用户名: 密码: 验证码:
膜生物反应器去除废水中高浓度氨氮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中的氨氮易导致湖泊出现富营养化现象,氮污染严重地影响着水体生态系统和人类的健康。膜生物反应器(MBR)技术在污水处理领域,特别是污水回用和高浓度氨氮废水处理方面在技术上和经济上具有巨大的潜力。本文主要研究采用MBR去除废水中高浓度氨氮的最佳工艺。
    本文系统开展了应用生产规模MBR、序批式好氧MBR(SOMBR)、序批式缺氧/好氧MBR(SAOMBR)、连续式缺氧/好氧MBR(CAOMBR)、连续式好氧/缺氧/好氧MBR(COAOMBR)5种工艺去除废水中高浓度氨氮的试验研究。对每一种工艺的氨氮(NH_4~+-N)和总氮(TN)的去除效果进行了分析,重点分析影响硝化和反硝化作用的因素。
    首先研究了生产规模MBR中的溶解氧(DO)分布特征及其对出水水质的影响,归纳出了DO与温度和高径比之间的模型,并使用该模型对生产规模MBR中DO过低的原因进行了说明。当有效水深为1.2~1.45 m、当量直径为1.54m时,氧的利用率较低,反应器内的大部分位置的DO在0.1~0.5 mg/L。采用序批式MBR处理高氨氮废水时硝化反应为零级反应,以NH_4~+-N表示的反应速率常数为64.45 mg/(L·h),是传统活性污泥法的13.7倍;以NO_2~--N表示的反应速率常数为21.06 mg/(L·h),是浮动床生物膜硝化反应器的2倍。详细研究了连续式MBR的硝化、反硝化能力以及影响因素,总结出了短程硝化-反硝化脱氮的操作条件,开展了短程硝化和厌氧氨氧化组合工艺脱氮的可行性试验。对比介绍了各种工艺中膜污染情况,分析了每种工艺造成膜污染的主要因素,提出了减缓膜污染的措施。
    通过各种工艺的比较,最后得出结论:当NH_4~+-N去除率>98%且碳源充足时,采用CAOMBR工艺对TN的去除率受回流比影响较大,而采用COAOMBR工艺去除废水中的高浓度氨氮能够获得很高的脱氮效率。
Ammonium nitrogen as a nutrient to aquatic plants contributes toeutrophication, which is a big threat to the aquatic ecosystem and human health.Among wastewater treatment technologies, membrane bioreactor (MBR) process isof great potential both technically and economically, especially in reuse ofdomestic/municipal wastewater and treatment of high-strength ammoniumwastewater. The objective of this study is to compare the effectiveness of variousMBR processes on nitrogen removal from high-strength ammonium wastewater inorder to determine the optimal one.
    In this study, a full-scale MBR, sequencing oxic MBR (SOMBR), a sequencinganoxic/oxic MBR (SAOMBR), a continuous anoxic/oxic MBR (CAOMBR), and acontinuous oxic/anoxic/oxic MBR (COAOMBR) were studied. The efficiencies ofammonium nitrogen (NH_4~+-N) and total nitrogen (TN) removal of all the processeswere analyzed with emphasis on studying the factors influencing nitrification anddenitrification.
    For the full-scale MBR, distribution of dissolved oxygen (DO) and its effectson the effluent quality were studied. A mathematical equation correlating withtemperature and tatio of height to diameter was developed. The mathematical modelcan be used to explain the causes of low DO (0.1 to 0.5 mg/L) occurring in thereactor with an effective height of 1.2 to 1.45 m and an equivalent diameter of 1.54m. The results show that Nitrification in the SOMBR process is zero order reactionwith respect to NH_4~+-N and nitrite nitrogen (NO_2~--N), having rate constants of 64.45mg/(L·h) and 20.06 mg/(L·h), respectively. The reaction rate constant for NH_4~+-N is13.7 times larger than the conventional actived sludge, and the constant for NO_2~--Nis 2.0 times large than the suspended bio-film bed nitrification reactor.
    The proformance of the CAOMBR process and affenting factors in operationwere studied in detail. The operational conditions of short-cut nitrification anddenitrification were summarized. Feasibility of using single reactor for high activityammonium removal over nitrite (SHARON) combined with anaerobic ammoniumoxidation (ANAMMOX) for nitrogen removal was tested. The main factors causingmembrane fouling and the prevention measures were also introduced at the end ofpaper.
    The research results show that COAOMBR process is most efficient in term ofnitrogen removal, and when the ammonium nitrogen removal efficiency of 98.5%and sufficient carbon source for denitrification exists, the removal of TN is onlylimited by reflux ratio in CAOMBR process.
引文
[1] Tom Stephenson, Simon Judd, Bruce Jefferson, et al. Membrane bioreactors for wastewater treatment[M]. London: IWA Publishing, 2000.
