用户名: 密码: 验证码:
机敏混凝土的压敏性及钢筋腐蚀与防护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机敏混凝土作为一种水泥基本征复合材料,与混凝土结构具有天然的相容性和同寿命性,还具有造价低、可大规模布设等特点,可满足土木工程结构长期健康监测的需要,已成为该领域的热点和前沿研究方向。
     水泥基导电复合材料应变自感知性能是基于其电阻与应变的对应关系,即压阻特性。本文针对目前机敏混凝土存在的问题,提出了在制备水泥基复合材料时内掺水泥基渗透结晶防水材料(CCCW)、以碳纤维和石墨为导电相的技术路线,并从制备工艺及组分优化、单向和多轴应变状态下的自感知特性及机理,以及含CCCW和碳纤维混凝土中钢筋的腐蚀与防护机理等方面进行了较深入系统的研究。论文主要成果与创新之处如下:
     1.首次提出了在机敏混凝土的制备过程中使用CCCW材料,以改进机敏材料的电学性能及压敏性的稳定性,提高机敏材料的力学性能。通过改进碳纤维分散工艺、内掺CCCW和采用浓硝酸浸泡PAN基碳纤维制备了碳纤维水泥净浆和砂浆,并对其微观结构、电学特性、单向循环荷载下的压阻特性和力学性能进行了实验研究和理论分析。同时,研究了内掺CCCW的石墨水泥基机敏材料(GCC)的导电及压阻性能、力学性能。结果表明,经浓硝酸浸泡处理的碳纤维分散性得到了增强,碳纤维在水泥基体中分散较为均匀。CCCW对试样的微裂缝具有自修复作用,可以提高机敏混凝土的力学性能和电学性能的稳定性。
     2.研究了内掺CCCW的碳纤维石墨水泥基复合材料(CFGCC)的电学性能和力学性能。通过复掺长程导电的碳纤维和短程导电的石墨,内掺CCCW以部分弥补加入石墨导致的复合材料力学性能的下降,制备了电学性能稳定、力学性能较好的新型机敏材料。研究结果表明,内掺4%(CCCW(占水泥质量分数,下同)、1%碳纤维的CFGCC渗滤阈值为20%左右;石墨掺量为20%-30%的CFGCC的压阻特性最好,碳纤维和石墨复掺工艺提高了机敏材料电学性能的稳定性。
     3.提出了利用羟丙基甲基纤维素(HPMC)作为制备机敏混凝土时所加短切碳纤维的分散剂。结果表明,HPMC可以替代羧甲基纤维素(CMC)分散碳纤维,有效解决其容易起霉、耐水性差的问题。
     4.研究了所制备的新型机敏材料的应变灵敏度系数K(单位应变的电阻变化率),探讨了多循环对CFGCC试块电学性能的影响,基于隧道效应理论,对多轴应变下的力电理论进行了初步分析,并进一步探索了嵌入式GCC、CFGCC试块对混凝土柱的自感知特性,研究了多轴应变条件下机敏材料作为传感器监测结构埋入试样部位的受力状态的可行性。结果表明,在压应力幅值6.25MPa循环荷载作用下,含石墨20%和50%的GCC试样的K值分别为37和22:含碳纤维1%、石墨20%和30%的CFGCC的K值分别为63和25,均远高于电阻应变片的2。嵌入式GCC、CFGCC试块的混凝土柱具有良好的压敏特性。在循环荷载的作用下,内嵌混凝土柱中心的机敏材料试块的电阻变化率与混凝土柱所受的压力呈现良好的对应关系,具有很好的同步性。在单调加载条件下,试块的电阻值可以清晰反映试块的弹性范围、塑性范围和破坏范围。
     5.采用新拌砂浆法、硬化砂浆法和宏观电池技术,研究分析了掺CCCW、短切碳纤维及盐水浸泡和干湿循环对钢筋锈蚀的影响,探讨了混凝土结构钢筋腐蚀与防护的机理。结果表明,短切碳纤维促进钢筋锈蚀,其含量越大,促进钢筋锈蚀作用越明显。结构系统防护法可有效实施对钢筋的保护。
As a kind of cement-based composites, smart concrete presents many characteristics, such as high durability and excellent compatibility with concrete structures themselves, as well as cheap and large-scale-distributed embeded and so on. Therefore, it has been more and more attractive for structural health monitoring in civil infrastructures due to its promising performance in long-term service, and has become an attractive topic and cutting-edge research in this field.
