用户名: 密码: 验证码:
采动空间围岩应力监测技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国煤矿开采深度及强度不断增加,采动空间围岩应力分布变化越来越复杂,由采动围岩应力引起的煤岩失稳现象也日趋严重。采动围岩应力实时监测研究,有助于深入分析并揭示采动空间围岩应力的分布及演化规律,从而为准确预测预防冲击地压等煤岩动力灾害提供技术支持。针对现有应力计与煤岩体耦合困难,本文建立了应力计与钻孔周围煤岩体耦合力学模型;揭示了应力计与煤岩体耦合力学机理;开发了能够与煤岩体良好耦合的采动应力实时监测系统;运用该系统并结合FLAC~(3D)等技术研究了采动空间围岩应力时空分布及其演化规律;在此基础上,提出了采掘空间采动应力临界梯度预警技术及方法,并在现场得到验证和应用。本文主要研究成果如下:
     (1)建立了应力计与钻孔周围煤岩体耦合力学模型,揭示了应力计与煤岩体耦合力学机理,为确定应力计合理初承力及实现应力计与煤岩体的最佳耦合提供理论依据。
     (2)发明了采动应力实时监测技术及方法,开发了采动应力实时监测系统,该系统中应力计能够与钻孔周围煤岩体自适应良好耦合,且可实现单向、双向及三向应力实时监测,并能与KJ系统进行联网运行,实现对应力数据的同步实时传输、存储与处理;提出了按照一定角度组合应力感应探头,监测以钻孔轴心为法线的平面中两个主应力大小及方向变化的方法。
     (3)应用采动应力实时监测系统对梁北煤矿11061软煤孤岛综采工作面动压区应力进行了监测研究,并结合FLAC~(3D)数值模拟、电磁辐射及支护阻力监测技术,综合分析了采动空间围岩应力的时空分布及演化规律。结果表明:11061软煤孤岛工作面煤体中采动应力以垂直方向为主,影响范围及变化量相对水平应力较大;煤壁前方卸压带宽度约为6m,采动影响距离约为120m,相对一般综采工作面偏大;相邻采空区叠加应力在倾向产生双应力峰值,小的应力峰值距巷帮约为6~8m,大的应力峰值距巷帮约为17m。
     (4)提出了采掘空间采动应力临界梯度预警技术,该技术包含采动应力、钻屑量、电磁辐射、支护阻力指标,并在11061工作面进行了验证和应用。结果表明:在煤岩体物理性质、地质条件及应力状态相同条件下,随着空间应力梯度的增大,巷道片帮、变形等矿压显现程度及频率明显增大;通过爆破卸压等技术可降低煤岩体空间采动应力梯度,及时释放因围岩采动应力变化积聚的弹性能,能够有效预防煤岩动力灾害。
     本论文有图77幅,表8个,参考文献192篇。
With the mining depth and intensity in our country increasing continuously, thedistribution and change of mining space surrounding rock stress are becoming moreand more complex. The phenomenon of coal and rock instability caused by miningsurrounding rock stress is on the rise. Studies on real-time monitoring technology ofmining surrounding rock stress will help deeply analyzing and revealing thedistribution and evolution law of mining surrounding rock stress, in the meantime,providing technical support for predicting and preventing rock burst and some othercoal and rock dynamic disasters accurately. Focusing on the coupling difficulties ofstressometer now available and coal and rock mass, this paper built the couplingmechanical model of stressometer and coal and rock mass surrounding the drill hole,revealed the coupling mechanical mechanism, and developed a mining stressmonitoring system which has good coupling with coal and rock mass. Combined withFLAC~(3D) and other technologies, this monitoring system was applied to study thespace-time distribution and evolution law of mining space surrounding rock stress.Based on all above, the warning technology and method of critical space mining stressgradient was raised, and has been proved and applied on the spot. The main studyresults as follows:
     (1) The coupling mechanical model of stressometer and coal and rock masssurrounding the drill hole was built, and the coupling mechanical mechanism wasrevealed, which providing technical support for ascertaining the initial stress of thestressometer、realizing the best coupling of stressometer and coal and rock mass.
