用户名: 密码: 验证码:
基于动力参数的损伤识别及嵌入SMA的钢筋砼结构自监测与自修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构健康监测是近年来发展起来的一项新兴的应用技术,主要应用于结构的在线实时连续监测、检查以及损伤探测等,实施结构健康监测的目的是增加和提高运营结构的可靠性、安全性和耐久性,确保结构完成正常的使用寿命,降低结构的维修成本。近年来这项技术被广泛应用于桥梁、水坝等大型工程项目运营过程的健康监测,同时土木工程界在实现对结构损伤及时识别的同时,也在尝试对识别出损伤的桥梁在不影响交通的情况下实现快速及时的修复。
     本文全面论述了国内外基于动力检测的健康监测方法和智能材料损伤识别及应急修复的相关文献,对其理论意义、研究应用前景、研究成果和存在问题做了全面的分析与比较。在此基础上研究了基于模态曲率、柔度模态的结构损伤识别方法以及形状记忆合金应用于结构健康监测和自修复的性能。
     以一个横向弯曲振动的连续直梁为研究对象,求解了梁在任意支撑条件下的运动微分方程的一般表达式,依据模态理论,将该微分方程的解表示为结构各阶模态的叠加形式并利用模态振型的正交性,求得结构的曲率频响函数,依据曲率频响函数的特征,对结构进行位移模态试验测得结构的弯曲位移模态后,就可以得到结构的曲率模态振型。对一简支梁模型进行动力测试,测试出结构各个实验工况下损伤前后的频率、相应振型,计算得到模态曲率差曲线,并且和有限元计算的结构模态曲率差的损伤识别结果进行对比,验证了用模态曲率差来识别简支梁损伤的可行性、适用性,探讨了损伤位置、模态阶次、损伤程度等对损伤识别结果的影响和敏感性。
     为了将模态曲率差理论应用于本论文的工程应用背景,分析了应用模态曲率差识别直梁结构与曲梁结构的理论区别,推导了曲梁结构的曲率振型模态的计算公式,设计了一个下承式系杆钢管混凝土拱桥试验模型,利用有限元程序理论计算了不同损伤状况下拱肋的模态曲率差,绘制了模态曲率差曲线,理论计算结果表明,模态曲率差可以用于对拱桥拱肋的损伤识别;开展室内动力测试试验,测试了各个工况下系杆拱桥模型的加速度响应,并进行曲率模态振型的转化后,绘制了模态曲率差曲线并和有限元分析结果进行了对比,说明模态曲率差可以应用于拱肋结构的损伤识别。
     为了在低阶频率下能够对结构的损伤实现比较好的识别,对基于模态柔度矩阵的损伤识别理论进行了论述,推导了基于模态柔度的损伤识别的基本理论公式,指出了模态柔度在低阶频率下对结构频率有着较好的敏感性,本文构造了一个基于模态柔度矩阵的损伤识别灵敏度参数,用于对结构进行损伤识别。对一钢梁模型进行理论模拟,提取结构的频率及相应振型,将模态振型转化为本文构造的损伤识别灵敏度参数ζ,绘制了损伤识别灵敏度参数ζ与结构单元位置的柱状图,从图中可以明显的看出,损伤识别灵敏度ζ对结构单损伤或多损伤有着显著的敏感性,可以应用于结构的损伤识别;对模型梁进行了动力测试,提取结构频率、相应振型,并转化为模态柔度和损伤识别灵敏度后,和理论计算结果进行对比,验证了基于本文构造的损伤灵敏度参数方法的正确性和可行性。
     为了研究或实现结构的自监测与应急自修复,制作了3组嵌入形状记忆合金(Shape Memory Alloy简称SMA)的钢筋混凝土梁,将SMA作为传感元件和驱动元件复合到混凝土梁中对梁的裂缝进行监测和应急自修复研究。试验采取通电激励的方式加热合金丝,为此专门研制了可控低压直流电源;通电激励加热合金丝,对SMA应用于结构健康监测的相变行为、电阻率的导电敏感性和力学性能进行了测试;对SMA置入混凝土的抗滑移性能进行了分析和测试;研究表明:当混凝土梁开裂程度较小,裂缝宽度小于0.3mm的情况下,合金丝电阻变化率与混凝土裂缝宽度间的线性关系非常明显,试验过程表明在消除合金丝滑移的情况下,且裂缝宽度在1.5mm范围内,SMA电阻变化率与混凝土梁的裂缝宽度成线性关系,SMA作为传感元件用于结构健康监测是可行的,完全可通过对合金电阻变化率的测定来监测混凝土梁裂缝损伤情况;当混凝土开裂且裂缝宽度大于2.0mm时,对形状记忆合金进行通电加热,SMA驱动效应发生可以使混凝土梁裂缝愈合;在对SMA敏感性测试试验过程中,SMA丝在发生轴向变形后,其电阻随着SMA丝的长度改变而且较为敏感;在对混凝土梁的自修复性能测试试验过程中发现,并不是SMA预张拉越大越好,预拉控制在极限拉应变的20%-30%为宜。
     以一个下承式钢管混凝土拱桥作为工程研究的应用背景,对结构进行了全面的有限元分析,在此基础上采用环境激励的方式对拱桥进行了全面的动力测试,对该桥主跨一阶竖向、一阶扭转、次跨一阶竖向、一阶扭转、全桥一阶横向振型等测试结果进行了全面的分析与比较,和有限元计算结果进行对比分析后发现:实测结果与理论分析结果基本吻合;拱肋竖向的振动和桥面竖向振动同步,拱肋竖向振动的频率稍大于桥面频率;试验结果表明,在完全环境激励情况下,足以识别出桥梁的振动模态;该拱桥振型第一阶模态是桥面的横向振动,地震反应分析时要特别注意桥面横向地震反应;扭转振型在振型序列中位置靠后,阶数较高,说明该结构抗扭刚度较大,对抗风比较有利;该桥实测频率基本都大于有限元计算结果,说明该桥刚度较好;对该拱桥采用空间有限元分析结果和实测结果基本一致。将拱桥主跨振型与第4章试验模型的振型进行对比后发现,实际结构的模态振型与试验模型的结果有着很好的一致性,可以将模态曲率差应用于拱桥拱肋的损伤识别研究。
     本文的研究工作在基于动力的桥梁损伤识别与健康监测和SMA智能结构的自监测与应急自修复方面做了一些有益的尝试,为今后桥梁结构健康监测与应急自修复的研究提供了一些基本的试验结果与理论支持,供今后开展基于动力和嵌入SMA的混凝土结构健康监测与自修复研究参考。
Structural health monitoring (SHM) is an emerging applied new technology in recent years, dealing with continuous health monitoring of structure online, test and damage identification, the ultimate goal is to increase and improve the reliability, safety and durability, and to ensure the structure can finish the design life and reduce the maintenance costs. The technology is applied to monitor the large scale engineering, such as bridges, dams and so on. The timely repairing without influencing traffic is concerned when the damage identification can be realized at the same time.
     The research of the dissertation sums up a large number of references of the curvature mode, flexibility mode and intelligent material at home and abroad, makes a relatively comprehensive discussion on its theoretical significance, study application, research achievements and existing problems, studies the health monitoring methods based on the curvature mode, flexibility mode and SMA. Main research works can be summed up in five aspects.
