用户名: 密码: 验证码:
连续纤维增强杂萘联苯聚芳醚树脂基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续纤维增强高性能热塑性树脂基复合材料具有耐热等级高、质量轻、高比强度和高比模量,维护费用低、可回收再利用、耐腐蚀和耐辐射等优异性能,广泛应用于航天航空、国防、化工等高科技领域,并成为当今航天航空新材料的研究重点和发展方向。杂萘联苯结构聚芳醚(PPAE)是本课题组研发的一种新型高性能热塑性树脂,具有高玻璃化转变温度(Tg=263~305℃),突出的高温稳定性,优异的机械性能和耐辐射性。更为可贵的是PPAE可溶解于特定的有机溶剂,可进行溶液加工。因此,PPAE成为制备高性能复合材料非常理想的基体选材。本论文针对杂萘联苯聚芳醚树脂可溶于特定有机溶剂的特性,采用溶液浸渍法制备复合材料预浸料。充分利用树脂溶液粘度低,易浸渍纤维的优势,选用价格较低的较大丝束碳纤维(T700-12K)和E玻璃纤维作为增强纤维。并针对杂萘联苯聚醚砜酮(PPESK)熔融粘度大影响成型阶段纤维浸润和成型质量的问题,采用不同的方法对基体树脂进行改性,详细考察了基体树脂结构及性能、纤维含量、界面作用和制备工艺等因素对复合材料性能的影响。
     通过溶液浸渍,热压成型法制备CF/PPESK和GF/PPESK复合材料。系统研究了PPESK树脂溶液粘度,纤维浸润质量和纤维体积含量对复合材料性能的影响,并通过紧密接触模型模拟,PPESK树脂熔融流变性分析及成型时间的考察优化了复合材料成型工艺。结果表明低粘度有利于树脂溶液对纤维浸润,复合材料纤维体积含量随树脂溶液粘度的升高而降低。随着复合材料纤维体积含量的增加,CF/PPESK和GF/PPESK复合材料弯曲强度和层间剪切强度呈现出先增大后减小的趋势,弯曲模量呈现线性增大的趋势。通过与粉末层压法制备的相同纤维体积含量复合材料的性能对比表明,溶液浸渍技术在制备连续纤维增强高性能热塑性树脂基复合材料方面具有优势。沸水浸泡试验和高温力学性能测试表明PPESK基复合材料较环氧树脂基复合材料具有优异的耐湿热性能和耐高温性能。复合材料断面形貌分析表明PPESK基复合材料界面作用较弱,受力破坏模式为界面脱粘破坏。纤维表面红外光谱分析表明:CF/PPESK和GF/PPESK复合材料界面未产生化学键合,界面作用力主要由机械嵌合力和范德华力等作用力构成。
     为了考察树脂熔体粘度对复合材料性能的影响,选用具有相似性能但熔体粘度较低的共聚型杂萘联苯结构聚醚砜(PPBES)树脂作为基体,通过溶液浸渍,热压成型法制备CF/PPBES和GF/PPBES复合材料。详细考察了溶液粘度、纤维体积含量对CF/PPBES和GF/PPBES复合材料性能的影响并优化了复合材料成型工艺。结果表明,CF/PPBES复合材料的最佳纤维体积含量为60%,GF/PPBES复合材料的最佳纤维体积量为57%。CF/PPBES和GF/PPBES复合材料的力学性能及耐湿热性能均优于相应的PPESK基复合材料。高温力学性能测试表明PPBES基复合材料的耐高温性能优异,CF/PPBES和GF/PPBES复合材料150℃弯曲性能保持率均超过88%。复合材料断面形貌分析表明,PPBES树脂基复合材料界面作用强于PPESK树脂基复合材料。CF/PPBES复合材料受力破坏模式以树脂基体内部破坏为主,GF/PPBES复合材料受力破坏模式为界面脱粘破坏和树脂基体内部破坏同时存在的混合破坏模式。
     将熔融粘度较低韧性较好的可溶性高性能热塑性树脂聚醚砜(PES)引入到PPESK树脂基体中,通过溶液浸渍,热压成型工艺制备CF/PPESK/PES和GF/PPESK/PES复合材料。当PES的含量小于20%时,树脂基体具有优异的耐热性能。PES的加入大幅降低了树脂基体的熔融粘度并大幅提高了树脂基体的韧性,从而使复合材料的界面作用和成型质量得以改善。CF/PPESK/PES复合材料的受力破坏模式由界面脱粘破坏转变为树脂基体内部破坏;GF/PPESK/PES复合材料的受力破坏模式由界面脱粘破坏转变为树脂基体内部破坏模式为主,树脂基体内部破坏模式和界面脱粘破坏模式共存的混合破坏模式。但是,PES的过多加入将增大树脂溶液的粘度,导致纤维在溶液浸渍阶段浸润质量的下降。从而使CF/PPESK/PES和GF/PPESK/PES复合材料的力学性能随树脂基体中PES含量的增加先增大后减小,出现峰值。经优化工艺后,当PES含量为7%时,CF/PPESK/PES复合材料弯曲强度,弯曲模量和层间剪切强度分别为1470.9MPa、137.4GPa和62.8MPa;GF/PPESK/PES复合材料弯曲强度,弯曲模量和层间剪切强度为959.2MPa、45.2GPa和55.1MPa。经45h沸水浸泡,CF/PPESK/PES复合材料的饱和吸水率,弯曲强度和弯曲模量保持率分别为0.66%、93.4%和93.7%;GF/PPESK/PES复合材料的饱和吸水率,弯曲强度和弯曲模量保持率分别为0.76%、85.3%和88.5%。高温力学性能测试表明PPESK/PES基复合材料150℃弯曲性能保持率均超过89%。
     将熔融粘度较低韧性较好的可溶性高性能热塑性树脂聚醚酰亚胺(PEI)引入到PPESK树脂基体中,通过溶液浸渍,热压成型工艺制备CF/PPESK/PEI和GF/PPESK/PEI复合材料。当PEI的含量小于20%时,树脂基体具有优异的耐热性能,PEI的加入在没有影响溶液浸渍质量的同时,大幅降低了树脂基体的熔融粘度并大幅提高了树脂基体的韧性,从而使复合材料的界面作用和成型质量得以改善。CF/PPESK/PEI和GF/PPESK/PEI复合材料的受力破坏模式由界面脱粘破坏转变为树脂基体内部破坏。在研究范围内,CF/PPESK/PEI和GF/PPESK/PEI复合材料的力学性能随树脂基体中PEI含量的增加而增大。经优化工艺后,当PEI含量为20%时,CF/PPESK/PEI复合材料弯曲强度,弯曲模量和层间剪切强度分别为1566.1MPa、128.3GPa和68.1MPa;GF/PPESK/PEI复合材料弯曲强度,弯曲模量和层间剪切强度为936.5MPa、52.2GPa和64.2MPa。经45h沸水浸泡,CF/PPESK/PEI复合材料的饱和吸水率,弯曲强度和弯曲模量保持率分别为0.46%、95.7%和96.9%;GF/PPESK/PEI复合材料的饱和吸水率,弯曲强度和弯曲模量保持率分别为0.67%、87.5%和92.5%。高温力学性能测试表明PPESK/PEI基复合材料150℃弯曲性能保持率均超过87%。
Continuous fiber reinforced high performance thermoplastic composites have been extensively used in the field of aerospace, weaponry, and chemical industries because of their inherent properties such as light weight, high strength and stiffness, recyclability, repairability, corrosion resistance, radiation stability, etc. Continuous fiber reinforced high performance thermoplastic composites have attracted more and more attentions.
