用户名: 密码: 验证码:
南印度洋偶极子的特征和机理及其与ENSO的关系探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南印度洋偶极子是南印度洋存在的一种偶极型海温异常现象,在年际和年代际尺度上均有十分明显的表现。但目前有关印度洋海气相互作用的研究主要集中在热带印度洋地区,针对南印度洋地区的工作相对比较少。本文利用逐月OISST和ERSST资料以及NCEP2表面风场等资料探讨了南印度洋偶极子的结构特征、形成原因及其与ENSO的关系以及年代变化特征,得出以下主要结论:
     (1)印度洋海温变率最强的地区位于副热带南印度洋,其年际海温变化最显著的特征就是海温呈现西南-东北向的偶极型分布,称为南印度洋偶极子(SIOD)。南印度洋偶极子在11月开始出现,对应有两个明显的冷暖中心,次年2月达到极值,然后在4-6月份消亡。SIOD的形成主要是风场、潜热通量和短波辐射通量起作用,但混合层深度异常加厚或变浅也有助于SIOD的形成。另外,SIOD的形成和南极绕极环流过程在某种程度上联系在一起。南印度洋500hPa位势高度场、850hPa风场和海平面气压与SST偶极子模态可以看作是南半球海气耦合绕极模态的一部分。
     (2)近30年资料表明,SIOD在北半球冬春季出现,次年2-3月份达到盛期,超前ENSO9-10个月,且具有季节锁相特征。在70年代中期的年代际气候突变后,SIOD与ENSO的关系显著增强,正南印度洋偶极子(PSIOD)事件之后一般都有El nino事件发生,负南印度洋偶极子(NSIOD)事件之后都有La nina事件发生。1-3月份发生PSIOD,且其前期冬季11-12月份(NDJ)发生La Nina事件的情况下,SIOD东西两极冷暖中心异常偏北,尤其东边一极冷中心的位置明显较其他年份偏向西北,且东南风异常偏强,赤道印度洋有西风异常向东传播。1-3月份发生NSIOD,且其前期冬季NDJ发生El nino事件的情况与之类似。ENSO事件会对SIOD的强度和位置造成一定影响。
     (3) SIOD具有明显的年代际变化特征。SIOD在六七十年代强度较强,而SIOD指数与Nino3.4NDJ指数的相关均在七十年代末气候突变以后显著增强,东西两极与Nino3.4NDJ(0)指数的相关均在八十年代以后增强,东边一极与Nino3.4NDJ指数呈现负相关。SIOD和ENSO关系的增强可能与太平洋年代际振荡(Pacific Decadal Oscillation)和全球变暖有关。另外,由于ENSO与热带印度洋偶极子(IOD)的关系在70年代中期之后增强,SIOD和IOD关系也相应增强。值得注意的是,在八十年代末以后,SIOD东边一极分裂出两个中心,致使SIOD呈现三极分布的形势。
Southern Indian Ocean Dipole is significant dipolelike sea sueface temperature (SST) pattern in the Southern Indian Ocean. It is robust in the interannual and interdecadal time scale, and distinguished difference from the SST dipole in the tropical Indian Ocean. However, most previous researches focused on dipole in the tropical region of Indian Ocean, seldom work paid attention to the Southern region. Using monthly OISST、ERSST and NCEP2reanalysis, the characteristics and evolution of SIOD, and its interdecadal variations and correlation with ENSO are investigated in this study. The mainly results are as follows:
     (1)The variance analysis of the Indian Ocean sea surface temperature (SST) indicates that a strong dipole oscillation occurs in the Southern Indian Ocean, so called Southern Indian Ocean Dipole(SIOD). Usually, SIOD develops in November, peaks in February and decays in April-June of the next year. Wind, latent heat flux and shortwave radiation flux play an important role in the formation of SIOD. Besides, the change of the mixed layer depth contributes to the formation of SIOD. Further study indicated that the formation of SIOD is associated with the Antarctic Circumpolar process. Moreover, SIOD as well as the corresponding sea level pressure,500hPa geopotential height field and850hPa wind field over Southern Indian Ocean can be regarded as part of the southern hemisphere circumpolar modes of coupled ocean-atmosphere.