    [2] 顾国维,何义亮. 膜生物反应器——在污水处理中的应用[M]. 北京:化学工业出版社,2002.
    [3] 黄 霞,桂 萍,范晓军,等. 膜生物反应器废水处理工艺的研究进展[J]. 环境科学研究,1998, 11(1):40~44.
    [4] 樊耀波,王菊思. 水与废水处理中的膜生物反应器技术[J]. 环境科学,1995, 16(5):79~81.
    [5] 岑运华.日本水综合再生利用系统 90 计划的进展概要[J]. 环境科学研究,1990, 3(2):50~55.
    [6] Yamamoto K. Direct solid-liqud separation using hollow fiber membrane in an activated sludge tank[J]. Water Science and Technology, 1989, 21(1): 43~54.
    [7] Canales Angel, Pareilleux Alain, Luc Rols Jean, et al. Decreased sludge production strategy for domestic wastewater treatment[J]. Water Science and Technology, 1994, 30(8):97~106.
    [8] Ilias Shamsuddin, Schimmel Keith A. Membrane bioreactor model for removal of organics from wastewater[J]. Journal of the Air & Waste Management Association, 1995, 45(8):615~620.
    [9] Kishino H., Ishida H, Iwabu H, et al. Domestic wastewater reuse using a submerged membrane bioreactor[J]. Desalination, 1996, 106(1~3):115~119.
    [10] Tatsuki Ueda, Kenji Hata, Yasuto Kikuoka, et al. Effects of aeration on suction pressure in a submerged membrane bioreactor[J]. Water Research, 1997, 31(3):489~494.
    [11] Tatsuki Ueda, Kenji Hata. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration[J]. Water Research, 1999, 33(12):2888~2892.
    [12] Cicek N, Macomber J, Davel J, et al. Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor[J]. Water Science and Technology, 2001, 43(11):43~50.
    [13] Yoon Seong-Hoon, Kim Hyung-Soo, Lee Sangho, et al. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production[J]. Process Biochemistry, 2004, 39(12):1923-1929.
    [14] Hadi Husain, Pierre Cote. Membrane bioreactor for municipal wastewater treatment[J], Water Quality Index, March/April, 1999:19~22.
    [15] 林 喆,赵庆祥,陆美红,等. 膜分离活性污泥法的研究[J]. 城市环境和城市生态,1994, 7(1):6~11.
    [16] 邢传宏,TardieuEric,钱 易. 无机膜-生物反应器处理生活污水试验研究[J]. 环境科学,1997, 18(3):1~4.
    [17] 杨 琦,尚海涛,文湘华,等. 分置式膜-生物反应器处理染料废水的试验研究[J]. 给水排水,2004, 30(10):55~59.
    [18] 王建功. 港口污水膜-生物反应器回用处理技术研究[J]. 交通环保,1999, 20(5):14~16.
    [19] 何义亮,吴志超,李春杰,等. 厌氧膜生物反应器处理高浓度食品废水的应用[J]. 环境科学,1999, 20(6):53~55.
    [20] 王连军,蔡敏敏,荆 晶,等. 无机膜-生物反应器处理啤酒废水及其膜清洗的试验研究[J]. 工业水处理,2000, 20(2):32~34.
    [21] 刘旭东,王恩德. 应用膜生物反应器处理屠宰废水的中试研究[J]. 环境保护科学,2004, 30(2):16~18.
    [22] 樊耀波,王菊思,姜兆春. 膜生物反应器中膜的最佳反冲洗周期[J]. 环境科学学报,1997, 17(4):439~444.
    [23] 张绍园,王菊思,姜兆春. 膜生物反应器水力停留时间的确定及其影响因素分析[J]. 环境科学,1997, 18(6):35~38.
    [24] 李春杰,何义亮,欧阳铭. 错流膜生物反应器水力清洗特性研究[J]. 环境科学,1999, 20(2):57~60.
    [25] 罗 虹,顾 平,杨造燕. 膜生物反应器内泥水混合液可过滤性的研究[J]. 城市环境和城市生态,2000, 13(1):51~54.
    [26] 桂 萍,黄 霞,汪诚文,等. 膜-复合式生物反应器组合系统操作条件及温度运行特性[J]. 环境科学,1998, 19(3):35~38,46.
    [27] 何义亮,李春杰,吴志超,等. 厌氧超滤膜反应器截留分子量研究[J]. 中国给水排水,1999, 15(9):10~12.
    [28] 王 勇,孙寓姣,黄 霞. 丝状菌对膜-生物反应器中膜污染过程的影响[J]. 中国环境科学,2004, 24(2):247~251.
    [29] 孟耀斌,文湘华,邢传宏. 分置式膜-生物反应器处理生物污水及体积负荷的确定进行[J]. 环境科学,2000, 21(2):24~27.
    [30] 杨造燕,匡志花,顾 平,等. 膜生物反应器无剩余污泥排放的研究[J]. 城市环境与城市生态,1999, 12(1):16~18.