     Poly(aryl ether) containing phthalazinone moiety (PPAE) is a novel amorphous high performance thermoplastics with very high glass transition temperatures (T_g =263~305℃), outstanding high temperature stability, excellent mechanical properties and radiation stability. Moreover, PPAE shows good solubility in some organic solvents, therefore the solution processing can be adopted to prepare fiber reinforced composites. Hence, PPAE is a very ideal alternative of matrix for advanced composites potentially used in some harsh environmental conditions. In this work, composite prepregs are prepared by using solution impregnation process. Taking full advantage of the low viscosity of the polymer solution, which impregnates fiber easily, the large bundle carbon fiber (T700-12K) with lower price and E glass fiber as reinforcement are selected to produce unidirectional composites. The processing, structure and properties of continuous carbon fiber and glass fiber reinforced Poly (phthalazinone ether sulfone ketone) (PPESK) composites are investigated. In view of high melting viscosity, which makes it difficult to impregnate and consolidate well in hot-press molding process, the resin matrix is modified by different method, and the effect of properties of composites on properties of resin matrixs, fiber content, interfacial adhesion and processing are studied systematically.
     CF/PPESK and GF/PPESK composites are produced by solution impregnation and hot-press molding method. The effects of PPESK solution viscosity, fiber impregnation and fiber volume loading on mechanical properties of the final composites are studied systematically. The molding process is optimized by using intimate contacting model simulation, analysis of PPESK rheological property and investigation of dwell time. The results show that the resin solution with low viscosity is more suitable for fiber impregnation. The fiber volume content decreases with increasing viscosities of resin solutions. With increasing fiber volume content, the flexural strength and interlaminar shear strength of PPESK composites go to the peak and then decrease with more fiber volume content. The flexural modulus increases linearly with increasing fiber volume content. Compared with the composites of the same fiber volume content produced by power laminated method, the solution impregnation technique has a big advantage in producing continuous fiber reinforced high performance thermoplastics composites. Moreover, the moisture resistant, heat resistant and interfacial adhesion properties of PPESK composites are also investigated. The results show that CF/PPESK and GF/PPESK composites, which are compared with fiber/epoxy composites, have excellent humidity resistant properties and heat resistant properties. The flexural properties residual of CF/PPESK and GF/PPESK composites at 150℃are above 90%. The interfacial adhesion of CF/PPESK and GF/PPESK composites are not ideal. The fracture modes of composites are interface failure. Fourier transform infrared (FT-IR) spectrum of fiber surface shows that there is no chemical reaction between fiber and matrix. The composite interfacial adhesion is mainly composed of van der Waals' forces and mechanical forces.