     (2)In recent three decades, SIOD are phase-locked to the austral summer season, preceding the El Nino signal by9toll months. Furthermore, El Nino events usually occur after positive SIOD (PSIOD), while La Nina events occur after negative SIOD (NSIOD).When PSIOD events occur in January to March and at the same time La Nina events occur in the previous winter, the two poles of SIOD will be exceptionally northerly. Particularly the location of the cold center will deflect obviously to north-west than other years, the southeast wind anomalies stronger, and westerly anomalies will propagate eastward in the equatorial Indian Ocean, Vice versa the situation of NSIOD occur in January to March and at the same time El Nino events occur in the previous winter. ENSO events will exert a certain impact on the strength and location of SIOD.
     (3)SIOD exhibits interdecadal variations in the longer time-scale. The intensities of SIOD are strongest in the1960s and1970s, but it's relationship with ENSO is enhanced after mid1970s, the inter-decadal abrupt climate change. This enhance may be related to the Pacific Decadal Oscillation (PDO) and global warming. The east pole and Nino3.4NDJ index presents the inverse correlation. Furthermore, the relationship between SIOD and IOD also increase correspondingly because of the relationship of ENSO and IOD enhanced after the mid-1970s. It is worth noting that the east pole of SIOD splits into two centers after the end of1980s, resulting in three poles distribution of SIOD.
引文
[1]章基嘉,葛玲,孙照勃.中长期天气预报基础[M].气象出版社.1994.
    [2]J. Namias. Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960's [J]. Mon.Wea.rev,1963,97,173-192.
    [3]J.Bjerknes.赤道热量输送的变化引起的大尺度海洋与大气的相互作用[J].章淹译.气象科技资料增刊.1974.第一期.
    [4]Saji N H, Goswami, B N Vinayachandran P. N., Yamagata T.A dipole mode in the tropical Indian Ocean[J]. Nature,1999,401,360-363.
    [5]Webster E, P J, A M Moore, J P Loshnigg R R Lebern Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98[J]. Nature,1999,401,356-360.
    [6]Yu, L., and M. M. Rienecker, Mechanisms for the Indian Ocean warming during the 1997-98 El Nino[J]. Geophys. Res. Lett.,1999:,26,735-738.
    [7]Reason C J. Mulengahm H M. Relationship between South African rainfall and SST anomalies in the SW Indian Ocean [J]. Int J.Climatol,1999,19:1651-1673
    [8]Behera S K,.Yamagata T. Subtropical SST dipole events in the southern Indian Ocean[J]. Geophysical Research Letters,2001,28:327-331.
    [9]杨秋明.南印度洋副热带偶极子型海温异常与全球环流和我国降水变化的关系[J].海洋学报,2006,28(3):47-56.
    [10]杨明珠,丁一汇.印度洋海表温度的变化及其对印度夏季季风降水影响的诊断研究[J].海洋学报,2006,28(4):9-16.
    [11]Hermes J C. Reason C J C, Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic oceans[J]. J.Clim.,2005,18, 2864-2882.
    [12]Suzuki, R, Behera S K, Ilzuka S.Yamagata T, Indian Ocean subtropical dipole simulated using a coupled general circulation mode[J]. J. Geophys. Res.,2004,109, C09001.
    [13]Chiodi,A M, Harrison D E, Mechanisms of summertime subtropical southern Indian Ocean sea surface temperature variability:On the importance of humidity anomalies and the meridional advection of water vapor[J]. J.Clim.,2007,20,4835-4852.
    [14]Xie S P, Annamalahi, Schoot F A, et al. Structure and mechanisms of South Indian Ocean climate variability[J]. Climate,2002,15 (8):864-878.
    [15]王会军,薛峰.索马里急流的年际变化及其半球间水汽输送和东亚季风降水的影响[J].地球物理学报.2003,46(1),18-25.
    [16]范可,王会军.有关南半球大气环流与东亚气候的关系研究的若干新进展[J].大气科学.2006,20(3),402-412.
    [17]范可.南半球环流异常与长江中下游旱涝的关系[J].地球物理学报,2006.49(3):672-679.
    [18]南素兰,李建平.春季南半球环状模与长江中下游夏季降水的关系:Ⅱ.印度洋、南海海温的“海洋桥”作用[J].气象学报.2005.63(6):847-856.
    [19]晏红明,李崇银,周文2009.南印度洋副热带偶极模在ENSO事件中的作用[J].地球物理学报,52(10):2436-2449.
    [20]杨明珠,丁一汇.中国夏季降水对南印度洋偶极子的响应研究[J].大气科学.2007.31(4):685-694.