    [31] 魏源送,R T VanHouten, A R Borger, 等. 蠕虫在膜生物反应器和活性污泥法中的污泥减量研究[J]. 环境科学学报,2004, 24(3):405~412.
    [32] 宁 平,曾凡勇,胡学伟. 中高浓度氨氮废水综合处理[J]. 有色金属,2003, 55(3):130~132.
    [33] 仝武刚,王继徽,刘大鹏. 高浓度氨氮废水的处理现状与发展[J]. 工业水处理,2002, 22(9):9~12.
    [34] 蒋林时,张洪林,唐玉斌,等. 炼油厂含锌高浓度氨氮废水汽提性能研究[J]. 环境工程,2000, 18(1):7~10.
    [35] 胡允良,张振成,翟 巍,等. 制药废水的氨氮吹脱试验[J]. 工业水处理,1999, 19(4):19~21.
    [36] 王有乐,翟 钧,谢 刚. 超声波吹脱技术处理高浓度氨氮废水试验研究[J]. 环境污染治理技术与设备,2001, 2(2):59~63.
    [37] 孙锦宜. 含氨废水处理技术与应用[M]. 北京:化学工业出版社,2003.
    [38] Schulze-Rettmer R. The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium phosphate[J]. Water Science and Technology, 1991, 23(4~6):659~667.
    [39] 谢炜平. 废水中氨氮的去除与利用[J]. 陕西环境,1998, 5(3):15~16.
    [40] 尹先清,伍家忠,张依华,等. 合成氨废水氨氮处理技术研究[J]. 湖北化工,2002, (2):10~11.
    [41] 赵庆良,李湘中. 化学沉淀法去除垃圾渗滤液中的氨氮[J]. 环境科学,1999, 20(5):90~92.
    [42] 孙佩石. 净化处理高浓度有机废水的催化湿式氧化法技术[J]. 云南化工,1996, 21(4):53~57.
    [43] 杜鸿章. 焦化污水催化湿式氧化净化技术[J]. 工业水处理,l996, l6(6): 11~13.
    [44] 王 鹏,刘伟藻,方汉平. 垃圾渗沥液中氨氮的电化学氧化[J]. 中国环境科学,2000, 20(4):289~291.
    [45] 王乃祥,沈志松,陈 洁. 充气膜污染机理及膜清洗方法的初步研究[J]. 化工环保,1998, 18(1):3~7.
    [46] 时 钧,袁 权,高从堦. 膜技术手册[M]. 北京:化学工业出版社,2001.
    [47] 王冠平,方喜玲,施汉昌. 膜吸收法处理高氨氮废水的研究[J]. 环境污染治理技术与设备,2002, 3(7):56~60.
    [48] 冯旭东,王 葳,董黎明,等. 高浓度氨氮废水处理技术[J]. 北京工商大学学报(自然科学版),2004, 22(2):5~8.
    [49] 李可彬,金士道.液膜法去除废水中的氨氮污染[J]. 膜科学与技术,l996, l6(3):40~45.
    [50] 杨晓奕,蒋展鹏,潘咸峰. 膜法处理高浓度氨氮废水的研究[J]. 水处理技术,2003, 29(2):85~88.
    [51] 任南琪,王爱杰. 厌氧生物技术原理与应用[M]. 北京:化学工业出版社,2004:164~166.
    [52] 郑 平,徐向阳,胡宝兰. 新型生物脱氮理论与技术[M]. 北京:科学出版社,2004.
    [53] 白晓慧. 利用好氧颗粒污泥实现同步硝化反硝化[J]. 中国给水排水,2002, 18 (2):26~28.
    [54] Mike O Neill, Nigel J Horan. Achieving simultaneous nitrification and denitrification of wastewater at deduced cost[J]. Water Science and Technology, 1995, 32(9~10):303~312.
    [55] Hyungseok Yoo, Kyu-Hong Ahn. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) via nitrite in an intermittently-aerated reactor[J]. Water Research, 1999, 33(1):145~154.
    [56] 曹国民,赵庆祥,龚剑丽,等. 新型固定化细胞膜反应器脱氮研究[J]. 环境科学学报,2001, 21(2):189~193.
    [57] Hibiya Kazuaki, Terada Akihiko, Tsuneda Satoshi.et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J]. Journal of Biotechnology. 2003, 100(1):23~32.
    [58] Klangduen Pochana, Jurg Keller. Model development for simultaneous nitrification and denitrification[J]. Water Science and Technology, 1999, 39(1): 235~243.
    [59] 刘俊新,王秀蘅. 高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究[J]. 工业用水与废水,2002, 33(3):3~6.
    [60] Wang Jianlong, Yang Ning. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemisty, 2004, 39(10):1223~1229.
    [61] 张小玲,彭党聪,王志盈. 短程硝化-反硝化技术经济特性分析[J]. 西安建筑科技大学学报,2002, 34(3):239~242.