     CF/PPBES and GF/PPBES composites are produced by solution impregnation and hot-press molding method. The effects of PPBES solution viscosity and fiber volume content on mechanical properties of the final composites are studied systematically. The molding process is also optimized. The resuls show that the optimal fiber cntent is 60 vol. % for CF/PPBES composite and 57 vol. % for GF/PPBES composite; the mechanical and humidity resistant properties of PPBES composites are both better than those of PPESK composites. CF/PPBES and GF/PPBES composites have excellent heat resistant properties. The flexural properties residual of CF/PPBES and GF/PPBES composites at 150℃are above 88%.The analysis of the fracture surfaces of CF/PPBES and GF/PPBES composites indicates that the interfacial adhesion of CF/PPBES and GF/PPBES composites is better than that of CF/PPESK and GF/PPESK composites. Matrix failure has been found to be the dominant fracture mode for CF/PPBES composite. For GF/PPBES composite, interfacial failure and matrix failure are observed at the same time.
     Polyethersulfone (PES) with lower melting viscosity and better toughness is introduced to PPESK. CF/PPESK/PES and GF/PPESK/PES composites are produced by solution impregnation and hot-press molding method. The effect of addition of PES on the resultant composites was studied. The results show that when the PES mass fraction is less than 20%, the resin matrix still has excellent heat resistance. The addition of PES significantly lowers the melting viscosity of resin matrix and substantially increases the toughness of matrix, which improves interfacial adhesion and consolidation of composites. The fracture mode of CF/PPESK/PES composites changes from interface failure to matrix failure; the fracture mode of GF/PPESK/PES composites changes from interface failure to matrix failure as the main form and both interface failure and matrix failure are in coexistence. However, the overmuch addition of PES increases the viscosity of polymer solution, which results in insufficient impregnation of fibers in solution impregnation process. Hence, the mechanical properties of CF/PPESK/PES and GF/PPESK/PES composites have the peak value with increasing PES mass fraction. After optimizing process, with 7% PES mass fraction, the flexural strength, flexural modulus and interlaminar shear strength of CF/PPESK/PES composites are 1470.9MPa, 137.4GPa and 62.8MPa, respectively; the flexural strength, flexural modulus and interlaminar shear strength of GF/PPESK/PES composites are 959.2MPa, 45.2GPa and 55.1MPa, respectively. CF/PPESK/PES and GF/PPESK/PES composites have excellent humidity resistant properties. After being exposed to boiling water for 45h, the maximum moisture content, flexural strength and modulus residual of CF/PPESK/PES composite are 0.66%, 93.4% and 93.7%, respectively; the maximum moisture content, flexural strength and modulus residual of GF/PPESK/PES composite are 0.76%, 85.3% and 88.5%, respectively. The flexural properties residual of CF/PPESK/PES and GF/PPESK/PES composites at 150℃are above 89%.
     Polyetherimide (PEI) with lower melting viscosity and better toughness is introduced to PPESK. CF/PPESK/PEI and GF/PPESK/PEI composites are produced by solution impregnation and hot-press molding method. The effect of addition of PEI on the final composites was studied. The results show that when the PEI mass fraction is less than 20%, the resin matrix still has excellent heat resistance. The addition of PEI has no impact on solution impregnation, significantly lowers the melting viscosity of resin matrix and substantially increases the toughness of matrix, which improves interfacial adhesion and consolidation of composites. The fracture modes of CF/PPESK/PEI and GF/PPESK/PEI composites change from interface failure to matrix failure. The mechanical properties of CF/PPESK/PEI and GF/PPESK/PEI composites increase with increasing PEI mass fraction. After optimizing process, with 20% PEI mass fraction, the flexural strength, flexural modulus and interlaminar shear strength of CF/PPESK/PEI composites are 1566.1MPa, 128.3GPa and 68.1MPa, respectively; the flexural strength, flexural modulus and interlaminar shear strength of GF/PPESK/PEI composites are 936.5MPa, 52.2GPa and 64.2MPa, respectively. CF/PPESK/PEI and GF/PPESK/PEI composites have excellent humidity resistance. After being exposed to boiling water for 45h, the maximum moisture content, flexural strength and modulus residual of CF/PPESK/PEI composite are 0.46%, 95.4% and 96.9%, respectively; the maximum moisture content, flexural strength and modulus residual of GF/PPESK/PEI composite are 0.67%, 87.5% and 92.5%, respectively. The flexural properties residual of CF/PPESK/PEI and GF/PPESK/PEI composites at 150℃are above 87%.
引文
[1]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用.北京:化学工业出版社,2007.
    [2]甘应进,陈东生.纤维增强高分子基复合材料的现状.纤维复合材料,1995,12(4):10-13.
