflower with fava bean, non-inoculated sunflower, broad bean, non-inoculated fava bean. Compared with the control, in inoculation of mycorrhizal fungi mixed sowing sunflower with fava bean, sunflower yield, plant height, faceplate diameter, stem base, seed plumpness improve Significantly. Infection rate of plant is over 80% and hyphal length is much greater than control.
引文
[1]陈辉,宁曙光.煤矸石中硫的存在形态及自然条件下的转化途径[J].山东煤炭科技, 2001,(3):18-19.
    [2]王学武,赵风清.粉煤灰综合利用研究述评[J].粉煤灰综合利用,2001,(6):39-40.
    [4]刘培云,粉煤灰淋溶液中的有害物质对地下水污染的试验研究[J].煤矿环境保护,2000,14(3):35-37.
    [5]张清敏,胡国臣,王忠,等.粉煤灰中重金属Pb、Cd的有效态研究[J].农业环境保护,2000,19(6);350-351.
    [6]曹仁林,贾晓葵,顾进飞.粉煤灰复田中有害物质对农林产品质量影响与污染控制[J].农业环境保护,2000,19(5):296-298.
    [7]胡振琪,戚家忠,司继涛.不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J].农业工程学报,2003,19(2):214-218.
    [8]何书金,郭焕成,韦朝阳,等.中国煤矿区的土地复垦[J].地理研究,1996,9 (3):23-32.
    [9]杨铁良.煤矿城市的国土整治问题[J].国土与自然资源研究,1993,(2):8-9.
    [10]祝国军.淮北平原煤矿塌陷区的综合开发[J].国土与自然资源研究,1993,(2):10-13.
    [11]胡振琪.采煤塌陷地的土地资源管理与复垦[M].北京:煤炭工业出版社,1996.
    [12]方创琳.采煤塌陷地的综合开发与协调发展[J].中国人口·资源与环境.1997,(2):66-71.
    [13]方创琳,毛汉英.兖滕两淮地区采煤塌陷地的动态演化规律与综合整治[J].地理学报,1998,53(1):24-31.
    [14]毛景东,杨国治.粉煤灰资源的农业利用[J].农村生态环境,1994,10(3):73-75.
    [15]刘兴德,牛福生,倪文.粉煤灰的资源化利用现状与研究进展[J].建材技术与应用, 2005,(1) ;12-15.
    [16]付建生,张军礼,付丹,等.粉煤灰的利用[J].湖北造纸,2008,1(1):45-48.
    [17]潘钟,罗津晶,薛姗姗,等.粉煤灰利用的回顾与展望[J].环境卫生工程, 2008,16(1):19-22.
    [18]贺玉晓,尹国勋,谭利敏.某电厂堆灰场附近浅层地下水中Cr6+的成因及治理措施[J].环境污染治理技术与设备,2003,4(9):74-76.
    [19]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,1997,1-13.
    [20]赛汉胡尔,姚婕.粉煤灰的处理与利用[J].内蒙古环境保护,2004,16(4):21-23.
    [21]赵丽华,赵中一.粉煤灰资源化的现状[J].环境污染治理技术与设备,2002,3(4):34-38.
    [22]朱国营,赵勇胜.粉煤灰在垃圾淋溶液循环处理中的作用[J].长春科技大学学报,2000,30(3):262-265.
    [23]朱江,周俊,曹德菊等.粉煤灰的理化性状及其在农业上的应用[J].安徽农业学报,1999,5(1):48-49.
    [24]杨静,刘心悦,薛彦辉.用粉煤灰处理印染废水的研究[J].东科技大学学报(自然科学版),2000,19(4):25-33.
    [25]张建平,张振声,尹连庆等.粉煤灰处理废水的机理及应用[J].粉煤灰综合利用,1996,(4):33-35.
    [26]崔小明.粉煤灰的综合利用[J].贵州化工,1997,(1):39-42.
    [27]刘长瑜,孙守栋,刘学山等.粉煤灰充填采煤塌陷地覆土还田的实践与探讨[J].资源产业,2000,(7):20-22.
    [28]王巧妮,陈新生,张智光.我国采煤塌陷地复垦的现状、问题和原因分析[J].能源环境保护,2008(5):49-53.
    [29]郭联宏.浅谈煤炭开采沉陷与复垦技术[J].山西煤炭管理干部学院学报2008(3):132-134.
    [30]鲁宾契克.细菌肥料的制备与应用[M].凌魁,凌涓清,译.北京;农业出版社,1963.73-80.
    [31]李元芳.硅酸盐细菌肥料的特性和作用[J].土壤肥料,1994,4;48-49.
    [32]Monib M. Zahra, M K. Abdel el-Al S I. Role of silicate bacteria in releasing K and Si from biblite and orthoclase [J]. Soil Biology and Conservation of the Biosphere ,1984 ,2 :733-743.