     A beam with vertical bending vibration is taken as the research object, and general formula of differential equation was solved in any supported conditions. According to the modal theory, Solution of the differential equation was expressed as mode superposition of each mode, substituted into the differential equations and considering orthogonally of mode shapes, curvature FRF was obtained. Based on the characteristics of curvature FRF, after the displacement mode of the structure was measured by experimental test, curvature mode of the structure can be obtained. Dynamic test of a simple support beam was finished before and after damage, the corresponding curve of curvature mode was calculated by test result, the result of the finite element analysis and experimental result were compared, it is shown that mode curvature can be used to identify the damage of structure. The influence and sensitivity of the damage location, modal order, and damage degree were discussed to the accuracy of identification result.
     In order to use the modal curvature in one of concrete-filled steel tube (CFST) engineering, the theory difference of damage identification between straight and curve beam were analyzed, the modal curvature formula of curve beam curvature is derived. A CFST model was designed in the labratory, the difference mode curvature was calculated by finite element program of different damage condition of the arch rib, the theoretical result shows that modal curvature can be used to damage identification of arch ribs; dynamic experimental tests was carried out to get the acceleration response of the structure of various conditions, and modal curvature was transformed, the results of experiment and finite element analysis were compared, it is shown that modal curvature changes at the node arch ribs were injured. The result illustrate that the method can identify single damage and multiple damages of arch rib.
     In order to identify the complex structure in low order frequency, damage identification theory of the modal flexibilityis analyzed, the damage identification parameter was put forward based on modal flexibility matrix theory, a sensitivity parameter of difference flexibility matrix was used to identify the damage of a steel beam, extract the frequency and the corresponding structural vibration model after finite element simulation, the result shows the proposed damage identification sensitivity parameter can locate the damage position of single damage or multiple damages of the beam obviously; The dynamic test of the steel beam was carried out in the laboratory, and collected the structural dynamic parameters with single injury and multiple injuries in various conditions, structural frequency, corresponding mode shapes and modal flexibility were extracted sensitivity parameter curve were drawn, it is shown that the experimental sensitivity parameter can identify the damage easily. The compared result of finite element calculation and experiment illustrated that the sensitivity parameter can be applied to structural damage identification.
     In order to research or realize the self-monitoring and emergency self-repairing of structure,3 groups reinforced concrete beam embedded with SMA were made in the laboratory, shape memory alloy (SMA) was used to self-monitoring and self-repairing emergency as sensing and actuating element. The SMA were heated by electricity, the low-voltage DC power was developed; the function of sensitivity and mechanics of SMA were tested by supplying electricity heating SMA line; bond-slip between the SMA and concrete were analyzed and tested; it is shown from the experiment when the width of concrete beam crack is less than 0.3mm,there are very good linear relationship between SMA resistance rate and concrete crack width, and when the width is within the 1.5mm the SMA resistance rate and concrete crack width is linear relationship, it is shown that it is possible for the SMA to be used as sensing element in structural health monitoring. When the width of concrete beam is more than 2mm, SMA drive effect take places and can make the crack of concrete healing by heating the SMA, During the test experiment of SMA sensitivity, the resistance is very sensitive to the length change of SMA; In the self-healing properties experiment, it is found that it is suitable to control the pre-tensioned SMA at ultimate tensile strain of 20%-30%.