     (2) Invented technology and method for mining stress monitoring, and thendeveloped the mining stress real-time monitoring system, included in which thestressometer could self-adaptively couple the coal and rock surrounding the drill hole,realtimely monitor the size and change of unidirectional、 bidirectional andthree-directional coal and rock stress. And it can also connect the KJ system, realizethe synchronous real-time transmission、storage and processing with the monitoringinformation. This paper put forward one method that through combining a few ofstress inductive probes into one stressometer according to certain angle, it canmeasure and monitor the size and direction changes of two primary stresses in a planewhich take drill hole axis as the normal.
     (3) The real-time mining stress monitoring system was applied to monitor andstudy the dynamic pressure area stress of11061island mechanized working face withsoft coal in Linage coal mine. Combined the FLAC~(3D) numerical simulation software、electromagnetic radiation and monitoring technology of support resistance, thespace-time distribution and evolution law of mining space surrounding rock stress wasanalyzed synthetically. The results show that the mining stress of11061islandmechanized working face with soft coal is mainly on vertical direction, the influencescope and variable quantity are greater than those of horizontal. The width of pressurereleased zone ahead of coal wall is about6m, wider than that of general mechanizedworking face. The mining influenced distance is nearly120m, longer than that ofgeneral mechanized working face. Double stress peak value appears in dip directionfor the stress superposition in adjacent gobs. The low stress peak value appears6~8maway from the roadway side wall, while the high stress peak value appearsapproximately17m away from the roadway side wall.
     (4) The warning technology of critical space mining stress gradient was raised.Indexes like mining stress、drilling volume、electromagnetic radiation and supportresistance included in this technology, and the demonstration and application havebeen conducted in11061working face. The results show that, under the sameconditions of coal and rock mass physical property、geological condition and stressstate, the degree and rate of strata behaviors like collapse and deformation of roadwayenlarged obviously, along with the enlargement of mining space stress gradient. Coaland rock dynamic disasters can be prevented efficiently through reducing miningspace stress gradient of coal and rock mass, releasing elastic energy accumulated bysurrounding rock mining stress changing timely.
引文
[1]徐永圻,等.煤矿开采学[M].徐州:中国矿业大学出版社,2009.
    [2]王恩元,何学秋.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2009.
    [3]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [4]国家安全生产监督管理总局(2010.1.13). http://www.chinasafety.gov.cn/newpage/Contents/Channel_20289/2010/0113/82746/content_82746.htm.
    [5]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [6] Sellers E J, Klerck P. Modeling of the effect of discontinuities on theextent of the fracture zonesurrounding deep tunnels[J]. Tunnelingand Underground Space Technology,2000,15(4):463–469.
    [7] Kidybinski A, Dubinski J. Strata Control in Deep Mines[M]. Rotterdam:A.A.Balkema,1990.
    [8] Fairhurst C.Deformation, yield, rupture and stability of excavationsat great depth[A]. In:Fairhust C ed.Rockburst and Seismacity in Mines[C].Rotterdam: A.A.Balkema,1990,1103–1114.
    [9] Malan D F, Spottiswoode S M.Time-dependent fracture zone behavior and seismicitysurrounding deep level stopping operations[A].In:Rockburst and Seismicity in Mines[C].Rotterdam:A.A.Balkema,1997,173-177.
    [10]钱七虎.非线性岩石力学的新进展——深部岩体力学的若干问题[A].见:中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004.10-17.
    [11]钱七虎.深部地下工空间开发中的关键科学问题[A].见:第230次香山科学会议——深部地下空间开发中的基础研究关键技术问题[C].2004.
    [12]钱鸣高.20年来采场围岩控制理论和实践的回顾[J].中国矿业大学学报,2000,19(1):1-4.
    [13] Sun J, Wang S J. Rock mechanics and rock engineering in China: developments and currentstate-of-the-art[J].International Journal of Rock Mechanics and Mining Science,2000,(37):447–465.
    [14]古德生.金属矿床深部开采中的科学问题[A].见:香山科学会议编.科学前沿与未来(第6集)[C].北京:中国环境科学出版社,2002.192-201.