    [21]Wang X. L i C Y, W Zhou. Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean [J]. Int. Jr. of Climatology,2006,26, 595-606.
    [22]Yoo,S H., S Yang.C H Ho, Variability of the Indian Ocean Asian-Australian Monsoon[J]. climate.Submitted to J. Geophys. Res.2005.
    [23]杨修群,黄士松.马斯克林高压的强度变化对大气环流影响的数值试验[J].气象科学,1989.,9(2):125-138.
    [24]何金海,李俊,李永平.澳大利亚冷空气活动影响东亚夏季风的过程数值试验[J].气象学报,1991,49:162-169.
    [25]Terray P. Southern Hemisphere extra-tropical forcing:a new paradigm for El Nino-Southern Oscillation [J]. Clim Dyn.2011.36:2171-2199.
    [26]Fauchereau N, Trzasaka S, Richard Y, et al. Sea-surface temperature co-variability in the southern Atlantic and Indian Oceans and its connections with the atmospheric circulation in the Southern Hemisphere [J].Int Jr of Climatology.2003,23:663-677.
    [27]Terray P, Dominiak S,Delecluse P. Role of the southern Indian Ocean in the transitions of the monsoon-ENSO system during recent decades[J]. Clim Dyn,2005. 24:169-195.
    [28]Terray P,Dominiak S. Indian Ocean sea surface temperature and El Nino-Southern Oscillation:a new perspective [J]. J Climate.2005.18:1351-1368.
    [29]Smith T M, Reynolds R W.2004. Improved Extended Reconstruction of SST (1854-1997) [J]. J. Climate,17:2466-2477.
    [30]Reynolds R W, Rayner N A, Smith T M, Stokes D C, and W. Wang, Animproved in situ and satellite SST analysis for climate [J]. J. Climate,2002.15,1609-1625.
    [31]Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey and M. G. Schlax, Daily high-resolution blended analyses for sea surface temperature[J]. J. Climate. 2007.20,5473-5496.
    [32]Kanamitsu M. Description of the NMC global data assimilation and forecasting system[J]. Wea.and Forecasting,1989.4,335-342.
    [33]Schiffer R A, Rossow W B. ISCCP global radiance data set:A new resource for climate research [J].Bull. Amer. Meteor. Soc.1985.66,1498-1505.
    [34]Yu L, X. Jin, Weller R A,.Annual, Seasonal, and Interannual Variability of Air-Sea Heat Fluxes in the Indian Ocean[J]. J. Climate, Special issue on the Climate Variability and Predictability of the Indian Ocean,2007,20,3190-3209.
    [35]Kara, A.B., P.A.Rochford, H.E.Hurlburt, An optimal definition for ocean mixed layer depth. J. Geophys. Res.2000,105,16803-16821.
    [36]Carton, J. A., C. Chepurin, X. Cao, B. S. Giese. A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995. Part Ⅰ:Methodology. J.Phys. Oceanogr.2000,30,294-309.
    [37]Carton, J.A Giese. B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA) [J]. Mon. Wea. Rev.2008:136,2999-3017.
    [38]Xie, S. P., H.Xu, N. H. Saji.Y Wang. Role of narrow mountains in large-scale organization of Asian monsoon convection[J]. J Climate.200619,3420-3429.
    [39]Li, J., Coupled air-sea oscillations and climate variations in China, in:Climate and Environmental Evolution in China (First Volume), Edt. D. Qin, Beijing:China Meteorological Press,2005.324-333.
    [40]魏凤英.现代气候统计诊断与预测技术[M].气象出版社,1999.
    [41]吴洪宝.吴蕾.气候变率诊断和预测方法[M].气象出版社,2005.
    [42]贾小龙,李崇银.南印度洋海温偶极子型振荡及其气候影[J].地球物理报,2005,48(6):1238-1249.
    [43]周天军,宇如聪,李薇,等.20世纪印度洋气候变率特征分析[J].气象学报,2001.59:257-269.
    [44]Alory G, Wijffels S, Meyers G. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms [J]. Geophys Res Lett,2007.34: L02606.
    [45]Du Y, Xie S-P. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20thcentury in climate models [J]. Geophys Res Lett,2008.35: L08712.
    [46]Fan K, H J. Wang. Antarctic oscillation and the dust weather frequency in North China [J]. Geophys. Res. Lett.2004.31 (10). L10201.