     Cement-based conductive composite materials with strain self-sensing performance is based on the corresponding relationship between electrical resistance and applied strain, that is, piezoresistivity. At the existing problems on the smart concrete, this thesis focuses on the research of cement-based composite materials containing cementitious capillary crystalline waterproofing materials (CCCW), the electrical conductive phase of carbon fiber and graphite. The detailed contents include fabrication method and optimization of proportion, piezoresistivity and its mechanism under one-way and multiaxial stress state, and the effects of CCCW and short-cut carbon fiber on the corrosion and protection of reinforcement in concrete. The following conclusions and innovation can be obtained:
     (1) Adding CCCW material in the preparation of smart concrete was proposed for improving the stability of electrical, pressure-sensing and mechanical properties of smart concrete for the first time. By improving the dispersion technology of carbon fiber, carbon fiber cement paste and mortar with CCCW were prepared, in which PAN-based carbon fibers were dipped by concentrated nitric acid. And their microstructure, electrical properties, the piezoresistivity under one-way cyclic loading and mechanical properties were carried out experimental research and theoretical analysis. At the same time, the above properties of graphite cement-based composites (GCC) have also investigated. The results have shown that the dispersion of carbon fiber after treatment by concentrated nitric acid in the block of cement paste has been enhanced. Carbon fibers were dispersed uniformly in the matrix. The active chemical material in CCCW has a kind of ability of self-repairing to micro-cracks in concrete, that may improve the stability of electrical properties and mechanical properties of smart concrete.
     (2) The electrical and mechanical properties of carbon fiber graphite cement-based composites (CFGCC) with CCCW were studied. By coplexing long-range conductive carbon fiber and short-range conductive graphite, and adding CCCW to partially offset the decline in mechanical properties of CFGCC caused by graphite, the new-type smart materials were prepared. The results show that the percolation threshold of CFGCC with 4%(mass fraction of cement, the same below) CCCW and 1% carbon fiber is about 20%. The piezoresitivity of CFGCC with 20% to 30% graphite is the best. Mixing carbon fiber and graphite in smart materials improves the stability of electrical performance.
     (3) The use of hydroxypropyl methyl cellulose (HPMC) as a dispersant of chopped carbon fiber in the preparation of smart concrete was proposed. The result shows that HPMC can replace carboxymethyl cellulose (CMC) in order to avoid its easy to moldy and non-water.
     (4) The strain gage factor K (defined as the fractional change in resistance per unit strain) of smart materials GCC and CFGCC were studied. And the effect of multi-cycle on the electrical properties of CFGCC test pieces were discussed.Based on the theory of tunneling effect, the electric-mechanical theory was analyzed under multiaxial strain. The results show that, the blocks of GCC and CFGCC present a good piezoresistive effect. Under the action of 6.25MPa compressive stress amplitude cyclic loading, the measured gage factor of GCC with graphite content of 20% and 50% are 37 and 22 respectively, and the measured gage factor of CFGCC with 1% carbon fiber and 20% and 30% graphite are 37 and 22 respectively, which are higher than gage factor 2 of resistance-strain gauge. The self-sensing properties of GCC and CFGCC block embedded in concrete columns were also studied under the conditions of multiaxial stress. In the monotonic loading conditions, the resistance value of the block embedded in concrete column can clearly reflect its elastic range, plastic scope and failure.
     (5) By the use of fresh mortar method, hardened mortar method and macro-cell technology, the effects of adding CCCW and carbon fiber, dipped in salt solution and wet-dry cycle on reinforcement corrosion in concrete were analyzed. And the mechanism of steel bar corrosion and protection was discussed. The results show that, the chopped carbon fiber is to promote steel bar corrosion, and the greater the content, the more obvious role in the promotion of steel bar corrosion. Structural system protection methods can be effectively implemented on the reinforcement of protection.
     v
引文
[1]缪昌文.高性能混凝土外加剂[M].北京:化学工业出版社,2008:1.
    [2]欧进萍.土木工程结构振动的智能控制研究与发展[C].中国深圳:国际结构控制与健康诊断研讨会,2000(CD-ROM).
    [3]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [4]Mehta P K. Concrete Durability-fifty Year's Progress. Proc. of the 2~(nd) Inter. Conf. on Concrete Durability, ACI SP126-1,1991:1-31.
    [5]Housner G W. Structure Control:Past, Present, and Future, Journal of Engineering Mechanics. 1997,123 (9):357-364.