    [15]谢和平.深部高应力下的资源开采—现状、基础科学问题与展望[A].见:香山科学会议编.科学前沿与未来(第六集)[C].北京:中国环境科学出版社,2002:179-191.
    [16]何满朝.深部开采工程岩石力学的现状及其展望[A].见:中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004:88-94.
    [17]何满朝,谢和平,彭苏萍,等.深部开采岩体力学研究[J]岩石力学与工程学报,2005,4(16):2803-2813.
    [18]周刚,李玉涛,吴振业.大屯矿区地应力测量与特征分析[J].煤炭学报,2005,30(3):314-318.
    [19]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1991:202-206.
    [20] WANG Lian-guo, SONG Yang,HE Xing-hua et al. Side Abutment Pressure Distribution byField Measurement[J]. Journal of China University of Mining&Technology,2008,18(4):527–530.
    [21]曹胜根,缪协兴.超长综放工作面采场矿山压力控制[J].煤炭学报,2001,26(6):621-625.
    [22]康红普.煤矿井下应力场类型及相互作用分析[J].煤炭学报,2008,33(12):1329-1335.
    [23]吕梦蛟,李先章,等.三软厚煤层综采工作面采动应力分布规律研究[J].煤炭科学技术,2011,39(7):21-24.
    [24]曹安业,窦林名,江衡,等.采动煤岩不同破裂模式下的能量辐射与应力降特征[J].采矿与安全工程学报,2011,3(9):350-355.
    [25]潘俊锋.冲击危险性厚煤层采动应力场特征研究[D].北京煤科总院硕士论文.2006.
    [26]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [28]陈胜宏.计算岩体力学与工程[M].北京:中国水利水电出版社,2006.
    [29]杨永杰,周钢,李雨寿,等.地应力测量及综放沿空掘巷支护技术[M].北京:煤炭工业出版社,2010.
    [30] Lieurance,R.S.Stress in foundation at boulder dam[J].Tech.Memo.,ReclamationDenver,1933,12-16.
    [30]李志强.中国1980年水力压裂法深井测定地下应力的进展[J].国家地震动态.1980,1:12.
    [31] Guo F.,Morgenstern N R.,Scott J D.Interpretation of hydraulic fracturing pressure:Acomparison of eight methods used to identify shut-in pressure[J]. Rock Mechanics andMining Sciences&Geomechanics Abstracts,1993,30(6):627-630.
    [32] Fairhurst.,C.Methods of determining in-situ stress at great depth[J].Missouri River Div.,Corps.Of Engrs.,Omaha,Tech.,1968:1-68.
    [33] Haimson,B.C.Hydraulic fracturing in porous and nonporous rock and its potential fordetermining in-situ stresses at great depth[J].Missouri River Div.,Corps.OfEngrs.,Omaha,Tech.,1968:4-68.
    [34]吴振业.环氧树脂三轴应变计与岩体应力测量[J].煤炭学报,1987,(3):38-46.
    [35]蔡美峰.地应力测量中温度补偿方法的研究[J].岩石力学与工程学报,1991,10(3):227-235.
    [36] Michibiro,K.,Fujiwara,T.,and Yoshioka,H.Study on estimating geostress by the Kaiser effectof AE[C].26thU.S.Symp.On Rock Mechnics,1985:557-564.
    [37]卢兴宇.关于Kaiser效应和应力方向的初步探讨[J].重庆建筑工程学院学报,1987.
    [38]黄志鹏,朱可善,郭映忠.关于Kaiser效应方向独立性实验研究[J].长江科学院院报,1998,15(2).
    [39]吴刚,赵震洋.不同应力状态下岩石材料破坏的声发射特性[J].岩土工程学报,1998,20(2).
    [40]苏凯之.地应力测量方法[M].北京:地震出版社,1985.
    [41]王连捷,任希飞,丁原辰,等.地应力测量在采矿工程中的应用[M].北京:地质出版社,1994.
    [42]侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,(5):840-844.
    [43]钟方平,楼沩涛,张景森,等.深层地应力测量[J].应用力学学报,2000,9(3).
