用户名: 密码: 验证码:
机敏混凝土在钢筋锈蚀监测与防护中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要工作分为两部分:一部分是用机敏混凝土的压敏性进行钢筋混凝土结构中钢筋锈蚀监测:另一部分是用机敏混凝土pn结进行钢筋锈蚀防护。针对这两部分工作,分别进行了如下的研究:
     一、应用机敏混凝土压敏性进行钢筋锈蚀监测:
     1、在分析钢筋锈蚀膨胀研究现状的基础上,建立了新的钢筋锈蚀膨胀模型。由于混凝土拉压性能的不同,应用各向异性本构关系,并考虑保护层开裂以后,钢筋的锈蚀产物会有部分渗透到裂缝中,降低锈蚀产物对保护层的膨胀压力,对钢筋锈蚀膨胀应力进行了计算。
     2、研究探讨了CFRC的压敏机理及应用其压敏性进行钢筋锈蚀监测的方法,结果表明用CFRC包裹层能有效地监测钢筋的状态。
     二、应用机敏混凝土进行钢筋锈蚀的防护研究:
     1、试验研究了SFRC的导电能力。SFRC的导电能力比素混凝土有所提高,但是由于钢纤维的锈蚀,SFRC的电阻仍然很大。
     2、试验研究了由CFRC和SFRC制成的水泥基pn结。水泥基pn结有良好的单向导电性,并且随时间的增加反向饱和电流越小。且反向饱和电流的大小和纤维掺量有关。
     3、利用机敏混凝土进行钢筋锈蚀防护进行了初步研究。①由于CFRC具有良好的导电能力,利用CFRC进行阴极防护,能有效的降低阴极防护驱动电压;②应用水泥基pn结的自建电场进行钢筋锈蚀防护,能在不降低结构性能的基础上提高钢筋的电子逸出功,使钢筋中的电子不易逸出,达到钢筋锈蚀防护的目的。
The brief research in this dissertation is twofold: one is the monitoring of the corrosion of reinforced bar in concrete by using the compression sensibility of smart concrete; the other is the prevention of the corrosion of reinforced bar by using the smart concrete pn junctions. Due to the two subjects, the following researches are carried out.
    1. The monitoring of the corrosion of reinforced bar by using the compression sensibility of smart concrete: 1) A new model of corrosion expansion of reinforced bar are upbuilt to calculate the corrosion expansibility based on the analysis of research situation of reinforced bar corrosion. In this model the anisotropic constitutive models of concrete are introduced according to its different behaviors under compressive stress and tensile stress, and it is considered that a certain amount of rust product is carried away from the rust layer around the reinforcement and deposited within the open cracks after the cover cracked, which will reduce the expansive pressures. 2) The mechanisms of compression sensibility of smart concrete are studied, and the methods of applying its compression sensibility to monitor reinforcement corrosion are explored. It shows that it can effectively monitor the state of the reinforced bar
    by bundling uniformly smart concrete around the reinforced bar.
    2. The prevention of the corrosion of reinforced bar by using the smart concrete pn junctions. 1) The conductivity of SFRC is tested in experiments. The test studies show that SFRC has better electric conductivity than plain concrete, while the resistance is still remarkable because of the corrosion of steel fiber. At the beginning of the curing period, the resistance of SFRC increases rapidly, and then tends to stable. And the resistance will decrease with the increasing of the volume fraction of steel fiber. 2) The cement-based pn-junctions are tested in experiments. Experiments show that the cement-based pn-junctions have a good unilateral conductivity. The inverse saturation current decline as time goes
    
    
    