     At last, one of CFST arch bridge was analyzed by finite element program, and comprehensive dynamic test was carried out under ambient excitation. incentive to conduct a, first order vertical, reverse mode of the main and sub-span, first order transverse mode of full-span were tested and analyzed comprehensively, it is found that test result is consistent with the finite element result; The vertical vibration of arch rib and deck are synchronization, vertical vibration frequency of arch rib is slightly greater than deck frequency; it is shown it can identify the vibration mode under the full environment excitation; The first order mode is the transverse vibration mode of the deck, seismic response analysis of bridge deck have to be pay special attention to transverse seismic response. The torsion vibration model is higher than other mode, it illustrate that the torsion rigidity of structure is strong that it is favorable to against wind; The measured frequency of bridge is greater than the calculated frequency, it is shown that the bridge stiffness is better. The test results of main span of the bridge and the experimental results in the chapter 4 were compared,there are very good consistency.
引文
[1]张德文,魏埠旋.模型修正与破损诊断[M].北京:科学出版社,1999
    [2]Starritt L W, Matthews L K.Laser optical displacement system. In:Proc. Of Smai Structures and Materials 1995.USA:SPIE,1995:181-192
    [3]Wang M. L,Satpathi D.Damage Detection of a Model Bridge Using Moda Testing.Structural Health Monitoring, Current Status and Perspectives, Stanfor University, Palo Alto,1997, CA, pp.589-600
    [4]Wang M L., Pran K. L A.systematic Numerical Analysis of the Damage Inde Method Used for Bridge Diagnostics. Smart Structures and Materials 2000:Smai Systems for Bridge,Structures, and Highways, Proceedings of SPIE,200( Vol.3988, Newport Beach, CA, pp.154-164
    [5]Chueng M. S., Tadros G. S., Brown T. G. et al. Field Monitoring and Research o Performance ofthe Confederation Bridge [J]. Cannadian Journal of Civil Enginee 1997,24(6):951-962
    [6]Sumitro S, Okamoto T, Matsui Y and Fujii K. Long Span Bridge Healt Monitoring System inJapan. Proc. SPIE.4337-67,2001:517-524
    [7]Hoon Sohn, Charles R. Farrar, Francois M. Hemez, Jerry J. Czarnecki, Devin D Shunk, Daniel."A Review of Structural Health Monitoring Literature:1996-2001 [M]. Los Alamos NationalLaboratory Report, LA-13976-MS,2002
    [8]Wong K. Y., Chan W. Y., Man, K. L., Mak W. L. N. and Lau C. K.. Structura Health Monitoring Results on Tsing Ma, Kap Shui Mun, and Ting kau Bridge Proceedings of SPIE:Nondestructive Evaluation of Highways, Utilities, an Pipelines(Vol.3995), Newport, CA,2000
    [9]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001,29(1):65-69
    [10]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展[J].土木工程学2003.05,Vol.36,No.5:105-110
    [11]Housner G W,Bergman L A,Caughey TK etal. Structure control:Past,present,an future [J]. Journal of Engineering Mechanics,1997.123(9):897-971
    [12]Andersen E Y,Pedersen. Structural monitoring of the Great Belt East Bridge. In Jon Krokeborged. Proceedings of The Third Symposium on Stra Crossing.Rot-terdam:Balkema,1994.54-62
    [13]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展.同济大学学报,1999,27:184-188
    [14]Muria vila D,Gomez R,King C.Dynamic structural propetties of cable stayed Tampico Bridge.Journal of structural Engineering, ASCE, 1991,117(11):3396-3416
    [15]Myroll F, Dibiagio E. Instrumentation for monitoring the Skamsunder Cable-stayed Bridge.In:Jon Krokeborged.Proceedings of the Third Symposium on Strait Crossing.Rotterdam:Balkema,1994.207-215
    [16]Curran P,Tilly G. Design and monitoring of the Flintshire Bridge,UK.Structural Engineering Intemational,1999,3:225-228
    [17]Chueng MS,Tadros G S,Brown T Geral.Field monitoring and research on Perfor-Mance of theConfederation Bridge. Canadian Journal of CiviEngineering, 1997,24(6):951-962
    [18]Lau C K,Mak W P N,Wong K Y etal. Structural health monitoring of three cablesupported bridges in Hong Kong[A].Chang F K. Structural Health Monitoring2000. Penn-sylvania:Technomic Publishing Co,1999:450-460
    [19]张启伟,袁万城,范立础.大型桥梁结构安全监测的研究现状与发展[J].同济大学学报,1997,25(增刊):76-81
    [20]Rytter A. Vibration based inpection of civil engineering structures:[Ph. D. Dissertation]. Aalborg, Denmark:Aalborg univ.,1993. Ren Wei-xin, De Roeck, G.. Structural damage identification using modal data, Ⅰ:Simulation verification. Journal of Structural Engineering, ASCE,2002,128(1),87-95
    [21]Hoon Sohn, Charles R. Farrar, Francois M. Hemez, Jerry J. Czarnecki, Devin D. Shunk, Daniel."A Review of Structural Health Monitoring Literature:1996-2001" [M]. Los Alamos National Laboratory Report, LA-13976-MS,2002.