    [3]钱伯章.聚合物复合材料的新进展.化工新型材料,2008,36(6):16-18.
    [4]陈绍杰.复合材料与大飞机.新材料产业,2008,1:31-35.
    [5]孙侠生,胡红东.国外民用飞机结构强度技术的发展思路研究.航空科学技术,2004,6:23-26.
    [6]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考.复合材料学报,2008,25(1):1-10.
    [7]Pora Jerome.Advanced materials and techanolgy for A380 structure.FAST Magazine,2003,32:3-8.
    [8]陈亚莉.复合材料成型工艺在A400M军用运输机上的应用.航空制造技术,2008,10:32-35.
    [9]黄领才,刘秀芝.现代大飞机复合材料应用与制造技术浅析.航空制造技术,2008,10:46-48.
    [10]郝章来,吴丽君.聚醚醚酮的生产应用及发展前景.化工新型材料,2004,32(4):43-44.
    [11]陈祥宝.高性能树脂基体.北京:化学工业出版社,1999.
    [12]周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料—合成、应用与发展.北京:化学工业出版社,2004.
    [13]金国珍.工程塑料.北京:化学工业出版社,2001.
    [14]吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内外研究、开发、生产现状.化工新型材料,2002,30(6):15-18.
    [15]钱伯章.全球特种工程塑料的开发与应用.国外塑料,2006,24(10):56-61.
    [16]黄汉生.聚醚酰亚胺综述.化工新型材料,1992,20(11):31-38.
    [17]张海春,陈天禄,袁雅桂.合成带有酞侧基的新型聚醚醚酮.中国,发明专利,85108751.1987.
    [18]刘克静,张海春,陈天禄.一步法合成带有酞侧基的聚芳醚砜.中国,发明专利,85101721.1985.
    [19]马晓光,刘越.高性能纤维的发展及其在先进复合材料中的应用.纤维复合材料,2000,17(4):14-18.
    [20]Gao S L,Kim J K.Correlation among crystalline morphology of PEEK,interface bond strength,and in-plane mechanical properties of carbon/PEEK composites.Journal of Applied Polymer Science,2002,84(6):1155-1167.
    [21]Li T Q,Zhang M Q,Zeng H M.Strong interaction at interface of carbon fiber reinforced aromatic semicrystalline thermoplastics.Polymer,1999,40(15):4307-4313.
    [22]Martine Dube,Pascal Hubert,Jan N.A.H.Gallet,et al.Fatigue performance characterisation of resistance-welded thermoplastic composites.Composites Science and Technology,2008,68(7):1759-1765.
    [23]Kawai M,Yajima S,Hachinohe A,Kawase Y.High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices. Composites Science and Technology,2001,61(9):1285-1302.
    [24]Stanley W F,Mallon P J.Intraply shear characterisation of a fibre reinforced thermoplastic composite.Composites Part A,2006,37(6):939-948.
    [25]Frassine R,Rink M,Pavan A.Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites:Ⅱ.Rate and temperature dependence in unidirectional PEEK/carbon-fibre laminates.Composites Science and Technology,1996,56(11):1253-1260.
    [26]曾汉民,章明秋,张志毅等.单向CF/PEEK层板的冷热循环疲劳特性.高分子材料科学与工程,1994,10(4):129-131.
    [27]沈珉,佟景伟,王世斌,李鸿琦.热塑性AS4/PEEK层合板基体损伤的实验研究.实验力学,2003,18(3):360-364。
    [28]Aymerich F,Meili S.Ultrasonic evaluation of matrix damage in impacted composite laminates.Composites Part B,2000,31(1):1-6.
    [29]Tewari U S,Harsha A P,H(a|¨)ger A M,Friedrich K.Solid particle erosion of unidirectional carbon fibre reinforced polyetheretherketone composites.Wear,2002,252(11):992-1000.
    [30]Kobayashi S,Terada K,Taked N.Evaluation of long-term durability in high temperature resistant CFRP laminates under thermal fatigue loading.Composites Part B,2003,34(8):753-759.
    [31]Kenny J M,Marchetti M.Elasto-plastic behavior of thermoplastic composite laminates under cyclic loading.Composite Structures,1995,32(1):375-382.
    [32]Bismarck A,nofmeier M.Effect of hot water immersion on the performance of carbon reinforced unidirectional poly(ether ether ketone)(PEEK) composites:Stress rupture under end-loaded bending.Composites Part A,2007,38(2):407-426.
    [33]Yoshihiko Uematsu,Takayuki Kitamura,Ryuichi Ohtani.Delamination behavior of a carbon-fiber reinforced thermoplastic polymer at high temperatures.Composites Science and Technology,1995,53(3):333-341.
    [34]Hun W,Wang B T,Lee C H,Su J S.Damage detection of surface cracks in composite laminates using modal analysis and strain energy method.Composite Structures,2006,74(4):399-405.
    [35]Phillips R,Glauser T.Thermal stability of PEEK/carbon fiber in air and its influence on consolidation.Polymer Composites,1997,18(4):500-508.