    [44] Haimson,B.C The Hydrofracturing stress measuring method and recent results[J].Int.J. RockMech. MinSci.&Geomech.Abstr,1978,15(2):167-178.
    [45] Hubert, M K, Willis D G.. Mechanics of hydraulic fracturing[J].Trans.AIME,1957,21(2):153-166.
    [46]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2004.
    [47]王连捷,廖椿庭,丁原辰,等.KX-81型空心包体式三轴应力计[A],地质力学文集(八)
    [C].地质出版社,1990.
    [48] Sellers, J.B.,1997,The measurement of stress changes in rock using the vibrating wire stressmeter, Proc. Int. Sym p. on Field measurement in rock Mechanics, Zurich,275-288.
    [49] Hawkes, I. and Kooker, V,E.,1974,The vibrating wire stress meter,proc, Third ISRMCongr,Denver,439-444.
    [50]谷志孟,葛修润,潘汉洪.利用液压应力计直接测定软岩应力的模型试验研究[J].岩土力学,1990,11(4):23-34.
    [51]谷志孟,葛修润.软岩地应力测量新方法的试验研究[J].岩石力学与工程学报,1994,13(94):339-348.
    [52]伍佑,路军,胡建华,等.远程地压监控技术在地下矿山中的应用研究[J].岩石力学与工程学报,2007,26Supp.1:2815-2819.
    [53]付东波,齐庆新,秦海涛,等.采动应力监测系统的设计[J].煤矿开采,2009,14(6):13-16.
    [54]于正兴,姜福兴,王洛锋.提高钻孔应力计监测煤岩应力的精度试验[J].煤炭科学技术,2010,38(11):53-55,92.
    [55]钱鸣高,缪协兴.采动岩体力学—门新的应用力学研究分支学科[J].科技导报维普资讯http://www.cqvip.com29-31.
    [56]倪兴华.地应力研究与应用[D].煤体工业出版社,北京,2006.
    [57]何学秋,陈庆禄.电磁辐射法预测突出危险性技术及便携式装备的研究[Z].国家重点科技项目(攻关)计划子专题工作报告,徐州:中国矿业大学,2000.
    [58]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [59]钱建生,刘富强,陈治国,等.煤与瓦斯突出电磁辐射监测仪[J].中国矿业大学学报,2000,29(2):167-169.
    [60]魏建平.矿井煤岩动力灾害电磁辐射预警机理及其应用研究[D].徐州:中国矿业大学,2004.
    [61]王恩元,何学秋,刘贞堂,等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [62]何学秋,王恩元,聂百胜,等.煤岩流变电磁动力学.北京:科学出版社,2003.
    [63] Гохберг М.Б., Гуфельд И.Л., И. другие. Электромагнитные эффекты при разрушенииземли коры[J]. Физика Земли,1985,(1):71-87.
    [64] М.А.萨多夫斯基.苏联地震预报研究文集(一)[M].北京:地震出版社,1990.
    [65] М.Е.佩列利曼,Н.Г.哈季阿什维利.破裂电磁辐射理论研究[C].见:苏联地震预报研究文集(三),北京:地震出版社,1993,35-39.
    [66] Шевцов Г.И., Мигунов Н.И., И. другие. Электризация по-левых штапов при деформациии разрушении[J]. Д АН ССCР,1975,225(2):313~315.
    [67] Yamada I., Masuda K., Mizutani H.. Electromagnetic and acoustic emission associated withrock fracture[J]. Phys. Earth Planet.Inter.,1989,57:157~168.
    [68] Brady B.T., Rowell G.A.. Laboratory investigation of the electrodynamics of rock fracture[J].Nature,1986,321:488~492.
    [69] Cress G.O., Brady B.T., Rowell G.A.. Sources of electromagnetic radiation from fracture of rocksamples in the laboratory[J]. Geophys. Res. Lett.,1987,14(4):331~334.
    [70] Ogawa T., Oike K., Miura T.. Electromagnetic radiation from rocks[J]. J. Geophys Res,1985,90(D4):6245~6249.
    [71]钱书清,张以勤,曹惠馨.花岗岩洞爆破时伴随岩石破裂的电磁辐射.地球物理学报[J],1983,26(增刊):887-893.