    [22]S. W. Doebling, Charles R. Farrar, M. B. Prime and D. W. Shevitz. "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:a literature review" [M]. Los Alamos National Laboratory Report, LA-13070-MS,1996.
    [23]Ren Wei-xin, De roeck, G.. Structural damage identification using modal data, Ⅰ: Simulation verification. Journal of Structural Engineering, ASCE,2002,128(1), 87-95
    [24]Ren Wei-xin, De roeck, G.. Structural damage identification using modal data, Ⅱ: Test verification. Journal of Structural Engineering, ASCE,2002,128(1),96-104
    [25]Agbabian M S, Masri S F and Miller R F et al. System Identification Approach to Detection of Structural Change. ASCE Journal of Engineering Mechanics 1990,117(2):370-390
    [26]Samman M. Structural Damage Detection Using the Modal Correlation(MCC) Proceeding of 15th IMAC,1997:627-637, Orlando, USA
    [27]Worden K, Manson G and Fiellet N R G. Damage Detection Using Outlie Analysis. Journal of Sound and Vibration.2000,229(3):647-667
    [28]Sohn H, Czarnecki J, and Farrar C R. Structural Heath Monitoring Usin: Statistical Process Control. Journal of Structural Engineering.200C 126(11):1356-1363
    [29]Sohn, H., Farrar, C.R., Hunter, N.F. and Worden, K. Structural Heath Monitorin Using Statistical Pattern Recognition Techniques, ASME Journal of Dynami Systems, Measurements and Control, Vol.123, December 2001, pp706-711
    [30]Araki Y, Hjelmstad K D. Optimum Sensitivity-Based Statistical Parameter Estimation from Modal Response. AIAA Journal.2001,39(6):1166-1174
    [31]黄莉萍.基于环境振动响应的桥梁损伤识别:[硕士学位论文],上海:同济大学,2005.3
    [32]Doebling, S. W., C. R., and Cornwell, P.J. "A Computer Toolbox for Damag Identification Based on Changes in Vibration Characteristics," Structural Healt Monitoring, Current Statusand Perspective, Stanford University, Palo Alto, CA 1997,241-254
    [33]Choi, M.Y., and Kwon, I.B. "Damage Detection System of a Real Steel Trus Bridge by Neural Networks" Smart Structures and Materials 2000:Smai Systems for Bridge, Structures, and Highways, Proceedings of SPIE, Vol.3988 Newport Beach, CA,2000, pp295-306
    [34]Cawley P, Adams R D. The location of Defects in structures from Measurements c Natural Frequencies. Journal of strainnalysis,1979,14(2)60-66
    [35]Cowley P, Adams R D.A. Vibration Technique for NonDestructive Testing of Fibr Composite Structures. Journal of Composite Materials, April 1979:203-209
    [36]Adams R D,CawleyP. A. Vibration Technique for Non-Destructive Assessing th Integrity of Structures[J].Journal of Mechnaicals Engineerin Science,1978,20(2):203-209
    [37]秦权等.悬索桥的损伤识别[J].清华大学学报,1998,3:45-49
    [38]唐小兵.结构裂纹位置识别的模态分析[J].武汉理工大学学报,2001,5:71-74
    [39]伊娟等.基于柔度改变的连续梁桥损伤诊断研究[J].华东公路,2001:25-27
    [40]蔡贤辉等.一种桁架结构损伤识别的柔度阵法[J].计算力学学报,2001,2:42-47
    [41]韩西等.用矩阵结构模型进行结构损伤检测和故障诊断[J].重庆交通学院学报,2002,6:108-110
    [42]董聪.基于动力特性的结构损伤定位方法[J].力学与实践,1999:62-63
    [43]李德葆.实验应变/应力模态分析若干问题的进展评述[J].振动与冲击,1996,Vol.30,No.1:13-17
    [44]张开银.板结构裂纹故障的模式识别[J].武汉汽车工业大学学报.1997,6:80-84
    [45]董聪,丁辉.结构损伤识别和定位的基本原理与方法[J].中国铁道科学,1999,20:89-94
    [46]任权.基于应变模态变化率的压力管道无损检测[J].大连理工大学学报,2001,648-652
    [47]Van Overschee P.,De Moor B.Subspace Algorithms for the Stochastic Identification Problem.In:Proceedings of the 30th IEEE Conference on Decision and Control; Brighton; 1991.1321-1326
    [48]Van Overschee Peter, De Moor Bart. Subspace Identification for Linear Systems: Theory,Implementation, Applications. Dordrecht, the Netherlands:Kluwer Academic Publishers;1996
    [49]Peeters B., De Roeck G. Stochastic Subspace System Identification of a Steel Transmitter Mast.In:Proceedings of the International Modal Analysis Conference-IMAC; Santa Barbara, CA;1998.130-136
    [50]Chen Ai Lin, Zhang Ling Mi. Study of Stochastic Subspace System Identification Method.Chinese Journal of Aeronautics.2001,14(4):222-224
    [51]De Cock K., Peeters B., Vecchio A., et al. Subspace System Identification for Mechanical Engineering. In:Proceedings Of ISMA 2002:International Conference On Noise And Vibration Engineering, Vols 1-5; 2002.1333-1352
    [52]De Roeck Guido, Peeters Bart, Ren Wei-Xin. Benchmark Study on System Identification through Ambient Vibration Measurements. In:Proceedings of SPIE The International Society for Optical Engineering; San Antonio, TX, USA: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA; 2000.1106
    [53]Ren W. X., Harik I. E., Blandford G. E. Roebling Suspension Bridge:Ⅰ. FE Model and Free Vibration Response[J].Bridge Engrg, ASCE.2004,9(2):110-118
    [54]Ren W. X., Harik I. E., Blandford G. E. Roebling Suspension Bridge:Ⅱ. Ambient Testing and Live Load Response. [J].Bridge Engrg, ASCE.2004,9(2):119-126
    [55]Basseville, M., Abdelghani, M. and Benveniste, A[J]. Subspace-based fault detection algorithms for vibration monitoring. Automatica 36,2000:101-109.