    [36]Berger L,Cantwell W J.Temperature and loading rate effects in the mode Ⅱ interlaminar fracture behavior of carbon fiber reinforced PEEK.Polymer Composites,2001,22(2):271-281.
    [37]WUG M,Schultz J M.Processing and properties of solution impregnated carbon fiber reinforced polyethersulfone composites.Polymer composites,2000,21(2):223-230.
    [38]Hou M,Ye L,Lee H J,Mai Y W.Manufacture of a carbon-fabric-reinforced polyetherimide (CF/PEI) composite material.Composite Science and Technology,1998,58(2):181-190.
    [39]Kevin D.Cowley,Peter W.R.Beaumont.Damage accumulation at notches and the fracture stress of carbon-fibre/polymer composites:combined effects of stress and temperature.Composite Science and Technology,1997,57(9):1211-1219.
    [40]Kim K Y,Ye L.Interlaminar fracture toughness of CF/PEI composites at elevated temperatures:roles of matrix toughness and fibre/matrix adhesion.Composites Part A,2004,35(4):477-487.
    [41]Frassine R,Pavan A.Viscoelastic effects on the interlaminar fracture behavior of thermoplastic matrix composites:Ⅰ.Rate and temperature dependence in unidirectional PEEK/carbon-fibre laminates.Composite Science and Technology,1995,54(2):193-200.
    [42]Bora M(O|¨),Coban O,Sinmazcelik T,et al.On the life time prediction of repeatedly impacted thermoplastic matrix composites.Materials and Design,2009,30(1):145-153.
    [43]Ageorges C,Ye L,Hou M.Experimental investigation of the resistance welding of thermoplastic-matrix composites.Part Ⅱ:optimum processing window and mechanical performance.Composites Science and Technology,2000,60(8):1191-1202.
    [44]咸贵军,益小苏,番颐.热塑性树脂熔融浸渍连续纤维装置.塑料工业,2000,28(5):15-17.
    [45]邹湘坪,益小苏.结构性热塑性复合材料的进展.石油化工,1996,25(3):194-200.
    [46]吴靖.长纤维增强热塑性复合材料的研究进展.化工进展,1995,2:1-4.
    [47]Miller A H,Dodds N,Bale J M,Gibson A G.High speed pultrusion of thermoplastic matrix composites.Composites Part A,1998,29(7):773-782.
    [48]Hiscock D F,Bigg D M.Long-fiber-reinforced thermoplastic matrix composites by slurry deposition.Polymer Composites,1989,10(3):145-149.
    [49]Texier A,Davis R M.Fabrication of PEEK/carbon fiber composites by aqueous suspension prepregging.Polymer,1993,34(4):896-906.
    [50]李龙,王善元.连续纤维增强热塑性复合材料预浸料的加工方法.纤维复合材料,1996,13(1):21-22.
    [51]孙宏杰,张晓明,宋中健.纤维增强热塑性复合材料的预浸渍技术发展概况.玻璃钢/复合材料,1999(4):40-44.
    [52]Diao X,Ye L,Mal Y W.Fatigue behavior of CF/PEEK composite laminates made from commingled preregs.Part Ⅰ:experimental studies.Composite Part A,1997,28(8):739-747.
    [53]Clemens S R,Western E D,Hanerman A C.Thermoplastic hybrid yarns for high performance composite.Material Engineering,1998,105(3):27-30.
    [54]郑孝霞,钱春香.加固用连续纤维增强热塑性树脂基复合材料预制片材的研究综述.高科技纤维与应用.2003,28(5):36-41.
    [55]余剑英,周祖福.连续纤维增强热塑性复合材料的制备成型技术及其应用前景.武汉工业大学学报,1998,20(4):22-24.
    [56]蹇锡高,孟跃忠,郑海滨.含二氮杂萘酮结构的聚醚砜及制备法.中国,发明专利,931091802.1993.
    [57]蹇锡高,孟跃忠,郑海滨.含二氮杂萘酮结构的聚醚酮及制备法.中国,发明专利,931091799.1993.
    [58]唐倬,吴智华,牛艳华,刘志民.连续玻璃纤维增强热塑性塑料成型技术及其应用.塑料工业,2003.31(6):1-4.
    [59]Diao X,Ye L,Mal Y W.Fatigue behavior of CF/PEEK composite laminates made from commingled preregs.Part Ⅱ:statistical simulations.Composite Part A,1997,28(8):749-755.
    [60]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅰ).纤维复合材料,1999(4):45-51.
    [61]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅲ).纤维复合材料,2000(2):35-39.
    [62]Mayer C,Wang X,Neitzel M.Macro-and micro-impregnation phenomena in continuous manufacturing of fabric reinforced thermoplastic composites.Composites,1998(29):783-793.
    [63]叶鼎铨.连续纤维增强热塑性塑料拉挤型材.纤维复合材料,1999(2):24-25.
    [64]周效谅,钱春香,王继刚,郑孝霞.连续纤维增强热塑性树脂基复合材料拉挤工艺研究与应用现状.高科技纤维与应用,2004,29(1):41-45.