    [72]钱书清,张以勤,曹惠馨,等.岩石破裂时产生电磁脉冲的观测与研究[J].地震学报,1986,8(3):301-308.
    [73]徐为民,童芜生,王自成.单轴压缩下岩样破坏过程中的发光现象[J].地震,1984,(1):8-10.
    [74]徐为民,童芜生,吴培稚.岩石破裂过程中电磁辐射的实验研究[J].地球物理学报,1985,28(2):181-190.
    [75]李均之,曹明,毛浦森,等.岩石压缩试验与震前电磁波辐射的研究[J].北京工业大学学报,1982,8(4):47-53.
    [76]李均之,夏雅琴,沈壮.岩石破裂辐射电磁波实验研究与地震预报[C].见:震前电磁波观测与实验研究文集,北京:地震出版社,1989,147-152.
    [77]孙正江,王丽华,高宏.岩石标本破裂时的电磁辐射和光发射[J].地球物理学报,1986,29(5):491-495.
    [78]朱元清,罗祥麟,郭自强,等.岩石破裂时电磁辐射的机理研究[J].地球物理学报,1991,34(5):595-601.
    [79]郭子祺.岩石破裂中电磁辐射的实验研究[D].北京:中国科学院&中国科技大学北京研究生院,1997.
    [80] Фрид В.И., Шабаров А.Н., И. другие. Формирование элект-ромагнитного излученияугольного пласта[J]. ФТПРПИ,1992,(2):40~47.
    [81] Frid V.. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture[J].Rock Mechanics and Rock Engineering,1997,30(4):229~236.
    [82] Frid V.. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal ofApplied Geophysics,1997,38(2):97~104.
    [83] V. I. Frid, A.N. Shabarov, V.H. Proskuryakov, et al. Formation of electromagnetic radiation incoal stratum[J]. J. Mining Science,1992,28(2):139~145.
    [84]刘明举.含瓦斯煤断裂电磁辐射及其在煤与瓦斯突出研究中的应用[D].徐州:中国矿业大学,1994.
    [85]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [86] Xueqiu He, Enyuan Wang, Zhentang Liu. The general charastics of electromagnetic radiationduring coal fracture and its application in outburst prediction[C]. In: Proceedings of the8thU.S. Mine Ventilation Symposium, Rolla, Missouri, June11~17,1999,81~84.
    [87]王恩元,何学秋,刘贞堂,等.煤岩变形破裂的电磁辐射规律及其应用研究[J].中国安全科学学报,2000,10(2):35-39.
    [88]窦林名,何学秋,王恩元,等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41(12):86-88.
    [89]王恩元,何学秋,聂百胜,等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3):225-229.
    [90]窦林名,曹其伟,何学秋,等.冲击矿压危险的电磁辐射监测技术[J].矿山压力与顶板管理,2002,№4:89-91,98.
    [91]王恩元.电磁辐射法监测煤与瓦斯突出危险性技术及其应用研究[博士后研究报告].徐州:中国矿业大学,1999.
    [92]刘晓斐,王恩元,何学秋,等.回采工作面应力分布的电磁辐射规律[J].煤炭学报,200732(10):1019-1022.
    [93]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):58-61.
    [94] Gibowicz S J, Kijko A(修济刚等译).矿山地震学引论[M].北京:地震出版社,1998.
    [95]王焕义.岩体微震事件的精确定位研究[J].工程爆破,2001,7(3):5-8.
    [96]李世愚,和雪松,张少泉,等.矿山地震监测技术的进展及最新成果[J].地球物理学进展,2004,19(4):853-859.
    [97] Rutledge J T, Phillips W S, House L S.et el. Zinn Mieroseismic mapping of a eottonvallCotton Valley hydraulic fracture using decimated downhole arrays[A]. In: Ann Intemat Mtg.Soc. Explor. Geophys.[C].Louisiana:[s. n.].1998.338-341.
    [98] Philips W S. Rutledge J T. House L S. et al. Induced micro-earthquake patterns inhydrocarbon and geothermal reservoirs: six case studies[J]. Pure Appl. Geophys.2002.(159):345-369.