    [62] Beun J J, Heijnen J J, Van Loosdrecht M C M. N-removal in a granular suldge sequencing batch airlift reactor[J]. Biotechnology and Bioengineering, 2001, 75(1):82~89.
    [63] 涂保华,张 洁,张雁秋. 影响短程硝化反硝化的因素[J]. 工业安全与环保,2004, 30(1):12~14.
    [64] 郑 平. 环境微生物学[M]. 杭州:浙江大学出版社,2002.
    [65] 金兆丰,余志荣. 污水处理组合工艺及工程实例[M]. 北京:化学工业出版社,2003.
    [66] 高大文,彭永臻,潘 威. SBR 法短程硝化-反硝化生物脱氮工艺的研究[J].环境污染治理技术与设备,2003, 4(6):1~4.
    [67] Mulder A, Van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3):177~184.
    [68] Van de Graaf A A, Mulder A, Brunij P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4):1246~1251.
    [69] Van de Graaf A A, De Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7):2415~2421.
    [70] 郑 平. 厌氧氨氧化菌基质转化特性的研究[J]. 浙江农业大学学报,1998, 23(4):409~413.
    [71] Strous M, Fuerst J A, Evelienh M, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743):446~449.
    [72] Egli K, Fanger U, Alvarez P J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contact or treating ammonium-rich leachate[J]. Archives of Microbiology, 2001, 175(3):198~207.
    [73] Jetten M S M, Wagner M. Microbiology and application of the anaerobic ammonium oxidation (‘anammox') process[J]. Current Opinion Biotechnology, 2001, 12(3):283~288.
    [74] Verstraete W. Analysis of biofilms performing the oxygen limited autotrophic nitrification denitrification(OLAND)process[C]. Brussels, Belgium: Biofilms Symposium Microbial Ecology and their Rolein Nature and Disease, 2002:7.
    [75] 张 丹,徐 慧,李相力. 限氧自养硝化-反硝化生物脱氮新技术[J]. 应用生态学报,2003, 14 (12):2333~2336.
    [76] Strous M, van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium oxidizing(anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6):2446~2448.
    [77] Strous M, Gerren E van, Zheng P. Ammonium removal from concentrated waste stream with the anaerobic ammonium oxidation (anammox) process in different reactor configurations[J]. Water Research, 1997, 31(8):1995~1962.
    [78] Dapena-Mora A, Campos J L, Mosquera-Corral A, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J]. Journal of Biotechnology, 2004, 110(2):159~170.
    [79] 周少奇,周吉林. 生物脱氮新技术研究进展[J]. 环境污染治理技术与设备, 2000, 1(6):11~17.
    [80] Wang Jianlong, Kang Jing. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor[J]. Process Biochemistry, 2005, 40(1):1973~1978.
    [81] Wyffels S, Boeckx P. Sustained nitrite accumulation in a membrane assisted bioreactor(MBR)for the treatment of ammonium rich wastewater[J]. Journal Chemical Technology and Biotechnology, 2003, 78(4):412~419.
    [82] Smith R V, Burns L C, Doyle R M, et al. Free ammonia inhibition of nitrification in river sediments leading to nitrite accumulation[J]. Journal of Environmental Quaility, 1997, 26(4):1049~1055.
    [83] Fdz-PolancoF, Villaverde S, Garcia P A. Nitrite accumulation in submerged biofilters combined effects[J]. Water Science and Technology, 1996, 34(3~4): 371~378.
    [84] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied and Environmental Microbiology, 1998, 50(2):589~ 596.
    [85] Sliekers A O, Derwort N, Gomez J L C, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475~ 2482.
    [86] Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gaslift reactor[J]. FEMS Microbiology Letters, 2003, 218(2):339~344.
    [87] 左剑恶,蒙爱红. 一种新型生物脱氮工艺——SHARON-ANAMMOX 组合工艺[J]. 给水排水,2001, 27(10):22~27.
    [88] Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation in a pilot plant[J]. Journal of Biotechnology, 2002, 99(3):295~306.
    [89] Jetten M S M, Strous M, Van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421~437.
    [90] Third K A, Sliekers A O, Kuenen J G, et al. The Canon (Completely autotrophic nitrogen removal over nitrite) under ammonioum limitation: interaction and competition between three groups of bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4):588~596.
    [91] Dongen U van, Jetten M S M, Loosdrecht M C M van. The SHARON-ANAMMOX process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1):153~160.
    [92] 何 卿,李 峰. 高浓度氨氮废水处理试验[J]. 江苏环境科技,1999, 12(4):12~13.
    [93] 蔡木林,江跃林,裴 健,等. 二级 SBR 法处理高浓度氨氮化工废水研究[J]. 应用与环境生物学报,2000, 6(6):581~585.
    [94] 堵国成,耿金菊,陈 坚. 好氧同时硝化—反硝化脱氮微生物的混合培养[J]. 无锡轻工大学学报, 2002, 21(5):515~518,532.