    [65]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面.北京:中国轻工业出版社,2001.
    [66]倪礼忠,陈麒.聚合物基复合材料.上海:华东理工大学出版社,2007.
    [67]鲁云,朱世杰,马鸣图,潘复生.先进复合材料.北京:机械工业出版社,2004.
    [68]蹇锡高,王瑞玲,朱秀玲.新型可溶性聚芳酰胺及其共聚物的合成与性能研究.高分子学报,2001.5:576-579.
    [69]朱秀玲,蹇锡高,王瑞玲.苯取代杂萘联苯型聚芳酰胺的合成与表征及性能.高分子学报,2002,1:83-87.
    [70]朱秀玲,蹇锡高,卢冶.含3-甲基苯基-2,3-二氮杂萘-1-酮结构聚醚酰胺的合成,表征与性能.高等学校化学学报,2003,24(2):355-358.
    [71]Zhu X L,Jian X G.Soluble aromatic poly(ether amide)s containing aryl-,alkyl-,and chloro-substituted phthalazinone segments.J.Polym.Sci.Part A:Polym.Chem.,2004,42(8):2026-2030.
    [72]王锦艳,肖树德,蹇锡高等.含3,5-二甲基二氮杂萘酮联苯结构聚醚酰亚胺的合成与性能.高等学校化学学报,2003,24(3):555-558.
    [73]Wang J Y,Liao G X,Liu C.Poly(ether imide)s derived from phthalazinone- containing dianhydrides.J.Polym.Sci.Part A:Polym.Chem.,2004,42(23):6089-6097.
    [74]Gao Y,Robetson G P,Guiver M D,Jian X G.Proton exchange membranes based on sulfonated poly(phthalazinone ether ketone)s/aminated polymer blends.Solid State lonics,2005,176(3):409-415.
    [75]Su Y,Jian X G,Zhang S H,Wang G Q.Preparation and characterization of quaternized poly(phthalazinone ether sulfone ketone) NF membranes.J.Membr.Sci.2004,241(2):225-233.
    [76]Zhang S H,Jian X G,Dai Y.Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane.J.Membr.Sci.2005,246(2):121-126.
    [77]Sun Y M,Wu T C,Lee H C.Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells.J.Membr.Sci.2005,265(1):108-114.
    [78]罗光红,徐宏德,蹇锡高.一种新型绝缘材料-杂萘联苯聚醚.绝缘材料通讯,1997,3:1-3.
    [79]Yun Y B,Tian Y H,Shi G L.Preparation,morphologies and properties for flat sheet PPESK ultrafiltration membranes.J.Membr.Sci.,2006,270(1):146-153.
    [80]尚蕾,蹇锡高,兰建武等.含二氮杂萘酮结构耐热胶粘剂的研究.粘接,2002,23(3):1-3.
    [81]兰建武,蹇锡高,王国庆等.聚芳醚砜酮纤维的热性能.2003,26(2):24-26.
    [82]王桂梅,蹇锡高,廖功雄等.玻纤增强PPESK复合材料及其性能研究.中国塑料,2004,18(2):40-43.
    [83]Gao Y,Robertson G P,Guiver M D,et al.Sulfonation of Poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials.J.Membrane Sci.,2003,227(1):39-50.
    [84]Jian X G,Dai Y,Zeng L,et al.Application of Poly(phthalazinone ether sulfone ketone)s to gas membrane separation.J.Appl.Polym.Sci.,1999,71(14):2385-2390.
    [85]蹇锡高,张守海,戴英.含二氮杂萘酮结构聚芳酰胺超滤膜的研制.膜科学与技术,2001,21(1):11-14.
    [86]Yang F J,Zhang S H,Yang D L,Jian X G.PreParation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane.J.Mem.sci.,2007,301(12):85-92.
    [87]Yang F J,Zhang S H,Yang D L,Jian X G.Synthesis of polypiperazine-amide thin-film membrane on PPESK hollow fiber UF membrane.Chinese Chemical letter,2007,18(8):966-968.
    [88]Berard N,Hay A S.Polymers from hydroxyphenylphthalazinones.Polym.Prep,1993,34(1):148-149.
    [89]Paventi M,Chan K P,Hay A S.Spectroscopic and magnetic resonance elucidation of the structure of the polymer derived from 1,2-dihydro-4-(4-hydroxyphenyl)-1-oxo-(2H)-phthalazine and bis(4-fluorophenyl)sulfone.J.Macromol.Sci.Part A,1996,33(2):133-156.
    [90]蹇锡高,朱秀玲,陈连周.二氮杂萘联苯型聚芳醚聚合机理的探讨.大连理工大学学报,1999,39(5):629-634.
    [91]毛诗珍,张涛,袁汉珍等.1,2-二氢-4-苯基(2H)二氮杂萘酮的NMR谱研究.波谱学杂志,2000,17(3):183-190.