    [99] Milev A M, Spottisswoode S M. Effect of the rock properties on mining-induced seismicityaround the venterdrop contact roof, Witwatersrand Basin, South Africa[J]. Pure App1.Geophys.2002,(159):165-177.
    [100]百红,秦绪英,郑四连,等.微震监测技术及其在油田中的应用现状[J].勘探地球物理进展,2005,28(5):325-329.
    [101] Luo X, Ross J, King A. Microseismi c monitoring at Dartbrook Mine for underground gasemissi0n control[R]. Brisbane, Australia:[s.n.],2000.
    [102] Luo X, King A, Ross J.Microseismi c monitoring at Southem Colliery for understandingrooffracturing mechanisms[R]. Brisbane,Australia:[s.n.],2000.
    [103]张万斌,王淑坤,滕学军.我国冲击地压研究与防治的进展[J].煤炭学报,1992,17(3):27-35.
    [104]赵刚,王焕义,张银平.寿王坟铜矿采空区管理与监测[J].有色金属,1998,50(4):1-3.
    [105]王焕义,赵刚.区域性岩体微震活动的监测[J].矿治,1995,4(1):12-16.
    [106]张少泉,张诚,修济刚,等.矿山地震研究述评[J].地球物理学进展,1993,8(3):69-85.
    [107] Zhang S Q, Yang M Y. Seismologieal Research on Mining Tremors. Progress in AcousticEmissionV[J]. The Japanese Soeiety for NDI,1990:260-265.
    [108]张少泉,张兆平,杨愚源,等.矿山冲击的地震学研究与开发[J].中国地震,1993,6(l):l-15.
    [109]赵向东,陈波,姜福兴.微震工程应用[J].岩石力学与工程学报,2002,2l(增2):2609-2612.
    [110]李希勇,张修峰.典型深部重大冲击地压事故原因分析及防治对策[J].煤炭科学技术,2003,31(2):15-17.
    [111]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究及应力[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [112]许福乐.微震监测系统开发基础研究[D].中国矿业大学,徐州,2010.
    [113]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [114]成云海,姜福兴,等.微震监测揭示的C型采场空间结构及应力场[J].岩石力学与工程学报,2007,26(1):102-107.
    [115]胥忠臣.关于支承压力发展规律及其在生产实际中应用[J].黑龙江科技信息.2004(5):154
    [116]桂兵,郭建泉,陈本华.济三煤矿163下02工作面超前支承压力分布特征实测研究[J].煤炭技术.2007(5):66-68
    [117]安文勇,陈士升.采场支承压力分布规律研究[J].科技创新导报.2011.10(21):113
    [118]周卫红,王刚.采场推进对支承压力影响规律研究[J].煤炭技术.2011.30(12):104-105
    [119]朱守颂,姜光.工作面超前支承压力分布规律研究[J].煤炭工程.2011.(3):97-98,101
    [120]叶丽萍.工作面支承压力分布的研究[J].安徽理工大学学报.2011.3(14):41-45
    [121]宋振骐,卢国志,夏洪春.一种计算采场支承压力分布的新算法[J].山东科技大学学报,2006.25(3):1–4.
    [122]谢广祥,王磊.工作面支承压力采厚效应解析[J].煤炭学报.2008.33(4):361-363
    [123]邵广印,阚磊,马海峰,吴少龙.综采工作面支承压力分布特征研究[J].现代矿业.2011.10(10):84-85
    [124]李伟利,张学会.动载作用下采场前支承压力分布特征研究[J].煤炭技术.2010.12(3):104-108.
    [125]史红,姜福兴.基于微地震监测的覆岩多层空间结构倾向支承压力研究[J].岩石力学与工程学报.2008.27(6):3274-3280
    [126] Hast N. The measurement of rock pressure in mine[J]. Sveriges Geologisk Undersokning.SEC. C.52.1985.