    [95] 夏平安,崔树荣,胡志忠. 高氨氮、高含硫废水处理新工艺的研究[J]. 给水排水,2002, 28(3):43~45.
    [96] Yoon S H, Kim H S, Park J K, et al. Influence of important operational parameterson performance of a membrane biological reactor[J]. Water Science and Technology, 2000, 41(10~11):235~242.
    [97] 杨小丽,王世和. 膜生物反应器中膜的强化除污效果研究[J]. 中国给水排水,2004, 20(10):52~54.
    [98] 李红岩,高孟春,杨 敏,等. 组合式膜生物反应器处理高浓度氨氮废水[J]. 环境科学,2002, 23(5):62~66.
    [99] 王 晋,杨 敏. 一体式膜生物反应器硝化性能的研究[J]. 江苏工业学院学报,2003, 15(1):1~3.
    [100] 申 欢,金奇庭,李明波,等. 膜生物法处理城市垃圾渗滤液[J]. 中国给水排水,2004, 20(3):56~59.
    [101] 曾 萍,吴志超,张 鹏,等. 膜生物反应器处理高氨氮有机废水的研究[J]. 水处理技术,2004, 30(4):202~204.
    [102] 李红岩,高孟春,杨清香,等. 无排泥运行下膜生物反应器的硝化代谢产物及细菌活性[J]. 环境科学,2004, 25(6):89~91.
    [103] Ng W J, Ong S L, Gomez M J, et al. Study on a sequencing batch membrane bioreactor for wastewater treatment[J]. Water Science and Technology, 2000, 41(10~11):227~234.
    [104] Chiemchaisri C. Biological Nitrogen Removal Under Low Temperature in a Membrane Separation Bioreactor[J]. Water Science and Technology, 1993, 28(10):325~333.
    [105] Yeom Ick Tac. Treatment of Household Wastewater with an Intermittently Aerated Membrane Bioreactor[J]. Desalination, 1999, 124(1~3):193~204.
    [106] Ueda T, Hata K, Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor[J]. Water Science and Technology, 1996, 34(9):189~196.
    [107] Wouter Ghyoot. Nitrogen removal from sludge reject water with a membrane assisted bioreactor[J]. Water Research, 1999, 33(1):23~32.
    [108] 李春杰,耿 琰,顾国维. 焦化废水的一体化膜——序批式生物反应器处理研究[J]. 上海环境科学,2001, 20(1):24~27.
    [109] Berthold Gunder. Replacement of secondary clarification by membrane separation results with tubular, plate and hollow fibre modules[J]. Water Science and Technology, 1999, 40(4~5):311~320.
    [110] 邹联沛,张立秋,王宝贞,等. MBR 中影响同步硝化反硝化的生态因子[J].环境科学,2001, 22(4):51~55.
    [111] Blanpain P,Hermia J,Lenoe M.Mechanisms governing Permeate Flux and Protein rejection in the microfiltration of beer with acyclopore membrane[J]. Journal of Membrane Science, l993, 84(1):37~51.
    [112] Choo K H, Lee C H. Effect of anaerobic digestion broth composition on membrane permeability[J]. Water Science and Technology, l996, 34(9):173~ 179.
    [113] Tardieu E, Grasmick A, Geaugey V, et al. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment[J]. Journal of Membrane Science, l998, l47(1):1~l2.
    [114] Choo K H, Kang I J, Yoon S H, et al. Approaches membrane fouling control in anaerobic membrane bioreactors[J]. Water Science and Technology, 2000, 41(10~11):363~371.
    [115] Hong S P, Bae T H, Tak T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J]. Desalination, 2002, 143(3): 219~228.
    [116] Lim A L, Bai Renbi. Membrane fouling and cleaning in microfiltration of activated sludge wastewater[J]. Journal of Membrane Science, 2003, 216(1~2): 279~290.
    [117] Choo K H, Lee C H. Membrane fouling mechanisms in membrane–coupled anaerobic bioreactor[J]. Water Research, 1996, 30(8):1771~1780.
    [118] Nagaoka H, Ueda S, Miya A. Influence of bacterial extra cellular polymers on the membrane separation activated sludge process[J]. Water Science and Technology, l996, 34(9):165~l72.
    [119] Jonsson G, Prádanos P, Hernández A. Fouling phenomena in microporous membranes.F1ux decline kinetics and structural modifications[J]. Journal of Membrane Science, 1996, 112(2):17l~l83.
    [120] Altmann J, Ripperger S. Particle deposition and layer formation at the cross-flow microfiltration[J]. Journal of Membrane Science, l997, l24(1):119~l28.
    [121] Knoell T, Safarik J, Cormack T, et al. Biofouling potentials of microporons polysulfone membranes containing a suffocated polyether-ethersulfone po1yethersulfone block copo1ymer: correlation of membrane surface properties with bacterial attachment[J]. Journal of Membrane Science, 1999, 157(1):117~138.