    [33]贺积强,李登煜,张小平,等.硅酸盐细菌研究进展[J].西南农业学,1999,12:102-108
    [34]陈廷伟,陈华癸.钾细菌的形态生理及其对磷钾矿物的分解能力[J].微生物学报,1960,2(3):104-112.
    [35]盛下放,黄为一.硅酸盐细菌NBT菌株解钾机理初探[J].土壤学报,2002,39(6):863-871.
    [36]薛泉宏,张红娟,蔡艳,等.钾细菌对江西酸性土壤养分活化作用的研究[J].西北农林科技大学学报(自然科学版),2002,30(1):38-42.
    [37]池景良,葛英华.硅酸盐细菌解钾活化的研究[J].微生物学,1999,19 (2) :43-51.
    [38]Roos, Luckner. Relationship between proton extrusion and pluxes of ammonium ions and organic acids in Penicillium cyclopium [J].GenMicrobiol, 1984, 130:1007-1014.
    [39]Kim K Y, Jordan D, Mc Donald G A. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity [J]. Biology and Fertility of soils, 1988, 26(12):79-87.
    [40]ME,Brown, Seed and root bacterization[J].Ann.Rev.Phytopathol.,1974,12:181-197.
    [41]M.Datta, S.Banik and RK.Gupta,Studies on the efficacy of a phytohormone producing phosphate solubiliz-ing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland[J].Plant and Soil, 1982,69:365-373.
    [42]JM.Barea, E.Navarro and E.Montoya Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria[J].J.Appl. Bact., 1976,40:129-134.
    [43]Sperber JI, Solution of apatite by soil microorganisms producing organic acids [J]. Australia Journal of Agricultural Research, 1958,9: 782-787.
    [44]Illmer P, Schinner F, 1992, Solubilization of inorganic phosphate by microorganisms isolated from forest soils [J]. Soil Biology and Biochemistry, 24(4): 389-395.
    [45]梁绍芬,姜瑞波.细菌解磷作用的初步研究[M].微生物肥料的生产应用及其发展.北京:中国农业科技出版社,1996,61-65.
    [46]MAZ.Molla and AA.Chowdhury,Microbial mineralization of organic phosphate in soil[J].Plant and soil,1984,78:393-399.
    [47]F.Laheurte and J.Berthelin, Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus[J]. Plant and Soil,1988, 105:11-17.
    [48] Smith, S.E & Read D.J, Mycorrhizal Symbiosis (2nd edition)[M].1997, 379-408.
    [49]李晓林.VA菌根与植物的矿质营养[M].环境胁迫与植物根际营养(张福锁、李晓林、王敬国等著),北京:中国农业出版社,1998,56~76.
    [50]林先贵,顾希贤,郝文英.VA菌根真菌对石刁柏生长的影响[J].植物学报,1992,34(7):551-555.
    [51]毕银丽,李晓林,丁保健.水分胁迫条件下接种菌根对玉米抗旱性的影响[J].干旱地区农业研究,2003,21(2):7-12.
    [52]Van der Heijden, John, N.Klironimos, Margot Ursic, Ian R.Sanders, 1998, Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J]. Nature,396(5 November):69-72.
    [53]毕银丽,吴福勇,柳博会.AM真菌在煤矿废弃物中生态适应性的初步研究[J].菌物学报,2005,24(4):2570-2575.
    [54]秦芳玲,王敬国,李晓林,等. VA菌根真菌和解磷细菌对红三叶草生长和氮磷营养的影响[J].草业学报,2000,9(1):9-14.
    [55]边炳鑫,煤系固体废物资源化技术[M].北京:化学工业出版社,2005,121-126.
    [44]Fergusson JE, 1990, The heavy metals, Chemistry, Environment Impact and Health Effects[M]. London:Pegramon Press.
    [56]Youseef RA, Fattah AEA, Hilal MH, 1997, Studies on the movement of Ni in wheat rhizosphere using rhizobox techniques. Ejyptian [J]. Soil Sci., 37(2): 175-187.
    [57]Eriksson JE, 1989, The influence of pH, soil type and time on adsorption and uptake by plants of Cd added to the soil [J]. Water Air Soil Pollut, 48: 317-335.
    [58]Ledin M, Pederson K, 1997, Allard Beffects of pH and ionic strength on the accumulateion of Cs, Sr, Eu, Zn, Cd and Hg by Pseudomonas Putida [J]. Water Air Soil Pollut., 93: 367-381.
    [59]Singh BR, Kristen M, 1998, Cadium uptake by barley as affected by Cd sources and pH levels[J]. Geoderma, 84: 185-194.
    [60]Singh BR, Narwal RP, Jeng AS, et al., 1995, Crop uptake and extractability of cadium in soils naturally high in metals at different pH levels[J]. Com. Soil Sci. Plant Anal, 26:2133-2142.