    [6]Zhao Xia, Yuan Shenfang, Zhou Hengbao, et al. An evaluation on the multi-agent system based structural health monitoring for large scale structures[J]. Expert Systems with Applications,2009,36(3):4900-4914.
    [7]Fu Xuli, Chung D D L. Self Monitoring of Fatigue Damage in Carbon Fiber Reinforced Cement[J]. Cement and Concrete Research,1996,26(1):15-20.
    [8]Yang C Q, Wu Z S. Self-structural health monitoring function of RC structures with HCFRP sensors[J]. Journal of Intelligent Material Systems and Structures,2006,17(10):895-906.
    [9]李惠,欧进萍.智能混凝土与结构[J].工程力学,2007,24(S2):45-59.
    [10]宋晓冰.钢筋混凝土结构中的钢筋腐蚀[D].北京:清华大学博士学位论文,1999.
    [11]吴人杰.复合材料[M].天津:天津大学出版社,2000:186-196.
    [12]Claus R O, Mckeenman J C, May R G., et al. Optical Fiber Sensors and Signal Processing for Smart Materials and Structures ARO Smart Materials, Structures and Mathematical Issues Workshop Proceeding[C]. Blacksburg:Virginia Polytechnic Institute and State University, 1988:15-16.
    [13]Li Hui, Xiao Huigang, Ou Jinping. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites[J]. Cement and Concrete Composites,2006,28 (9):824-828.
    [14]瞿伟廉,李卓球,姜德生,等.智能材料-结构系统在土木工程中的应用[J].地震工程与工程振动,1999,19(3):87-95.
    [15]姚武,吴科如.智能混凝土的研究现状及其发展趋势[J].新型建筑材料,2000,(10)22-24.
    [16]Dry Carolyn. Repair and Prevention of Damage due to Transverse Shrinkage Cracks in Bridge Decks[C]. Proceedings of SPIE-The International Society for Opitical Engineering. 1999,3671:253-256.
    [17]巴恒静,国爱丽,程志敏.活性粉末混凝土配合比及导电性能研究[J].混凝土,2008,(4):11-14,18.
    [18]刘小艳,姚武,吴科如.碳纤维水泥基复合材料温敏特性研究[J].河海大学学报(自然科学版),2007,35(2):202-204.
    [19]Hou Jiangyuan, Chung D D L. Cathodic protection of steel reinforcedconcrete facilitated by using carbon fiber reinforced mortar or concrete[J]. Cem. Concr. Res.,1997,27 (5):649-656.
    [20]吴献,周志强,王丽娜.碳纤维水泥基复合材料在循环荷载作用下的压敏性[J].沈阳建筑大学学报(自然科学版),2009,25(2):290-293.
    [21]Chen Pu-Woei, Chung D D L. Concrete as a new strain/stress sensor[J]. Composites:Part B. 1996,27 (1):11-23.
    [22]Chung D D L. Cement reinforced with short carbon fibers:a multifunctional material[J]. Composites:Part B,2000,31 (6,7):511-526.
    [23]Wen Sihai, Chung D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cement and Concrete Research,2000,30 (8):1295-1298.
    [24]Wen Sihai, Chung D D L. Carbon fiber-reinforced cement as a thermistor [J]. Cem. Concr. Res.,1999,29 (6):961-965.
    [25]Ruschau G R, Yoshikawa S, Newnham R E. Resistivities of conductive composites[J]. Journal of Applied Physics,1992,72 (3):953-959.
    [26]Ali M H, Abo-Hashem A. Percolation concept and the electrical conductivity of carbon black-polymer composites 3-crystalline chloroprene rubber mixed with FEF carbon black[J]. Plastics, Rubber and Composites Processing and Applications,1995,24 (1):47-51.
    [27]Fish D, Zhou Gungbin, Smid J. Ring opening polymerization of cyclotetrasiloxanes with large substituents [J]. Polymer preprint,1990,31 (1):36-37.
    [28]El-Tantawy Farid, Kamada K, Ohnabe H. Electrical properties and stability of epoxy reinforced carbon black composites[J]. Materials letters,2002,57(1):242-251.
    [29]曾戎,曾汉民.导电高分子复合材料导电通路的形成[J].材料工程,1997,(10):9-13.
    [30]Landauer R. Electrical conductivity in inhomogeneous media [C]. New York:In American Institute of Physics Conference Proceedings,1978:2-45.
    [31]Mclachlan D S. Measurement and analysis of a model dual-conductivity medium using a Generalized Effective-Medium Theory [J]. Journal of Physics C:Solid State Physics,1988, 21 (8):1521-1532.