    [122] Nagaoka H, Kono S, Yamanishi S, et al. Influence of organic 1oading rate on membrane fouling in membrane separation activated sludge process[J]. Water Science and Technology, 2000, 4l(10~11):355~362.
    [123] Lee Y H, Cho J W, Sea Y W, et al. Modeling of submerged membrane bioreactor process for wastewater treatment[J]. Desalination, 2002, 146(1~3): 45l~457.
    [124] Wintgens T, Rosen J, Melin T, et al. Modelling of a membrane bioreactor system for municipal wastewater treatment[J]. Journal of Membrane Science, 2003, 216(1~2):55~65.
    [125] Wendong Xu, Shankararaman Chellam, Dennis A Clifford. Indirect evidence for deposit rearrangement during dead-end microfiltration of iron coagulated suspensions[J]. Journal of Membrane Science, 2004, 239(2):243~254.
    [126] Chang I S, Bag O, Lee C H. Effects of membrane fouling on solute rejecting during membrane filtration of activated sludge[J]. Process Biochemistry, 2001, 36(8~9):855~860.
    [127] Sato T, Ishii Y. Effects of activated sludge properties on water flux of ultrafiltration membrane used for human excrement treatment[J]. Water Science and Technology, 1991, 23(7~9):160l~1608.
    [128] 徐慧芳,樊耀波. 膜生物反应器在粪便污水处理中的研究与应用[J]. 环境污染防治技术与设备,2002, 3(6): 75~81.
    [129] 任南琪,张 颖,陈兆波. SMBR 中不同膜组件形式的通量变化数学模型分析[J]. 高技术通讯,2001, 11(9):100~103.
    [130] 韩怀芬,金漫彤,黄玉柱,等. 膜生物反应器处理难降解有机废水研究[J].中国给水排水,2002, 16(2):55~57.
    [131] Magara Y, Itoh M. The effect of operational factors on solid/1iquid separation by ultramembrane filtration in a bio1ogical denitrification system for co11ected human excreta treatment plants[J]. Water Science and Technology, 1991, 23(7~9):1583~1590.
    [132] 何义亮,顾国维,刘 洁. 膜生物反应器生物降解与膜分离共作用特性研究[J]. 环境污染与防治,1998, 20(6):18~20.
    [133] 何义亮,顾国维. 膜生物反应器工艺参数控制研究[J]. 上海环境科学,1999, 27(4):83~84.
    [134] Nagaoka H, Yamanishi S, Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system[J]. Water Science and Technology, l998, 38(4~5):497~504.
    [135] 徐又一,石灯水,王剑鸣,等. 环保领域中聚丙烯中空纤维膜-生物反应器的研究[J]. 膜科学与技术,2000, 20(2):26~30.
    [136] Marshall A D, Munro P A, Tr?g?rdh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review[J]. Desalination, 1993, 91(1):65~108.
    [137] Jaime B, Abraham R, Roger M. Stabilization and dewatering of wastewater using hollow fiber membranes[J]. Water Research, 1995, 29(10):2281~2286.
    [138] 张 军,王宝贞,聂梅生,等. 复合淹没式中空纤维膜生物反应器处理生活污水的特性研究[J]. 中国给水排水,1999, 15(9):13~16.
    [139] Laure D, Michel Y, Jaffrin, Bharat Gupta. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology, 2000, 73(2):105~112.
    [140] 庞金钊,孙永军,杨宗政,等. 优势菌膜生物反应器处理洗车废水的研究[J]. 天津大学学报,2003, 36(3):383~386.
    [141] 徐慧芳,樊耀波. 气升循环分体式膜生物反应器再生回用厕所污水的研究与应用[J]. 环境科学,2003, 24(2):125~129.
    [142] 顾 平,李方方. 膜技术在水处理中的应用现状及其发展[J]. 中国给水排水,l998, 14(5):25~27.
    [143] 刘 锐,黄 霞,汪诚文,等. 一体式膜生物反应器运行中膜污染的控制[J]. 环境科学,2000, 21(2):58~61.
    [144] 刘恩华,环国兰,杜启云,等. 一种有效的膜清洗方法——海绵球管式膜清洗系统研究[J]. 膜科学与技术,2003, 23(6):65~68.
    [145] 邹联沛,王宝贞,张捍民. 膜生物反应器中膜的堵塞与清洗机理研究[J]. 给水排水,2000, 26(9):73~75.
    [146] 迪莉拜尔·苏力坦,莫 罹,黄 霞. PAC-MBR 组合工艺中膜污染及清洗方法的研究[J]. 给水排水, 2003, 29(5):1~4.
    [147] 黄 霞,莫 罹. MBR 在净水工艺中的膜污染特征及清洗[J]. 中国给水排水, 2003, 19(5):8~12.