    by and depend on the volume fraction of fiber. 3) The applications of smart concrete on the prevention of reinforcement corrosion are primarily explored. (1) CFRC can effectively reduce the driving voltage required by catholic protection because of its good electric conductivity; (2) Applying cement-based pn-junctions on the prevention of reinforcement corrosion. In the interface of p-type region and n-type region of pn junctions a self-built electric field will be formed, and its direction is from n-type region to p-type region. If the reinforced bars are bundled uniformly by the cement-based pn-junction and the SFRC is close to the reinforced bars, which can enhance the electron work function without any loss of the performance of structure, the cement-based pn-junctions will prevent the reinforced bars from corroding.
引文
【1】徐善华、牛荻涛,大气环境条件下混凝土中钢筋的锈蚀;建筑技术,Vol.34,No.4,2003,pp267-269。
    【2】姚武、吴科如,智能混凝土的研究现状及其发展趋势;建筑石膏与胶粘材料,No.10 2000,pp22-24.
    【3】张其颖,碳纤维增强水泥混凝土复合材料的研究与应用:纤维复合材料,No.2,Jun 2001,pp49-50.
    【4】Zhao Binyuan, Li Zhuoqiu, Electric resistance measurement of carbon fiber smart concrete; Journal of Wuhan University of Technology, Vol.10 No.4, Dec. 1995, pp52-56.
    【5】毛起炤,赵斌元,李卓球等.水泥基碳纤维复合材料压敏性的研究;复合材料学报,Vol.13 No.4,1996,pp8-11.
    【6】刘锡军,王齐仁,祝明桥等.智能混凝土的压敏性能试验研究;建筑科学,Vol.18 No.3,Jun.2002,pp48-49.
    【7】孙明清,李卓球,毛起炤,CFRC电热特性的研究;武汉工业大学学报,Vol.19 No.2,Jun.1997,pp72-75.
    【8】孙明清,李卓球,刘清平,水泥净浆的力电和电力效应研究;混凝土,No.11,Num.2001,pp51-53.
    【9】孙明清,李卓球,毛起炤,影响CFRC的Seebeck效应的主要因素;材料研究学报,Vol.12 No.3,Jun.1998,pp329-331.
    【10】郑立霞,机敏混凝土及其结构的压敏性研究;武汉理工大学学位论文,May.2003。
    【11】张华,机敏混凝土裂纹自钝化及其机理研究;武汉理工大学学位论文,May.2003。
    【12】荀艳,靳克,混凝土结构中钢筋锈蚀的影响因素;山东建材,Vol.24 No.4,2003,pp49-51.
    【13】徐晓阳,刘保县,钢筋混凝土钢筋锈蚀研究综述;四川工业学院学报,Vol.22 No.3,2003,pp83-85.
    【14】刘西拉,混凝土结构中的钢筋腐蚀及其耐久性计算;土木工程学报,No.4,1990.
    【15】牛获涛等,锈蚀开裂后混凝土中钢筋锈蚀量的预测;工业建筑,
    
    Vol.26 No.4,1996,pp11-13.
    【16】霍达,滕海文,混凝土中钢筋锈蚀的模糊综合诊断;北京工业大学学报,Vol.27 No.1,2001,pp27~301.
    【17】陈海斌,牛荻涛,浦聿修,应用人工神经网络技术评估混凝土中的钢筋锈蚀量;工业建筑,Vol.29 No.2,1999,pp51~55.
    【18】张耀庭,胡兴愿,应用BP网络预测混凝土中的钢筋锈蚀量;华中理工大学学报,Vol.28,No.12,2000,pp93-95.
    【19】张伟平、张誉,混凝土中钢筋锈蚀的电化学检测方法:工业建筑,Vol.28,No.12,1998,pp21-25.
    【20】黎学明,陈伟民,黄宗卿等,混凝土结构中钢筋腐蚀监测的光纤传感技术;压电与声光,Vol.21,No.1,1999,pp12—161.
    【21】黎学明,陈伟民,黄宗卿等,光纤传感器对混凝土结构钢筋腐蚀监测的研究;光电子·激光,Vol.12,No.10,2001,pp1037-1040.
    【22】李学金,林文山,范平等,钢筋腐蚀光纤传感器的研究;测控技术,Vol.20,No.8,2001,pp10-131.
    【23】陈年和,砼中钢筋锈蚀的机理及其预防措施;江苏煤炭,No.4,2002,pp41-42.
    【24】姜凤丽,钢筋的锈蚀与防护措施;江苏冶金,Vol.32,No.1,Feb 2004,pp39-40.
    【25】韩邦有,钢筋混凝土结构中钢筋锈蚀的防护技术—阴极保护;东北公路,Vol.23,No.4,2000,pp86-87.
    【26】张跃,职任涛,朱逢吾等,碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究.材料科学进展,Vol.6,No.4,1992,pp357-362.
    【27】王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的电导性能及其应用.复合材料学报,Vol.15,No.3,1998,pp75-80.
    【28】王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的机敏性.硅酸盐学报,Vol.26,No.2,1998,pp253-257.
    【29】Zhonghe. S, Li Jizhong, Huang Fengping, Study on the electrical properties of carbon fiber-cement composites, J. Wuhan Univer. of Technology (Mater. Sci. Edition, Vol.10, No.4, 1995, pp37-41。
    【30】Xie Ping, Gu Ping, Beaudoin J J. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibres. Journal of
    