    [56]Basseville, M., and Mevel, L. Output-only stochastic subspace-based structural identification and damage detection and localization. In:Proceedings of the 1st European Workshop on Structural Health Monitoring, Cachan, F., July 10-12, 2002,229-236.
    [57]Basseville,M., and Mevel,L.,et al. Output-only stochastic subspace-based Damage Detection-Application to a Reticular.Structure. Structural Health Monitoring 2(2) (2003) 161-168
    [58]Mevel, L., Goursat, M. and Basseville, M. Stochastic subspace-based structural identification and damage detection and localization-Application to the Z24 bridge benchmark. Mechanical Systems and Signal Processing, Special Issue on COST F3 benchmarks,17(1),(2003,143-151.
    [59]Mevel, L., Goursat, M. and Basseville, M. Stochastic subspace-based structural identification and damage detection and localization-Application to the steel-quake benchmark. Mechanical Systems and Signal Processing, Special Issue on COST F3 benchmarks,17(1), (2003b) 91-101.
    [60]Mevel, L., Hermans, L. and Van der Auweraer, H. Application of a subspace-based fault detection method to industrial structures. Mechanical Systems and Signal Processing,13(6),1999,823-838.
    [61]A.M. Yan, P.De Boe and J.C. Golinval. Structural Damage Diagnosis by Kalman Model Based on Stochastic Subspace Identification[J]. Structural Health Monitoring 3(2) (2004):103-119.
    [62]Fabricio Vesvroni, Davila Cape chi. Damage Detection in structures Based on Frequently Measurements. Journal of Engineering Mechanics, July2000:321-332
    [63]Agneni, A., Balis Crema, L., and Mastroddi, F. "Damage Detection from Truncated Frequency Response Function," European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, 2000,137-146.
    [64]Ho, Y.K. and Ewins, D.J. "On the Structural Damage Identification with Mode Shape," European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain,2000,677-686.
    [65]王代华等.基于神经网络的柔性结构损伤模式识别方法[J].振动/测试与诊断,2000,12:240-244
    [66]陆秋海等.利用模态试验参数识别结构损伤的神经网络法[J].工程力学,1999,2:35-42.
    [67]苏娟等.神经网络法在定量损伤识别研究中的应用[J].清华大学学 报.1999,39(4):68-70
    [68]Modena., C., Sonda, D., and Zonta, D. "Damage Localization in Reinfc Concrete Structures by Using Damping Measurements," Damage Assessme Structures, Proceedings of the International Conference on Damage Assess of Structures(DAMAS99), Dublin, Ireland,1999,132-141
    [69]Sohn, H., and Law, K.H. "Application of Load-Dependent Ritz Vecto Probabilistic DamageDetection," Smart Systems for Bridges, Structures, Highways, Proceedings of SPIE,Vol.3325,1998,149-160.
    [70]Sohn, H., and Law, K.H. "Extraction of Ritz Vectors from Vibration Test D Structural Health Monitoring 2000, Stranford University, Palo Alto, CA,1 840-850.