    [61]黄艺,陈有监,陶澍.污染条件下VAM玉米元素积累和分布与根际重金属形态变化的关系[J].应用生态学报,2002,13(7):859-862.
    [62]姚拓.饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制[D].兰州:甘肃农业大学,2002.
    [63]高振生,马其东,牛志强,等.沿海滩涂地区苜蓿根瘤菌接种方法和效果的研究[J].草地学报,1996,(4): 288-293.
    [64]宁国赞,刘惠琴,马小彤.中国豆科牧草根瘤菌资源的采集保藏及利用[J].草地学报,1999,(2):165-172.
    [65]喻文虎,杨鹏翼,贾德荣.红豆草、紫花苜蓿根瘤菌接种研究[J].草业科学,1995,(3):22-25.
    [66]曾昭海,隋新华,胡跃高.紫花苜蓿-根瘤菌高效共生体筛选及其田间作用效果研究[A].第二届中国苜蓿大会论文集[C].2003.
    [67]马晓彤,刘惠琴,宁国赞.我国根瘤菌与苜蓿共生固氮优良组合研究进展及前景[A].第二届中国苜蓿大会论文集[C].2003.
    [68]汪洪钢,吴观以,李慧荃. VA菌根对绿豆生长及水分利用的影响[J],土壤学报,1989,26(4):393-400.
    [69]毕银丽,吴福勇,武玉坤.接种微生物对煤矿废弃物基质的改良与培肥作用.煤炭学报,2006,31(3):365-368.
    [70]李晓林,曹一平.VA菌根丝对三叶草固氮的影响[J].北京农业大学学报, 1992,18(3):299-302.
    [71]郁纪东.应用菌根技术进行西北地区土地复垦初探[J].西安科技学院学报,2000,(20):77-81.
    [72]毕银丽,吴王燕,刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报,2007,27(9):3738-3743.
    [73]张文敏,马彦卿.内生(VA)菌根用于矿山复垦的田间试验研究.矿冶,1996,5(3):17-21, 32.
    [74]陈静,宋子岭,祁萃萃.粉煤灰改良露天矿排土场土壤的实验研究[J].能源与环境.2008 (5):101-118.
    [75]Karavaiko-GI. Role of microorganisms and some physio-chemical factors of the medium in quartz destruction[J]. Mikrobiologiya, 1984, 53(6)976-981.
    [76]李明.硅酸盐细菌的分离、鉴定及其在生物学教学中的意义[J].生物学通报,2002,31(1): 14-15.
    [77]沈萍.微生物学实验[M].高等教育出版社,2001.
    [78]鲍士旦,安战士.土壤农化分析(第3版)[M].北京:中国农业出版社,2000.
    [79]李玉梅,王根林,孙彬,等,不同磷钾水平对硅酸盐细菌解钾溶磷能力的影响[J].土壤肥料科学, 2007,23(5):258-260.
    [80]M.亚历山大.土壤微生物学导论[M].北京:科学出版社,1983. 236-238.
    [81]李凤汀,郝正然,杨则瑗,等.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学,1997,37(1):79-81.
    [82]Belkanove-NP. Dissolution of Kimberlite minerals by heterotrophous micro-organisms[J]. Mikrobiologiya,1987,56:613-620.
    [83]逍遥小藤.紫花苜蓿[EB/OL].百度百科,2008,http://baike.baidu.com/view/157925. html?wtp=tt
    [84]赵兰坡,姜岩.土壤磷酸酶活性测定方法探讨[J].土壤通报,1986,17(3):138-142.
    [85]Malinoskaya-IM. The role of Bacillus mucilaginosus polysaccharide in the destruction of silicate minerals[J].Mikrobiologiya,1990,59(1):70-78.
    [86]Friedrich-S. Chemical and micro-biological solubilization of silicates[J]. Acta Biotechnologica, 1991,11(3):18-196.
    [87]李凤汀.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学, 1997, 37 (10):79-81.
    [88]GOLDSTEIN A H, BARTLEIN D A, MCDANIEL R G. Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and Suspension cultured cells[J]. Plant Physiology,1988,87:711-715.
    [89]冯丽贞,黄勇,马祥庆.磷胁迫对不同桉树品种酸性磷酸酶活性的影响[J].热带作物学报,2008,29(2)131-134.
    [90]金樑,赵洪,李博.我国菌根研究进展及展望[J].应用与环境生物学报,2004,10(4):515-520.
    [91]宋勇春,李晓林,冯固.接种VA菌根真菌对红三叶草利用土壤有机磷的影响[J].草业学报,2000,9(2):38-44.
    [92]边秀举,胡林,李晓林,等.VA菌根对坪草矿质养分吸收及草坪质量影响的研究[J].草业学报,2001,10(3):42-46.