    [32]Brouers. Percolation threshold and conductivity in metal insulator composite Mean-Field Theories [J]. Journal Physic C:Solid State Physics,1986,19 (36):7183-7193.
    [33]John G, Simmons. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film[J]. Journal of applied physics,1963,34 (9):2581-2589.
    [34]Van Beek L K H, Van Pul B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. Journal of Applied Polymer Science,1962,6 (24):651-655.
    [35]Kost J, Narkis M, Foux A. Resistivity behavior of carbon-black-filled silicone rubber in cyclic loading experiments [J]. Journal of Applied Polymer Science,1984,29 (12) 3937-3946.
    [36]Feng J Y, Chan C M. Effects of strain and temperature on the electrical properties of carbon black-filled alternating copolymer of ethylene-tetrafluoroethylene composites [J]. Polymer engineering and science,2003,43 (5):1064-1070.
    [37]Celzard A, McRae E, Mareche J F, et al. Conduction mechanisms in some graphite-polymer composites:Effects of temperature and hydrostatic pressure[J]. Journal of Applied Physics, 1998,83 (3):1410-1419.
    [38]RyvkinaN, Tchmutin I, Vilcakova J, et al. The deformation behavior of conductivity in composites where charge carrier transport is by tunneling:theoretical modeling and experimental results[J]. Synthetic Metals,2005,148(2):141-146.
    [39]Ruschau G R, Yoshikawa S, Newnham R E. Resistivities of conductive composites[J]. Journal of Applied Physics,1992,72 (3):953-959.
    [40]Chung D D L. Self-monitoring structural materials[J]. Materials Science and Engineering. 1998,22(2):57-78.
    [41]邓宗才,钱在兹.低周循环加载历史对碳纤维混凝土断裂特性影响的试验研究[J].中国公路学报.2000,13(2):64-68.
    [42]杨元霞,刘举宝.导电砼及机敏砼电阻测试中电极的制作[J].混凝土与水泥制品,1997,2:8-9.
    [43]Fu Xuli, Chung D D L. Self-monitoring of fatigue damage in carbon fiber reinforced cement[J]. Cement and Concrete Research,1996,26 (1):15-20.
    [44]韩宝国,关新春,欧进萍.碳纤维水泥石电阻测试方法研究[J].玻璃钢/复合材料,2003,6:6-9.
    [45]韩宝国,关新春,欧进萍.碳纤维水泥石压敏传感器电极的实验研究[J].功能材料.2004,35(2):262-264.
    [46]Xuli Fu, Chung D D L. Contact electrical resistivity between cement andcarbon fiber:its decrease with increasing bond strength and its increase during fiber pull-out[J]. Cement and Concrete Research,1995,25 (7):1391-1396.
    [47]Wen Sihai, Chung D D L. Electric polarization in carbon fiber-reinforced cement[J]. Cement and Concrete Research,2001,31(1):141-147.
    [48]Wen Sihai, Chung D D L. Effect of stress on the electric polarization in cement[J]. Cement and Concrete Research,2001,31(2):291-295.
    [49]韩宝国,喻言,关新春,等.碳纤维水泥基压敏传感器数据采集系统的设计[J].仪表技术与传感器,2005,7:56-58.
    [50]毛起炤,赵斌元,李卓球,等.极化效应对碳纤维增强水泥的导电性的影响[J].材料研究学报,1997,11(2):195-198.
    [51]陈冰,姚武,吴科如.用交流阻抗法研究碳纤维混凝土导电性[J].材料科学与工艺,2001,19(1):76-79.
    [52]候作富,李卓球,唐祖全.碳纤维导电混凝土的交直流电性能对比研究[J].混凝土,2002,(4):32~34.
    [53]Chen Pu-Woei, Chung D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J].Smart Mater. Struct.,1993,2(1):22-30.
    [54]Chen Pu-Woei, Chung D D L. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading[J]. J. American Ceramic Society.1995,78 (3):816-818.
    [55]Wen Sihai, Chung D D L. Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions[J].Cement and Concrete Research,2001,31(2):297-301.
    [56]Fu Xuli, Chung D D L. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar[J]. Cement and Concrete Research,1997,27 (9):1313-1318.
    [57]Fu Xuli, Chung D D L. Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers [J]. Cement and Concrete Research.1998,28 (2) 183-187.
    [58]Dragos-Marian, Chung D D L. Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement[J].Cement and Concrete Research.2000,30 (4):651-659.