    [71]Lee G. C., Liang Z. Development of a bridge monitoring system[A]. Proceec of the 2nd international workshop on structural h monitoring[C].Standford:Standford University,1999,349-358
    [72]伊廷华,李宏男,王国新.基于小波变换的结构模态参数识别[J].振.动工程Vol.19 No.1 Mar.2006,51-56
    [73]樊海涛,何益斌,周绪红.建筑结构学报.基于Hilbert-Huang变换的结构损断方法研究[J].Vol.27,No6 Dec.2006,114-122
    [74]任宜春,易伟建,谢献忠.基于Hilbert-Huang变换的钢筋混凝土框架结构识别振动与冲击.Vo1.26,No.2.2007,56-60
    [75]Wei-Xin Ren. Singular Value Decomposition Based Truncation Algorithi Solving the Structural Damage Equations. Acta Mechanica Solida Sinica, Vo No.2,2005,181-188
    [76]Doebling, S. W., C. R., and Cornwell, P.J. "A Computer Toolbox for Dar Identification Based on Changes in Vibration Characteristics," Structural H Monitoring, Current Statusand Perspective, Stanford University, Palo Alto, 1997,241-254
    [77]Choi, M.Y., and Kwon, I.B. "Damage Detection System of a Real Steel T Bridge by Neural Networks" Smart Structures and Materials 2000:S Systems for Bridge, Structures,and Highways, Proceedings of SPIE, Vol.3 Newport Beach, CA,2000,295-306
    [78]Agbabian M S, Masri S F and Miller R F et al. System Identification Approa Detection of Structural Change. ASCE Journal of Engineering Mecha 1990,117(2):370-390
    [79]Samman M. Structural Damage Detection Using the Modal Correlation(M Proceeding of 15th IMAC,1997:627-637, Orlando, USA
    [80]Worden K, Manson G and Fiellet N R G. Damage Detection Using Outlier Analysis. Journal of Sound and Vibration.2000,229(3):647-667
    [81]Sohn H, Czarnecki J, and Farrar C R. Structural Heath Monitoring Using Statistical Process Control. Journal of Structural Engineering.2000, 126(11):1356-1363
    [82]Sohn, H., Farrar, C.R., Hunter, N.F. and Worden, K. Structural Heath Monitoring Using Statistical Pattern Recognition Techniques, ASME Journal of Dynamic Systems, Measurements and Control, Vol.123, December 2001, pp706-711
    [83]Araki Y, Hjelmstad K D. Optimum Sensitivity-Based Statistical Parameters Estimation from Modal Response. AIAA Journal.2001,39(6):1166-1174
    [84]黄莉萍.基于环境振动响应的桥梁损伤识别:[硕士学位论文],上海:同济大学,2005.3
    [85]郑立霞,宋显辉,李卓球.利用CFRC压敏性监测钢筋锈蚀的模拟实验研究[J].试验力学,2004,19(2):206-210
    [86]李厚祥,唐春安等.混凝土裂缝自愈合性能研究[J].武汉理工大学学报,2004,26(3):27-29
    [87]孙明清,李卓球,刘清平.水泥及水泥基复合材料的机敏性研究[J].材料导报,2002,16(5):52-54
    [88]郑立霞,宋显辉,李卓球.不同电参数对CFRC应变敏感性的响应[J].武汉理工大学学报,2004,26(1):35-37
    [89]郑立霞,宋显辉,李卓球.碳纤维增强水泥压敏性效应和温敏效应的解耦[J].武汉理工大学学报(交通科学与工程版),2004,28(4):533-535
    [90]Soh C K,Tseng K K,Bhalla S,Gupta A.Performance of smart piezoceramic patches in health monitoring of a RC bridge [J]. Smart Materials and Structures,2000,9(4):533-542
    [91]Tseng K K H,Naidu A S K.Non-parametric damage detection and characterization using smart piezoceramic material[J].Smart Mater.Struct,2002,11(3):317-329
    [92]Liang C,Rogers C A. One-dimensional thermomechanical constitutive relations for shape memory materials[J]. Intell.Mat.Syst.and Struct,1990,1:207-234
    [93]Liang C,Rogers C A. Design of shape memory alloy springs with applications in vibration control[J]. Intell.Mat.Syst.and Struct,1997,8:314-322.
    [94]Chen Q. Levy C. Active vibration control of elastic beam by shape memory alloy layers[J].Smart Mater. Struct.1996.5:400-406
    [95]李忠献,陈海泉,李延涛.斜拉桥参数振动有限元分析与半主动控制[J].工程力 学.Vol.21 No.1 Feb.2004,131-135
    [96]李忠献,陈海泉,刘建涛.SMA复合橡胶支座的桥梁隔震[J].地震工程与工程振动.Vol.22, No.2 Apr,2002,143-148