    [93]Ruiz-Lozano J M, AzónR. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola undersalinity[J]. Mycorrhiza,2000,10(3):137-143.
    [94]Vogel-MikusK, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia[J]. EnvironmentalPollution. 2005,133(2):233-242.
    [95]毕银丽,郭婧婷,刘榕榕.解磷微生物对煤系废弃物粉煤灰的改良效应[J].环境工程学报,2008,2(9):1235-1238.
    [96]Phillips J M, Hayman D S. Improved procedures for clearing and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection [J] Trans. Br. Mycol. Soc, 1970, 55: 158-161.
    [97]林先贵,郝文英,施亚琴. VA菌根对植物耐旱、涝能力的影响[J].土壤,1992,24(3):142-145.
    [98]Barea J M. Interactions between mycorrhizal fungi and rhizosphere micro- organisms within the context of sustainable soil-plant systems. In: Gange Brown ed. Multitrophic Interactions in Terrestrial systems[M]. Oxford: Blackwell ScienceLtd, 1997.196-198.
    [99]王贤波.丛枝菌根(AM)的研究进展及展望[J].杭州农业科技,2007,(2):19.
    [100]郝晶,洪坚平,谢英荷,等.石灰性土壤磷细菌的分离、筛选及解磷效果[J].山西农业6学,2005,33(4):56-59.
    [101]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报, 2001,28(2):26-30.
    [102]宋勇春,李晓林,冯固.泡囊丛枝(VA)菌根对玉米根际磷酸酶活性的影响[J].应用生态学报,2001,12(4):593-599.
    [103]吕志敏,李仙粉,任福民,等.综合利用电厂粉煤灰的重金属问题[J].环境与可持续发展,2006,(4):57-59.
    [104]申鸿,陈保东,冯固,等.锌污染土壤接种丛枝菌根真菌对玉米苗期生长的影响[J].农业环境保护, 2002, 21 (5) :399-402.
    [105]Gilmore A E.The influence of endotrophic mycorrhizae on the growth of peach seedlings[J]. J Am Soc Hortic Sci,1971,96:35.
    [106]陈保冬.丛枝菌根减轻宿主植物锌、镉毒害机理研究[D].中国农业大学, 2002.
    [107]王红新,郭绍义,许信旺,等.接种丛枝菌根对复垦矿区玉米中重金属含量的影响[J].农业环境科学学报,2007,26(4):1333-1337.
    [108]张子武,孙克刚,孙克振,等.粉煤灰中重金属元素在小麦、玉米各器官的富集情况[J].河南农业科学,2000,(4):15-16.
    [109]肖雪毅.丛枝菌根真菌在植物适应铜尾矿中的作用[D].北京林业大学, 2006.
    [110]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源·产业,2005(7):18-24.
    [111]郭联宏.浅谈煤炭开采沉陷与复垦技术[J].山西煤炭管理干部学院学报2008(3):132-134.
    [112]Van J, Klironimo sN, UrsicM, et al. Mycorrhizal fungal diversity determines plant biodivers- ity, eco system variability and productivity[J]. Nature, 1998, 396 (5): 69-72.
    [113]Morte A. Effect of drought stress on growth and water relations of the mycorrhizal association[J]. In: Ulla. A. Jeds. 2nd Intl. Conf on Mycor. Upp sala, Swedn, 1998. 123.
    [114]Frost SM, Stah lD D, Williams S E . Long-term reestablishment of arbuscularmycorrhizal fungi in a drastical disturbed semiarid surface[J]. mine soil. A rid Land Research and Management, 2001, 15 (1) : 3-12.
    [115]毕银丽,吴福勇,武玉坤.丛枝菌根在煤矿区生态重建中的应用[J].生态学报,2005(2 5):2068-2073.
    [116]Cuenca G, Andrade Z D, Escalante G. Arbuscalar mycorrhizae in the rehabilitation of fragile degraded tropical lands[J]. Biology and Fertility of Soils, 1998, 26 (2) : 107-111.
    [117]中国科学院南京土壤研究所微生物室编著.土壤微生物研究方法.北京:科学出版社,1985.
    [118]张良诚.森林树木的抗冻性[J].林木译丛,1980(1):58-64.
    [119]罗焕亮,陈伟元,邵志芳,等.VA菌根对植物的增效作用研究[J].华南农业大学学报,2002, 23(1):49-51.
    [120]马彦卿.微生物复垦技术在矿区生态重建中的应用.采矿技术,2001,1(2):66-68.
    [121]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109.
    [122]魏兰芳,董艳,汤利,等.小麦蚕豆间作条件下不同施氮量对作物根际微生物数量的影响[J].云南农业大学学报,2008,23(1):368-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700