    [148] 国家环境保护总局《水和废水监测方法》编委会. 水和废水监测分析方法(第四版)[M]. 北京:中国环境科学出版社,2002.
    [149] 耿 琰,周 琪,李春杰. 浸没式膜-SBR 反应器去除焦化废水中氨氮的研究[J]. 工业用水与废水,2002, 33(1):24~26.
    [150] 张 军,王宝贞,张立秋,等. 复合浸没式膜生物反应器脱氮除磷效能研究[J]. 中国给水排水,2000, 16(9):9~11.
    [151] 邹联沛,张立秋,王宝贞,等. MBR 中 DO 对同步硝化反硝化的影响[J]. 中国给水排水,2001, 17(6):10~14.
    [152] 方开泰,马长兴. 正交与均匀试验设计[M]. 北京:科学出版社, 2001, 83~203.
    [153] 李来义. 结构力学最优化设计[M]. 天津:天津大学出版社,1996,1~30.
    [154] 许保玖,龙腾锐. 当代给水与废水处理原理(第二版)[M]. 北京:高等教育出版社,2000.
    [155] 闪红光. 环境保护设备选用手册——水处理设备[M]. 北京:化学工业出版社,2002,233~235.
    [156] 刘锦霞. 生产规模膜生物反应器处理写字楼污水及回用研究[D]. 天津:天津大学[硕士学位论文],2001,10~21.
    [157] 郑兴灿,李亚新. 污水除磷脱氮技术[M]. 北京:中国建筑工业出版社,1998.
    [158] 郝建东,庞金钊,杨宗政. 优势菌生物增强 SBR 法处理校园生活废水中试优化操作[J]. 天津轻工业学院学报,2003, 18(4):22~26.
    [159] 孙永军,杨宗政,庞金钊,等. 优势菌-膜生物反应器处理洗车废水难降解物质的研究[J]. 天津轻工业学院学报,2002, 17(2):10~12,17.
    [160] 吕 红,徐又一,朱宝库,等. 分体式膜-生物反应器在废水处理中的工艺条件[J]. 环境科学,2003, 24(3):61~64.
    [161] 张永宝,姜佩华,冀世峰,等. 投加氢氧化铁对膜生物反应器性能的改善[J].给水排水,2004, 30(7):46~49
    [162] 罗 虹,顾 平,杨造燕. 投加粉末活性炭对膜阻力的影响研究[J]. 中国给水排水,2001, 17(2):1~4.
    [163] 李 军,杨秀山,彭永臻. 微生物与水处理工程[M]. 北京:化学工业出版社, 2002:207~277.
    [164] 封 莉,张立秋,吕炳南. 污泥浓度对膜生物反应器运行特性的影响研究[J]. 哈尔滨工业大学学报,2003, 35(3):307~310.
    [165] 李红兵,顾国维,谢维民. 中空纤维膜生物反应器处理生活污水的特性[J].环境科学,1999, 20(2):53~56.
    [166] Imre Takács, Erno Fleit. Modeling of the micromorphology of the activated sludge floc: low DO, low F/M bulking[J]. Water Science and Technology, 1995, 31(2):235~243.
    [167] 孙寓姣,王 勇,黄 霞. MBR 系统内丝状菌污泥膨胀的分子生态学解析[J]. 环境科学,2004, 25(增刊):56~58.
    [168] 刘 婕,李冰冰,王志峰,等. 焦化污水生物脱氮装置回流比的选择[J]. 燃料与化工,2000, 31(6):307~308.
    [169] 赵宗升,李炳伟,刘鸿亮. 高氨氮渗滤液处理的好氧反硝化工艺研究[J]. 中国环境科学,2002, 22(5):412~415.
    [170] 胡明成,于文波,沙 敏. 对浮动床生物膜硝化反应器的研究[J]. 桂林电子工业学院学报,2003, 23(1):31~33.
    [171] 张希衡,编著. 废水厌氧生物处理工程[M]. 北京:中国环境科学出版社,1996:332~333.
    [172] 王春荣,王宝贞,王琳. 两段曝气生物滤池的同步硝化反硝化特性[J]. 中国环境科学,2005, 25(1):70~74.
    [173] Christine Helmer, Sabine Kunst. Simultaneous nitrification/denitrification in an aerobic biofilm system[J]. Water Science and Technology, 1998, 37 (4~5): 183~187.
    [174] Klangduen Pochana, Jürg Keller. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Science and Technology, 1999, 39(6):61~68.
    [175] Grobicki A, Stuckey D C. Hydrodynamic characteristics of the anaerobic baffled reactor[J]. Water Research, 1992, 26(3):371~378.
    [176] 卢 刚,郑 平. 内循环颗粒污泥床硝化反应器流动模型研究[J]. 生物工程学报,2003, 19(6):754-757.
    [177] Ferhan ?e?en. Investigation of partial and full nitrification characteristics of fertilizer wastewaters in a submerged biofilm reactor[J]. Water Science and Technology, 1996, 34(11):77~85.