    [97]Maji A.K. and Negrer, I Smart prestressing with shape memory alloy.Eng Mech, 124(10) Oct,1998.1121-1128
    [98]Hui Lia, Zhi-qiang Liu, Jin-ping Ou. Experimental study of a simple reinforced concrete beam temporarily strengthened by SMA wires followed by permanent strengthening with CFRP plates [J]. Engineering Structures,30 (2008) 716-723
    [99]Hui Lia, Zhi-qiang Liu,Jin-ping Ou.Behavior of a simple concrete beam driven by shape memory alloy wires Smart Mater. Struct.15 (2006).1039-1046
    [100]Zhi-qiang Liu,Hui Li, Wen-li Chen. Study on Damage Emergency Repair Performance of a Simple Beam Embedded with Shape Memory Alloys Advances in Structural Engineering Vol,8 No,6 2005,637-642
    [101]D Wang and A. Halder. Element-level System Identification With Unknown Input, Journal of Engineering Mechanics, ASCE, Vol.120 No.1,1994,159-176
    [102]K.Toki, T.Sato and J.Kiyono. Identification of Structural Parameters and Input Ground Motion from Response Time Histories, Journal of Structural Engineering/ Earthquake Engineering,Vol.6,No.2,1989,413-421
    [103]李杰,陈隽.风作用下高层建筑结构的复合反演[M].高层建筑安全性检测与检测系统课题研究报告之十一,1996
    [104]李杰,陈隽.基于子结构法的结构复合反演问题研究[M].高层建筑安全性检测与检测系统课题研究报告之十二.1996
    [105]D. Wang and A. Halder. System Identification With Limited Observations and without Input, Journal of Engineering Mechanics, ASCE, Vol.123,No.5,May, 1997,p504-511
    [106]傅志方主编.振动模态分析与参数辨识[M].机械工业出版社,1990
    [107]周传荣,赵淳生.机械振动参数识别及其应用[M].科学出版社,1987
    [108]彭华,游春华,孟勇,模态曲率差法对梁结构的损伤诊断[J].工程力学,Vol.23No.7 July 2006,49-53
    [109]李德葆,陆秋海.承弯结构的曲率模态分析[J].清华大学学报(自然科学版),2002年第42卷第2期,224-227
    [110]刘龙,孟光.基于曲率模态和支持向量机的结构损伤位置两步识别方法[J].工程力学.Vol.23.Sup.I,June 2006,35-45
    [111]邓宗才,李庆斌.形状记忆合金对混凝土梁驱动效应分析[J].土木工程学报,2002,35(2):41-47
    [112]刘艳华,任庆新.北方某大跨钢管混凝土拱桥动力特性分析[J].世界地震工程,2009,25(2):120-124
    [113]欧碧峰,赵灿晖,乐建平.大跨度钢管混凝土拱桥的动力特性分析[J].公路交通技术,2005(3):84-87
    [114]陈水盛,陈宝春.钢管混凝土拱桥动力特性分析[J].公路,2001,2(2):10-14
    [115]孙潮,陈宝春,陈水盛.钢管-钢管混凝土复合拱桥动力特性分析[J].地震工程与工程振动,2001,21(2):48-52
    [116]宗周红,Bijaya Jaishi,林友勤,任伟新.西宁北川河钢管混凝土拱桥的理论和实验模态分析[J].铁道学报,2003,25(4):89-96
    [117]Van der Auweraer H, Hermans L.Structural modal identification from real operating conditions[J].Sound and Vibration,1996,33(1):34-41
    [118]Peeters B,De Roeck G.Reference based stochastic subspace identification in civil engineering[A].Proceedings of the 2nd international conference on identification in engineering systems[C]. Swansea,1999.639-648
    [119]宋固全,方水平,张纯.桥梁损伤诊断中曲率模态理论的有限元分析[J].南昌大学学报,2008,30(1):95-96
    [120]高芳清,金建明,高淑英.基于模态分析的结构损伤检测方法研究[J].西南交通大学学报,1998,33(1):108-113
    [121]Wahab MMA, Roeck GD. Damage detection in bridges using modal curvatures: application to a real damage scenario [J] Journal of Sound and Vibration,1999, 226 (2):217-235
    [122]禹丹江.桥梁损伤检测的曲率模态方法探讨[J].郑州大学学报(工学版),2002,(3):104~106
    [123]李德葆.承弯结构的曲率模态分析[J].清华大学学报(自然科学版),2002,(2):224-227
    [124]狄生奎,花尉攀,汲生伟等.简支梁损伤的模态曲率差值试验分析[J].兰州理工大学学报,2010,(6):102-106
    [125]狄生奎,花尉攀,汲生伟.不同工况下简支梁桥损伤的模态曲率差值分析[J].兰州理工大学学报,2010,36(5):122-127
    [126]易登军,韩晓林.损伤结构的实验曲率模态研究[J].振动、测试与诊断,2004,(2):234-236
    [127]Pandey A K, Biswars M, Samman M N. Damage detection from changes in curvature mode shapes [J].Journal of Sound and Vibration,1991,145(2): 321-352
    [128]万小朋.利用振型变化进行结构损伤诊断的研究[J].航空学 报,2003,(9):422-426
    [129]耿浩.模态变化对钢桁梁模型桥的损伤检测研究[J].桥梁建设,1998,(2):67-70
    [130]李贵炳.结构损伤识别指标法及其实现[J].太原理工大学学报,2003,(9):613-615