    [47]张玉红.南京信息工程大学硕士学位论文.热带北印度洋和赤道海区东西水交换及其年际变化.导师:徐海明.杜岩,2010.
    [48]Yu, L.,M. M. Rienecker. Mechanisms for the Indian Ocean warming during the 1997-1998 El Nino[J].,Geophys. Res. Lett.,1999,26:735-738.
    [49]Murtugudde, R., J. P. McCreary. A. J. Busalacchi. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998[J]. J. Geophys. Res.2000,105,3295-3306.
    [50]Vinayachandran, P. N.,Saji N H. Yamagata T. Response of the equatorial Indian Ocean to an unusual wind event during 1994[J]. Geophys. Res. Lett.,1999,26, 1613-1616.
    [51]Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.C. Lau, and J. D. Scott. The atmospheric bridge:The influence of ENSO teleconnections on air-sea interaction over the global oceans [J], J. Clim.2002,15,2205-2231.
    [52]Liu, Z, M. Alexander. Atmospheric bridge, oceanic tunnel, and global climatic eleconnections [J], Rev. Geophys.,2007:45, RG2005, doi:10.1029/2005RG000172.
    [53]刘琳,于卫东.热带印度洋偶极子事件和副热带印度洋偶极子事件的联系[J].海洋科学进展.2006,24(3):301-306.
    [54]王绍武.全球气候变暖的检测及成因分析[J].应用气象学报1993,4(2)
    [55]Gong D Y, Wang S W. Definition of Antarctic oscillation index[J].Geophys Res Lett,1999,26:459-462.
    [56]Hall H A, Visbeck M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode[J]. J Climat e,2002, 15:3043-3057.
    [57]Renwick J A. Southern hemisphere circulation and relationswith sea ice and sea surface temperature [J]. J Climate,2002,15:3058-3068.
    [58]Li, J., Coupled air-sea oscillations and climate variations in Climate and Environmental Evolution in China (First Volume), Ed+. D. Qin, Beijing:China Meteorological Press,2005,324-333.
    [59]Zhang Y, Battisi J M. ENSO-like interdecadal variability in1900-1993 [J]. Journal of Climate,1997,10:1004-1020.
    [60]Mantua N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997,78(6):1069-1079.
    [61]朱益民,杨修群.太平洋年代际振荡与中国气候变率的联系[J].气象学报,2003,61(6):641-654.
    [62]Minobe S A.50-70 year climate oscillation over the North Pacific and North America [J]. Geophysical Research Letters,1997,24:683-686.
    [63]Hare S R, Mantua N J. Empirical evidence for North Pacific regime shifts in 1977 and I989[J]. Process in Oceanography,2000,47:103-145.
    [64]Sun Jianqi, Wang Huijun. Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale[J]. Chinese Science Bullet in 2006.51:175-179 DOI:10.1007/s 11434-004-0221-3.
    [65]方长芳,吴立新.全球变暖对北太平洋年代际变化的影响及可能机制研究[J].2010.
    [66]Bridget R.Thomas, Elizabeth C. Kent, Val R. Swail Methods to Homogenize Wind Speeds From Ships and Buoys". International Journal of Climatology (John Wiley & Sons, Ltd.) 2005.25:979-995.
    [67]Clara Deser. Adam S. Phillips. Michael A. Alexander.Twentieth century tropical sea surface temperature trends revisited. Geophysical Research Letters 2010.37 (L10701):1. doi:10.1029/2010GL043321,2010.
    [68]郑友华,郑崇伟,李训强等.基于ICOADS海浪资料的全球海域波浪能研究[J].可再生能源.2011.29(5).
    [69]黄卓,徐海明,杜岩,等.厄尔尼诺期间和后期南海海面温度的两次显著增暖过程[J].热带海洋学报.2009.28(5):49-55.
    [70]Peter Chu. Chen.Yuchun. Akira Kuninaka et al. Seasonal Variability of the Yellow Sea/East China sea Surface Fluxes and Thermohaline Structure [J]. Advance in Atmospheric Sciences.2005,22(1):1-20.
    [71]Karoly D J. Southern hemisphere circulation features associated with El Nino-Southern Oscillation events [J].J C1imate.1989.2:1239-1252.
    [72]Mo K C. Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies[J]. J Climate,2000,13: 3599-3610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700