    [92]刘程.含二氮杂萘酮联苯结构聚芳酰胺的合成及耐热性能和溶解性研究.(博士学位论文)大连:大连理工大学,2004.
    [93]廖功雄.含二氮杂萘酮结构聚醚酮和聚醚砜的改性研究.(博士学位论文)大连:大连理工大学,2002.
    [94]Meng Y Z,AHay A S,Jian X G,Tjong S C.Sythesis of novel Poly(phthalazinone ether ketone sulfone)s and improvement of their melt flow properties.J.Appl.Polym.Sci.,1997,66(8):1425-1432.
    [95]Meng Y Z,Tjong S C,Hay A S.Morphology,rheological and thermal properties of the melt blends of Poly(phthalazinone ether ketone sulfone) with liquid crystalline copolyester.Polymer,1998,39(10):1845-1850.
    [96]张军,蹇锡高,朱秀玲等.PPESK/PPS共混合金的研究.大连理工大学学报,1999,39(3):405-409.
    [97]Liao G X,Jian X G,He W.Structures and properties of PPEK/PEI blends,IUPAC World Polymer Congress 2002.Beijing,2002,7:647.
    [98]Wang G M,Jian X G,Liao G X.Miscibility,thermal stability,rheological and mechanical properties of blends derived from polysulfone oligomer and Poly(phthalazinone ether sulfone ketone).Journal of Materials Science and Technology,2004,20(5):609-612.
    [99]王桂梅.杂萘联苯型聚醚砜酮共混改性及其复合材料.(博士学位论文)大连:大连理工大学,2004.
    [100]张欣涛.含二氮杂萘酮结构聚醚砜酮共混及填充改性.(博士学位论文)大连:大连理工大学,2008.
    [101]彭静,蹇锡高,刘少琼.PPESK树脂基复合材料的摩擦磨损性能.材料研究学报,2001,15(2):244-248.
    [102]刘少琼,张军,蹇锡高.聚醚砜酮树脂基摩擦材料的性能研究.工程塑料应用,2000,28(2):6-8.
    [103]Zhang X T,Liao G X,Jin Q F,Feng X B,Jian X G.On dry sliding friction and wear behavior of PPESK filled with PTFE and Graphite.Tribology International,2008,3(41):195-201.
    [104]张欣涛,廖功雄,冯学斌,靳奇峰,蹇锡高.新型PPESK/聚四氟乙烯共混物的力学和摩擦性能研究.摩擦学学报,2007,4(27):330-335.
    [105]Qu M J,Jian X G,He W,Liao G X.Performance of potassium titanate whisker reinforced PPESK composites.Jounal of Material Science and Technology,2004,20(4):445-447.
    [106]曲敏杰,蹇锡高,何伟,李建丰.PPESK/ABS/TK复合材料流变性能的研究.材料科学与工艺,2004,12(2):160-162.
    [107]曲敏杰,蹇锡高,李建丰等.PPESK/PS共混物流变性能的研究.中国塑料,2002,16(5):34-36.
    [108]曲敏杰,蹇锡高,刁晓峰等.钛酸钾晶须填充新型PPESK的性能及形态研究.材料科学与工艺,2004,12(6):565-568.
    [109]曲敏杰,蹇锡高,兰建武等。PPESK/ABS共混物流变性能的研究.工程塑料应用,2003,31(6):22-24.
    [110]Feng X B,Liao G X,He W,et al.Preparation and characterization of functionalized carbon nanotubes/ Poly(phthalazinone ether sulfone ketone)s composites.Polymer Composites,in press.
    [111]Feng X B,Liao G X,Du J H,et al.Electrical conductivity and microwave absorbing properties of nickel-coated multiwalled carbon nanotubes/Poly(phthalazinone ether sulfone ketone)s composites.Polymer Engineering and Science,in press.
    [112]Papathansiou T D.A structure-oriented micromechanical model for viscous flow through square arrays of fiber clusters.Composites Science and Technology,1996,56(9):1055-1069.
    [113]Yi X S,Zhao G M,Shi F.Study on the miscibility and rheological properties of thermotropic liquid crystalline polymers in thermoplastic matrices.Polymer international,1996,39(1):11-16.
    [114]Lorenzo Abate,Ignazio Blanco,Gianluca Cicala,Antonino Recca,Carmelo Luca Restuccia.Thermal and rheological behaviours of some random aromatic amino-ended polyethersulfone/polyetherethersulfone copolymers Polymer.Degradation and Stability,2006,91(4):3230-3236.
    [115]Chen C H,Cheng C H.Micromechanics and apparent viscosities of non-Newtonian fluid suspensions.Mechanics of Materials,1998,27(3):177-185.
    [116]White J L,Dong L,Han P,Laun H M.Rheological properties and associated structural characteristics of some aromatic polycondensates including liquid-crystalline polyesters and cellulose derivatives.Pure Appl.Chem.,2004,76(11):2027-2049.
    [117]Petersen R C,Lemons J E,McCracken M S.Micromechanics for fiber volume percent with a photocure vinyl ester composite.Polymer Composites,2007,28(3):294-310.