    [59]Xu Yunsheng, Chung D.D.L. Cement-Based Materials Improved by Surface Treated Admixtures[J]. ACI Mater. J.2000,97 (3):333-342.
    [60]毛起炤,赵斌元,李卓球,等.水泥基碳纤维复合材料压敏性的研究[J].复合材料学报,1996,13(4):8-11.
    [61]Mingqing Sun, Qingping Liu, Zhuoqiu Li, et al. A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading[J]. Cement and Concrete Research,2000,30(10):1593-1595.
    [62]李卓球,吴菁,宋显辉,等.基于界面效应的碳纤维混凝土压敏性研究[J].混凝土,2007,(6):10-12.
    [63]毛起炤,陈品华,李卓球,等.小应力下碳纤维增强水泥的压敏性和温敏性[J].材料研究学报,1997,11(3):322-324.
    [64]韩宝国,关新春,欧进萍.碳纤维水泥基材料导电性与压敏性的试验研究[J].材料科学与工艺,2006,14(1):1-4.
    [65]关新春,韩宝国,欧进萍.表面氧化处理对碳纤维及其水泥石性能的影响[J].材料科学与工艺,2003,11(4):343-346.
    [66]韩宝国,关新春,欧进萍.导电掺和料形态与水泥基材料压敏性的相关性[J].复合材料学报,2004,21(3):137-141.
    [67]韩宝国,关新春,欧进萍.超声波在碳纤维水泥基材料制备中的应用研究[J].材料科学与工艺,2009,17(3):368-372.
    [68]姚武,徐晶.不同交流电频率下碳纤维水泥基材料的导电特性[J].郑州大学学报(工学 版),2009,30(1):96-100.
    [69]陈冰,姚武,吴科如.受压荷载下碳纤维水泥基复合材料机敏性研究[J].建筑材料学报,2002,5(2):8-13.
    [70]中喻滨,谢慧才.碳纤维水泥砂浆的配制及其力学性能测试[J].混凝士,2001,(7):48-50.
    [71]张巍,谢慧才,曹震.碳纤维水泥净浆外贴碳布电极的试验研究[J].混凝土与水泥制品,2002,(4):32-34.
    [72]王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的机敏性[J].硅酸盐学报,1998,26(3),253-257.
    [73]周振君,杨正方.带有碳涂层的尼龙纤维增强混凝土的机敏性研究[J].硅酸盐学报.2001,29(2):192-195.
    [74]张晓新,王伯羲.镀膜碳纤维用于智能水泥的探索[J].北京理工大学学报.2002,22(2):254-257.
    [75]Wen Sihai, Chung D D L. Carbon fiber-reinforced cement as a strain-sensing coating[J].Cement and Concrete Research,2001,31(4):665-667.
    [76]Shi Zengqiang, Chung D D L. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion[J]. Cement and Concrete Research,1999,29(3):435-439.
    [77]宋显辉,郑立霞,李卓球.碳纤维水泥变形传感器研制[J].测控技术,2004,23(2)22-24.
    [78]张东兴,苏余晴,黄龙男,等CFRC抗弯试件的机敏性能试验研究[J].低温建筑技术,2005,1:62-64.
    [79]黄龙男,张东兴,吴思刚,等.碳纤维增强混凝土的拉敏特性及梁构件的机敏监测[J].材料工程,2005,(2):26-30.
    [80]张东兴,罗朝华,刘振鹏,等.碳纤维混凝土配筋构件机敏性研究[J].哈尔滨工业大学学报,2004,36(10):1411-1413.
    [81]张巍,谢慧才,刘金伟,等.碳纤维机敏混凝土梁弹性应力自监测实验研究[J].东南大学学报,2004,34(5):647-650.
    [82]韩宝国.压敏碳纤维水泥石性能、传感器制品与结构[D].哈尔滨:哈尔滨工业大学博士学位论文,2005.
    [83]Jacobsen S. and Sellevold E.J. Self healing of high strength concrete after deterioration by freeze/thaw [J] Cement and Concrete Research,1996,26(1):55-62.
    [84]Ramm W, Biscoping M. Autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete[J].Nuclear Engineering and Design,1998,179 (2):191-200.
    [85]习志臻,张雄.仿生自愈合水泥砂浆的研究[J].建筑材料学报,2002,5(4):390-392.
    [86]Carola Edvarden. Self-healing of concrete cracks[J].Concrete,1999,(4):36-37.