    [131]董聪.结构智能健康诊断的理论与方法[J].中国铁道科学,2002,(2):11-24
    [132]李德葆.承弯结构的曲率模态分析[J].清华大学学报(自然科学版),2002,(2):224-227
    [133]李功字.损伤结构的曲率模态分析[J].振动/测试与诊断,2002,(6):136-141
    [134]禹丹江.桥梁损伤检测的曲率模态方法探讨[J].郑州大学学报(工学版),2002,(3):104-106
    [135]郑明刚.曲率模态在桥梁状态监测中的应用[J].振动与冲击,2000,(2):81-83
    [136]Raghavendrachar M, Aktan A E. Flexibility by multireference impact testing for bridge diagnostics [J].Journal of Structural Engineering,1992,118(8): 2186-2203
    [137]Zhao J, De Wolf J T. Sensitivity study for vibration parameters used in damage detection [J]. Journal of Structural Engineering,1999,125(4):410-416
    [138]Pandey A K, Biswas M. Damage detection in structures using changes in flexibility [J]. Journal of Sound and Vibration,1994,169(1):3-17
    [139]Pandey A K, Biswas M. Damage diagnosis of truss structures by estimation of flexibility change [J]. Modal Analysis,1995,10(2):104-117
    [140]Ko J M. Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun bridge [J].Engineering Structures,2002,24:857-868
    [141]曹晖,MichaelI.Friswell.基于模态柔度曲率的损伤检测方法[J].工程力学,2006,23(4):33-38
    [142]曹晖,张新亮,李英民.利用模态柔度曲率差识别框架的损伤[J].振动与冲击,2007,26(6):116-120.124,188
    [143]李永梅,周锡元,高向宇.基于柔度曲率矩阵的结构损伤识别法[J].工程力学,2009,26(2):188-195
    [144]李永梅,周锡元,高向宇.基于柔度曲率矩阵的结构损伤识别[J].北京工业大学学报,2008,34(10):1166-1071
    [145]赵玲,李爱群.基于模态柔度矩阵变化指标的结构损伤预警方法[J].东南大学学报(自然科学版),2009,39(4):1049-1053
    [146]颜王吉,任伟新.基于代数算法的单元模态应变能灵敏度分析[J].振动与冲击,2010,29(4):34-39
    [147]颜王吉,任伟新.基于代数算法的模态柔度灵敏度分析[J].铁道科学与工程 学报,2009,6(5):37-41
    [148]王秋萍,郭迅.基于结构损伤前后柔度矩阵改变的损伤部位向量法[J].世界地震工程,2010,26(3):48-53
    [149]姚京川,杨宜谦,王澜.基于模态柔度曲率改变率的桥梁结构损伤识别方法[J]中国铁道科学,2008,29(5):52-57
    [150]荆龙江,项贻强.基于柔度矩阵法的大跨斜拉桥主梁的损伤识别[J].浙江大学等报(工学版),2008,42(1):164-169
    [151]曹水东,李传习,徐飞鸿,张建仁.基于结构柔度矩阵损伤识别的柔度曲率比法[J].长沙电力学院学报(自然科学版),2006,21(1):85-88
    [152]程远胜,吕磊,王真.基于结构柔度灵敏度的损伤定位[J].华中科技大学学报(自然科学版),2007,35(9):5-7
    [153]宗周红,夏樟华.联合模态柔度和静力位移的桥梁有限元模型修正方法[J].中巨公路学报,2008,21(6):43-49
    [154]张谢东,张治国,詹昊.基于曲率模态和柔度曲率的结构多损伤识别[J].武汉理工大学学报,2005,27(8):35-37.55
    [155]陈江,熊峰.基于曲率模态振型的损伤识别方法研究[J].武汉理工大学学报[J].2007,29(3):99-102
    [156]谢慧才,程林.基于柔度差曲率的简支梁损伤识别方法[J].汕头大学学报(自然科学版),2007,22(3):70-75
    [157]鞠彦忠,张增军,陈景彦,王显利.基于柔度法的结构损伤识别[J].东北电力学院学报,2004,24(1):47-50.
    [158]易晓罡.基于柔度矩阵的桥梁损伤识别法的应用[J].中国水运,2007,5(3):44-45
    [159]杨华.基于柔度矩阵法的结构损伤识别[J].吉林大学学报(理学版),2008,46(2):242-244
    [160]陈立,马骏,赵德有.基于柔度曲率的板结构损伤识别的研究[J].船海工程,2009,38(2):23-27
    [161]陈思维.桥梁病害损伤检测诊断与危旧桥加固维护技术及典型实例分机[M].2007,3
    [162]R.W克拉夫,J.彭津.结构动力学(王光远等译)[M].科学出版社,1981
    [163]李喜梅,杜永峰.不同桥面刚度下桥梁结构的动力响应分析[J].武汉理工大学学报Vol.32 No.9 May.2010,328-330
    [164]杜永峰,刘云帅,王晓琴.基于挠度差值影响线曲率的简支梁桥损伤识别[J].(?)梁建设2009,Vo104,80-83
    [165]杜永峰,李慧,狄生奎,韩建平.利用形状记忆合金吸能支座的高压输气管道的(?)振控制[J].工业建筑.2008年第38卷增刊,392-397
    [166]杜永峰,张冬兵.曲率模态和神经网络在损伤识别中的应用[J].公路交通科技Vol24,Nol 1.Nov.2007,77-80
    [167]杜永峰,陈文元.小波分析与神经网络在结构损伤监测中的应用[J].兰州理工大学学报Vol.31, No.5.Oct.2005,121-124
    [168]狄生奎,李慧,杜永峰等.SMA混凝土的裂缝监测及自修复[J].建筑材料学报,2009,12(1):27-31
    [169]Hidekinagai and Ryutaro Oishil.Shape memory alloys as strain sensors in composites[J]. Smart Mater. Struct.15 (2006):493-498
    [170]Rogers C A, Liang C and Barker D,1988,Proc. US Army Research Office Workshop on Smart Materials, Structures and Mathematical Issues (Blackburg, USA) vol 39
    [171]Wayman C M. Shape memory alloy MRS Bull.XVI 449.1995, (Special issue smart materials)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700