    [118]Zhang A Q,Wang L S,Zhou Y Y.A study on rheological properties of carbon black extended powdered SBR using a torque rheometer.Polymer Testing,2003,22(2):133-141.
    [119]Qi K,Huang R.Effect of processing on the structure and properties of PES.Polymer-Plastics Technology and Engineering,1994,33(2),121-133.
    [120]Lozano K,Bonilla-Rios J,Barrera E V.A study on nanofiber-reinforced thermoplastic composites(Ⅱ):Investigation of the mixing rheology and conduction properties.Journal of Applied Polymer Science,2001,80(8):1162-1172.
    [121]Maity A K,Xavier S F.Rheological properties of ethylene-propylene block copolymer and EPDM rubber blends using a torque rheometer.European Polymer Journal,1999,35(1):173-181.
    [122]Lee W,Springer G S.A model of the manufacturing process of thermoplastic matrix composites.Journal of Composite Materials,1987,21(11):1017-1055.
    [123]过梅丽,肇研,谢令.航空航天结构复合材料湿热老化机理的研究.航宇材料工艺,2004,4:51-54.
    [124]郭宝春,傅伟文,贾德民等.湿热老化对氰酸酯树脂/酚醛环氧树脂共混物结构与性能的影响.复合材料学报,2002,19(3):6-9.
    [125]詹茂盛,伊海峰.单束玻纤增强环氧树脂复合材料吸水规律的理论与实验.塑料,2006,35(4):53-56.
    [126]李志君,李学成,包建文,陈祥宝.M40/5228复合材料的温湿效应.纤维复合材料,1999,16(3):10-12.
    [127]张静,张琦,马会平等.G827/5224和G803/5224碳纤维增强环氧树脂湿热老化的研究.装备环境工程,2008,5(3):16-20.
    [128]Adams R D,Singh M M.The dynamic properties of fibre-reinforced polymers exposed to hot,wet conditions.Composites Science and Technology,1996,56(8) 977-997.
    [129]Zhou J M,Lucas J P.The effects of a water environment on anomalous absorption behavior in graphite/epoxy composites.Composites Science and Technology,1995,53(1):57-64.
    [130]刘东勋.双氰胺对复合材料耐湿热性能的影响.高科技纤维与应用,2005,30(2):18-19.
    [131]李志君,李学成,包建文等.M40/5228复合材料力学性能研究.材料工程,1999,(11):10-13.
    [132]王亮.聚芳醚酮改性环氧树脂体系/大丝束碳纤维复合材料性能研究.(工程硕士学位论文)南昌:南昌大学,2007.
    [133]许砚琦,张保平等.聚苯硫醚及其玻璃纤维增强复合材料力学性能研究.复合材料学报,1993,10(3):29-35.
    [134]李明,吴忠文,汤心颐.国产碳纤维增强聚醚砜复合材料的力学评价.宇航材料工艺,1993,23(6):23-27.
    [135]Brady M.Walther.An Investigation of the Tensile Strength and Stiffness of Unidirectional Polymer-Matrix,Carbon-Fiber Composites under the Influence of Elevated Temperatures.(Master dissertation) Virginia:Polytechnic Institute and State University,1998.
    [136]Drzal L T,Rich M J,Koenig M F,Lloyd P F.Adhesion of graphite fibers to epoxy matrices Ⅱ:The effect of fiber finish.The Journal of Adhesion(Print),1983,16(22):133-152.
    [137] Drzal L T. Composite interphase characterization. SAMPE Journal, 1983, 19(55): 7-14.
    [138] Ma S P, Takahashi T. Binary blends of a new wholly aromatic thermoplastic polyimide and poly (ether imide). Polymer, 1996, 37(25):5589-5596.
    [139] Sudarisman, Davies I J. The effect of processing parameters on the f lexural properties of unidirectional carbon fibre-reinforced polymer (CFRP) composites. Materials Science and Engineering A, 2008, 498(1-2): 65-68.
    [140] Dey B, Zhou Y X, Jeelani S, et al. Nonlinear constitutive equation for temperature degraded unidirectional carbon fiber reinforced epoxy. Materials Letters, 2008, 62(21-22): 3659-3662.
    [141] Buehler F U, Seferis J C. Effect of reinforcement and solvent content on moisture absorption in epoxy composite materials. Composites Part A, 2000, 31(7):741-748.
    [142] Salvia M, Fiore L, Fournier P, Vincent L. Flexural fatigue behaviour of UDGFRP experimental approach. International Journal of Fatigue, 1997, 19(3): 253-262.
    [143] Sideridis E, Papadopoulos G A. Short-beam and three-point-bending tests for the study of shear and flexural properties in unidirectional-fiber-reinforced epoxy composites. Journal of Applied Polymer Science, 2004, 93(1): 63-74.
    [144] Lystrup A, Andersen T L. Autoclave consolidation of fibre composites with a high temperature thermoplastic matrix. Journal of Materials Processing Technology, 1998, 77(1-3): 80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700