    [178] 陈际达,陈志胜,张光辉,等. 含氮废水亚硝化型硝化的研究[J]. 重庆大学学报(自然科学版),2000, 23(3):74~76.
    [179] 张自杰. 排水工程(下册) (第四版)[M]. 北京:中国建筑出版社,2000,9~11.
    [180] Tokuyama T, Yoshida N, Matsuishi T et al. A new psychrotrophic ammonia-oxidizing bacterium, Nitrosovibrio sp. TYM9[J]. Journal of Fermentation and Bioengineering, 1997, 83(4):377~380.
    [181] 高大文,彭永臻,王淑莹. 不同方式实现短程硝化反硝化生物脱氮工艺的比较[J]. 中国环境科学,2004, 24(5):618~622.
    [182] 张小玲,彭党聪,王志盈. 传统与短程反硝化的影响因素及特性研究[J].中国给水排水,2002, 18(9):1~3.
    [183] 王之晖 王淑莹 彭永臻,等. 前置反硝化脱氮系统外加碳源在线控制基础[J]. 环境科学,2004, 25(4):73~77.
    [184] 郑 义,孟祥荣,武 剑,等. A/O 生物脱氮回流液中溶解氧影响因素的研究[J]. 燃料与化工,2003, 34(5):263~265.
    [185] Paul E, P1isson-Saune S, Mauret M, et a1. Process state evaluation of alternating oxic-anoxic activated s1udge using ORP, pH and DO[J]. Water Science and Techno1ogy, 1998, 38(3):299~306.
    [186] Chen Kuo-Cheng, Chen Ching-Yen, Peng Juin-wei, et a1.Real-time contro1 of an immobilized-cell reactor for wastewater treatment using ORP[J]. Water Research, 2002, 36(1):230~238.
    [187] Fuerhacker M, Bhuer H, Elinger R, et a1. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactoxs[J]. Water Research, 2000, 34(9):2499~2506.
    [188] 赵宗升,刘鸿亮,李炳伟,等. 高浓度氨氮废水的高效生物脱氮途径[J]. 中国给水排水,2001, 17(5):24~28.
    [189] 左剑恶,杨 洋,蒙爱红. 高氨氮浓度下的亚硝化过程及其影响因素研究[J].环境污染与防治,2003, 25(6):332~335.
    [190] 陈 韬,王淑莹,彭永臻,等. 常温下 A/O 工艺的短程硝化反硝化[J]. 中国给水排水,2002, 18(12):5~8.
    [191] Hellinga C, Schellen A A J C, Mulder J W, et al.The Sharon process:an innovative method for nitrogen remova1 from ammonium rich waste water[J].Water Science and Technology, 1998, 37(9):135~142.
    [192] 徐冬梅. 亚硝酸型硝化的试验研究[J]. 给水排水,1999, 25(7):32~35.
    [193] 邓贤山,周恭明. 硝化反应及其控制因素[J]. 能源环境保护,2003, 17(2): 46~48.
    [194] 王志盈,刘超翔,袁林江,等. 低溶氧下生物流化床内亚硝化过程的选择特性研究[J]. 西安建筑科技大学学报(自然科学版),2000, 32(1):4~7.
    [195] 张小玲,王志盈,彭党聪,等. 低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,2003, 19(7):2~5.
    [196] Sharma B, Ahler R C. Nitrification and nitrogen removal[J]. Water Research. 1977, 7(11):897~925.
    [197] Surmacz-Górska J, Cichon A, Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J]. Water Science and Technology, 1997, 36(10):73~78.
    [198] 刘超翔,胡洪营,彭党聪,等. 短程硝化反硝化工艺处理焦化高氨废水[J].中国给水排水,2003, 19(8):11~14.
    [199] 郑杨春,邓 旭. 氨氮废水生物脱氮研究进展[J]. 化工环保,2004, 24(增刊):141~144.
    [200] Stüven R, Bock E. Nitrification and denitrification as a source for NO and NO2 production in high strength wastewater[J]. Water Research, 2001, 35(8):1905~1914.
    [201] 徐庆臻,刘新峰,任广涛. 污水处理氨氮降解机理探讨[J]. 工业水处理,2002, 22(3):55~56.
    [202] Kuai L, Verstraete W. Ammonium removal by the oxygen limited autotrophic nitrification denitrification(OLAND) system[J]. Applied and Environmental Microbiology, 1998, 64(11):4500~4506.
    [203] Pynaert K, Wyffels S, Srengers R, et al. Oxygen limited nitrogen removal in a lab-scale rotating biological contactor treating an ammonium rich wastewater[J]. Water Science and Technology, 2002, 45(10):357~363.
    [204] 徐慧芳,樊耀波. 膜生物反应器在粪便污水处理中的研究与应用[J]. 环境污染防治技术与设备,2002, 3(6):75~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700