    [127] Jaeger J C.Fundamentals of rock mechanics[J]. chapman and Hall.L.Ondon.2007
    [128] Myrvang A M. Practical use of rock stress measurements in Norway[J].Incestigation ofstress in rock.Proc.ISRM symp. sydney,1992:92-99
    [129]沈炜.visual c++数据库编程技术与实例[M].北京:人民邮电出版社,2005.
    [130]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999.
    [131]易丽军,俞启香.密集钻孔周围塑性区随煤体强度变化的数值模[J].矿业安全与环保,2008,35(1)1-4.
    [132]金煜,姜效典.岩石圈动力学[M].北京:科学出版社,2002.
    [133]卓卫东.应用弹塑性力学[M].北京:科学出版社,2005.
    [134]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2004.
    [135]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [136]刘展.ABAQUS基础教程与实例详解[M],中国水利水电出版社,2008
    [137]钱鸣高,石平五主编.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [138]张培森.采动条件下底板应力场及变形破坏特征研究[D].山东科技大学,2005.
    [139]蒋金泉,王国际,张登明,等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2007:268.
    [140]李成成.综放开采断层应力分布特征与冲击危险评价研究[D].山东科技大学2010.
    [141]朱维申,阮彦晟,李晓静,等.断层附近应力分布的异常和对隧洞稳定的影响[J].地下空间与工程学报2008,4(4):685-689.
    [142]王素军,李佳佳.断层对底板动压巷道应力分布的影响[J].煤炭技术,2010,29(2):6-98.
    [143]郑朋强,李成成,张兆民.断层附近回采工作面采动应力分布规律研究[J].煤,2011,20(2),1-5.
    [144]王书刚,孙利辉,杨本生,等.断层孤岛煤柱工作面矿压规律分析[J].山东煤体科技,2009(3),167-168.
    [145]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396-399.
    [146]勾攀峰,胡有光.断层附近回采巷道顶板岩层运动特征研究[J].采矿与安全工程学报,2006,23(3):285-288.
    [147]陈国祥,窦林名,乔中栋,等.褶皱区应力场分布规律及其对冲击矿压的影响[J].中国矿业大学学报,2008,37(6),751-755.
    [148]阮彦晟.断层附近应力分布的异常对第一项工程围岩稳定的影响[D].山东大学,2008.
    [149]付京斌.煤层褶皱构造形成演化应力场分布特征数值模拟[J].煤矿安全,2010(1),56-59.
    [150]朱兴珊,徐凤银.论构造应力场及其演化对煤和瓦斯突出的主控作用[J].煤炭学报,1994,19(3):304-313.
    [151]陈国祥,孙强.基于褶皱区应力场分布规律的冲击矿压防治[J].煤矿安全与环保,2011,38(2):43-45.
    [152]浦海,缪协兴.采动覆岩中关键层运动对围岩支承压力分布的影响[J].岩石力学与工程学报,2002,21(增2):2366-2369.
    [153]赵洪亮,何富连,减传伟,等.综放采场矿压显现规律实测研究[J].矿山压力与顶板管理,2002(2):69-71.
    [154]姜福兴.放顶煤采场的顶板结构形式与支架围岩关系探讨[J].第二届全国放顶煤开采理论与实践研讨会,1995,5.
    [155]潘俊峰.冲击危险性厚煤层采动应力场特征研究[D].煤科总院北京开采所硕士论文.2006
    [156]谢广祥.综放面及其巷道围岩三维力学场特征研究[D].中国矿业大学博士论文,2004.
    [157]靳钟铭著.放顶煤开采理论与技术[M].北京:煤炭工业出版社,2001.
    [158]陈忠辉,谢和平.综放采场支承压力分布的损伤力学分析[J].岩石力学与工程学报,2000,19(4):436、439.
    [159]陈忠辉,谢和平,王家臣.综放开采顶煤三维变形、破坏的数值分析.岩石力学与工程学报,2002,21(3):309-313.
    [160]张学会,阚磊.推进速度对综放开采矿压显现影响的实测研究[J].煤炭技术,2011,30(11):93-94
    [161]陈通.综采工作面推进速度与周期来压步距关系分析[J].煤矿开采,1999,34(1):33-35.
    [162]韩卫清.综采工作面矿压监测的实践应用分析[J].山西建筑,2004,30(9):130-131.