    Materials Science, Vol.31, No.15, 1996, pp4093-4097.
    【31】毛起炤,赵斌元,极化效应对碳纤维增强水泥(CFRF)导电性的影响;材料研究学报,Vol.11,No.2,Apr 1997,pp195-198.
    【32】孙明清、李卓球,碳纤维水泥基复合材料的Seebeck效应;材料研究学报,Vol.12,No.1,Feb 1998,pp111-112.
    【33】Sun Mingqing, Li Zhuoqiu, Mao Qizhao, Shen Darong. Study on the hole conduction phenomena in carbon fiber reinforced concrete. Cement and Concrete Research, Vol. 28, No.4, 1998, pp549-554.
    【34】Sihai, D.D.L.Chung, Enhancing the seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers; Cement and Concrete Research, 30 (2000), pp1295-1298.
    【35】Sihai Wen, D.D.L. Chung, Seebeck effect in carbon fiber-reinforced cement; Cement and Concrete Research, 29 (1999) 1989-1993.
    【36】N. Banthia, S. Djeridane, Electrical resistivity of carbon and steel moicro-fiber reinforced cements, Cement and Concrete Research, Vol.22, 1992, pp804-814.
    【37】Sihai, D.D.L.Chung, Electrical behavior of cement-based junctions including the pn-junction; Cement and Concrete Research 31 (2001), pp129-133.
    【38】毛起炤,杨元霞,李卓球等.碳纤维增强水泥压敏性影响因素的研究.硅酸盐学报,Vol.25,No.6,Dec 1997,pp734-737.
    【39】姚武,陈兵,吴科如,碳纤维水泥基材料压阻效应研究;河南科学,Vol.20,No.6,Dec 2002,pp630-633.
    【40】陈兵,姚武,吴科如,受压荷载下碳纤维水泥基复合材料机敏性研究;建筑材料学报,Vol.5,No.2,Jun 2002,pp108-113.
    【41】Pu-Wei Chen, D.D.L.Chung, Carbon fiber reinforced concrete for smart structures capable of non-destructive flow detection. Smart Mater. Struct., 2,22-30(1993)
    【42】Pu-Wei Chen, D.D.L.Chung, Carbon fiber reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading, J. American Ceramic Society,78(3),816-818(1995).
    【43】S.Wang, X.Shui, X.Fu, D.D.L.Chung, Early fatigue damage in carbon fiber composites observe by electrical resistance measurement,
    
    J. Materials Science, 33, 3875-3884(1998).
    【44】Zeng-Qiang Shi, D.D.L.Chung, Carbon fiber reinforced concrete for traffic monitoring and weighing in motion, Cement and Concrete Research, 29,435-439(1999).
    【45】Xuli Fu, D.D.L.Chung, Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar, Cement and Concrete Research, 27(9), 1313-1318(1997).
    【46】Xuli Fu, D.D.L.Chung, Improving the strain-sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers, Cement and Concrete Research 28(2),183-187(1998).
    【47】Ragos-Marian, D.D.L.Chung, Damage in Carbon fiber reinforced concrete, monitored by electrical resistance measurement, Cement and Concrete Research, 30(4),651-659(2000).
    【48】Yunsheng Xu and D.D.L.Chung, Cement-Based Materials Improved by Surface Treated Admixtures, ACI Mater.J.97(3),333-342(2000)
    【49】Sihai Wen, D.D.L.Chung, Carbon fiber-reinforced cement as a strain-sensing coating, Cement and Concrete Research, 31, 665-667(2001).
    【50】Sihai Wen, D.D.L.Chung, Uniaxial compression in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions, Cement and Concrete Research, 31, 297-301(2001).
    【51】Sherif Yehia, Christopher Y Tuan, David Ferdon et al. Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties. ACI Materials Journal, 2000,97(2): 172-181
    【52】Sherif Yehia, Christopher Y Tuan. Conductive Concrete Overlay for Bridge Deck Deicing. ACI Materials Journal, 1999,96(3): 382-390
    【53】佘建初,碳纤维增强混凝土中钢筋的阴极保护研究;武汉理工大学学报,Vol.25,No.3,Jun.2003,pp138-140.
    【54】Xuli Fu, D.D.L.Chung, Carbon fiber reinforced mortar as an electrical contact material for cathodic protection; Cement and Concrete Research, Vol.25, No.4, 1995, pp689-694.
    