    [163]李德海,高木福.开采速度与地表移动变形的关系探讨[J].煤炭科学技术,1996,24(6):52–59.
    [164]王金安,焦申华,谢广祥.综放工作面开采速率对围岩应力环境影响的研究[J].岩石力学与工程,2006,25(6):1118-1124.
    [165]金成龙,谌计强,左鹏鹏,等.综采面推进速度与前方支承压力关系研究[J].山西焦煤科技,2010,(9):40-46.
    [166]谢广祥,常聚才,华心祝.开采速度对综放面围岩力学特征影响研究[J].岩土工程学报,2007,29(7):963-967.
    [167]谢广祥,杨科,常聚才.煤柱宽度对综放面围岩应力分布规律影响[J].北京科技大学学报,2006,28(11):1005-1013.
    [168]阎吉太,梁广锋,安满林,等.“孤岛”综采放顶煤工作面矿压预测预报[J].中国矿业大学报,1996,25(4):98-103.
    [169]秦忠诚,王同旭.深井孤岛综放面支承压力分布及其在底板中的传递规律[J].岩石力学与工程学报,2004,23(7):1127-1131.
    [170]刘长友,黄炳香,孟祥军,等.超长孤岛综放工作面支承压力分布规律研究[J].岩石力学与工程学报,2007,26(1):2761-2766.
    [171]黄炳香,刘长友,程庆迎,等.超长孤岛综放工作面煤柱支承压力分布特征研究[J].岩土工程学报,2007,29(6),932-937.
    [172] Gokhberg, M., Yoshino, T., Morgunov, V.. Results of recording operative electromagnetic-earthquake precursor in Japan. Physics Solid Earth,1982,18(2),144-146.
    [173] Frid V. Calculation of electromagnetic radiation criterion for rock burst hazard forecast incoal mines. Pure and Applied Geophysics,2001,158:931-944.
    [174]何俊,何学秋,聂百胜.煤体应力状态电磁辐射测试研究[J].采矿与安全工程学报,2006,23(1):111-114.
    [175]王恩元,贾慧霖,李忠辉,等.用电磁辐射法监测预报矿山采空区顶板稳定性[J].煤炭学报,2006,31(1):16-19.
    [176]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [177]彭文斌. FLAC3D实用教程[M].北京:机械工业出版社,2007.
    [178]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,24(17):3003-3010.
    [179]赵阳升,冯增朝,常宗旭.试论岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2002,21(增):1931-1933.
    [180]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.
    [181]陈国祥.最大水平应力对冲击矿压的作用机制及其应用研究[D].中国矿业大学,2009.
    [182]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].中国矿业大学出版社,徐州,1998.8.
    [183]尹志广,李晓泉,等.钻屑量与矿山压力及瓦斯压力关系现场实验研究[J].北京科技大学学报,2010,32(1):1-7.
    [184]许昌新龙矿业有限责任公司梁北矿11061工作面无线电波坑透勘探报告.焦作市宏舟矿山水业技术有限公司.2011.2.11.
    [185]苏承东,李化敏.深埋高应力区巷道冲击地压预测与防治方法研究[J].岩石力学与工程学报[J].2008,27(2):3840-3846.
    [186]林柏泉,杨威,吴海进,等.影响割缝钻孔卸压效果因素的数值分析[J].中国矿业大学学报,2010,39(2):153-157.
    [187]张啸,潘一山,李忠华.高压水射流割缝防治冲击地压的实验研究[J].科学技术与工程,2010,10(6):1514-1516.
    [188]李忠华,潘一山,张啸,等.高压水射流切槽煤层卸压机理[J].辽宁工程技术大学学报,2009,28(1):43-45.
    [189]兰永伟.钻孔卸压防治煤矿冲击地压的研究[D].辽宁工程技术大学,2005.
    [190]刘志强,吴伟.反向爆破方法在井下的应用[J].淮南职业技术学院学报,2006,3(6):30-31.
    [191]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008.
    [192]康红普,林健.我国巷道围岩地质力学测试技术新进展[J].煤炭科学技,2001,29(7):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700