    
    【55】Jiangyuan Hou, D.D.L.Chung, Cathodic protection of steel reinforced concrete facilitated by using carbon fiber reinforced mortar or concrete; Cement and Concrete Research Vol.27, No.5, 1997, pp649-656.
    【56】Morinaga S, Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel, Druability of building materials and components, Brighton, 1990
    【57】Martia L. Allan, Probability of corrosion induced cracking in reinforced concrete; Cement and Concrete Research, Vol. 25, No. 6, 1995, pp1179-1190.
    【58】张伟平,混凝土中钢筋锈胀过程的计算机仿真分析;同济大学学报,Vol.29,No.11,Nov,2001,pp1374-1377。
    【59】Bazant Z P. Physical model for steel corrosion in concrete sea structurals-application. Journal of Structural Division, Vol.106, No. 6, 1979, pp1155-1166.
    【60】Andrade C, Alonso C, Cover cracking as a function of rebar corrosion: Part Ⅰ numerical Model, Materials and tructures, 1993, 26(163): pp532-548.
    【61】Dagher HJ, Kulendran S. Finite element modeling of corrosion damage in concrete structures. ACI Structural Journal, 1995, 89(6): pp1179-1190.
    【62】S.J.Pantazopoulou, Modeling cover-cracking due to reinforcement corrosion in RC structures; Journal Of Engineering Mechanics, April 2001, pp342-351.
    【63】淡丹辉,王庆霖,钢筋混凝土结构锈蚀膨胀裂缝的计算机模拟;西南交通大学学报,Vol.35,No.5,Oct 2000,pp484-487.
    【64】李永和、葛修润,钢筋混凝土结构腐蚀损伤裂纹扩展轨迹模拟与数值分析;土木工程学报,Vol.36,No.2,Feb 2003,pp1-5.
    【65】王震鸣,复合材料力学和复合材料结构力学;机械工业出版社,1991年3月第1版.
    【66】徐芝纶,弹性力学;高等教育出版社,Jun,2000。
    【67】江见鲸,冯乃谦,混凝土力学;北京:中国铁道出版社;1991.
    【68】李灏,断裂与损伤;济南:山东科学技术出版社;Apr.1980.
    【69】蔡四维、蔡敏,混凝土的损伤断裂;北京:人民交通出版社,1999.
    
    
    【70】高彦峰,王秀峰,罗宏杰,功能梯度材料中的渗流现象及其模型研究,陶瓷工程,12(2000)10-12.
    【71】刘恩科、朱秉生,半导体物理学;国防工业出版社,1994。
    【72】李名復,半导体物理学;科学出版社,1991。
    【73】包常明,pn结方程推导;内蒙古民族师院学报,Vol.13,No.1,May 1998,pp97-99.
    【74】赖耿阳编著.碳材料化学与工学.台北:复汉出版社,1991
    【75】Y. Ramadin, Determination of the type of charge carriers in carbon fiber/polymer composite;Polymer Testing, No.17,1998, pp35-42.
    【76】白新德、彭德全,混凝土中钢筋锈蚀速率德现场无损检测技术;材料保护,Vol.35,No.8,Aug 2002,pp17-19.
    【77】杜荣归,黄若双,赵冰,钢筋混凝土结构中阴极保护技术的应用现状及研究进展,材料保护,(2003)36(4),11-14。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700