    [87]Roberts F R. Autogenous Healing:The Self-healing of Fine Cracks[J]. Concrete Advisory Service:Advisory Date Sheet,1996,(9):40-43.
    [88]李厚祥,唐春安.混凝土裂缝自愈合特性研究[J].武汉理工大学学报,2004,26(3):27-29.
    [89]薛绍祖.国外水泥基渗透结晶型防水材料的研究与发展[J].中国建筑防水2001,(6):9-12.
    [90]Dry C. Matrix cracking repair and filling using active and passive model for smart timed release of chemicals form fibers into cement matrices [J].Smart Materials and Structure, 1994,3(2):118-123.
    [91]Victor C L,Yun M L,Chan Yinwen, Feasibility study of a passive smart self-healing cementitious composite [J].Composites Part B:Engineering,1998,29(6):819-827.
    [92]Dry C M. Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability[J].2000,30 (12):1969-1977.
    [93]赵晓鹏,周本濂,罗春荣,等.具有自修复行为的智能材料模型[J].材料研究学报,1996,10(1):101-104.
    [94]蒋正武,唐家骅.水泥基渗透结晶型防水材料在大坝中的应用[J].新型建筑材料,2001,(8):21-22.
    [95]刘鹏,贾平,周宗辉,等.自修复混凝土研究进展[J].济南大学学报(自然科学版),2006,20(4):287-291.
    [96]Sagae A. Humidity controlling concrete material[J]. Concrete Journal,1998,36 (1):37-40.
    [97]Figovsky O, Beilin D, Blank N, et al. Development of polymer concrete with polybutadiene matrix[J]. Cement and Concrete Composites,1996,18(6):437-444.
    [98]Gerharz B. Pavements on the base of polymer-modified drainage concrete[J]. Colloids and Surfaces A,1999,152(1,2):205-209.
    [99]刘铁军,欧进萍,李家和.硅粉的硅烷化对水泥砂浆阻尼性能的影响[J].硅酸盐学报,2003,31(11):1125-1129.
    [100]刘铁军,李家和,欧进萍.高阻尼混凝土的耐久性试验与综合评定[J].哈尔滨工业大学学报,2006,38(5):715-719.
    [101]Wang Y, Chung D D L. Effect of sand and silica fume on the vibration damping behavior of cement[J]. Cement and Concrete Research,1996,28 (10):1353-1356.
    [102]Fu Xuli, Chung D D L. Vibration damping admixtures for cement[J]. Cement and Concrete Research,1996,126 (1):69-75.
    [103]柯伟.中国工业与自然环境腐蚀调查[J].腐蚀与防护,2004,(1):8-18.
    [104]Abdullah A. Effect of degree of corrosion on the properties of reinforcing steel bars [J]. Construction and Building Materials,2001,15(8):361-368.
    [105]李建勇,杨红玲.国外混凝土钢筋锈蚀破坏的修复和保护技术[J].建筑技术,33(7):491-493.
    [106]关夫.防止钢筋混凝土中的钢筋锈蚀[J].华中建筑,16(3):142-143.
    [107]惠云玲,郭永重,李小瑞.混凝土中钢筋锈蚀机理、特征及检测评定方法[J].工业建 筑,2002,32(2):5-7.
    [108]NACE RP 0290-90 Standard recommended Practice. Cathodic Protection of Reinforcing Steel in Atmospherically Exposed Concrete Structures[S]. NACE International,1990.
    [109]梁晖.钢筋混凝土的腐蚀与亚硝酸钙的防护作用[J].材料开发与应用,15(6):18-21,27.
    [110]Castro H, Rodriguez C, Belzunce F J, et al. Mechanical properties and corrosion behaviors of stainless steel reinforcing bars[J]. Journal of Materials Processing Technology,2003, 143-144:134-137.
    [111]曹建中,刘冠国.环氧树脂涂层钢筋在钢筋混凝土结构中的应用[C].第十二届中国海岸工程学术讨论会论文集,2005:783-785.
    [112]陈锦虹,周明君,卢锦堂等.热浸镀锌钢筋在混凝土中的应用[J].材料保护,2003,36(9):12-14.
    [113]王桂明.化学转换型裂缝自修复材料及其对混凝土耐久性的影响研究[D].武汉:武汉理工大学博士论文,2005.
    [114]谢建宏,张为公.智能材料结构的研究与发展[J].传感技术学报,2004,3,(1):164-167.
    [115]Hou Tsungchin, Lynch J P. Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures[J]. Journal of Intelligent Material Systems and Structures,2009,20(11):1363-1379.
    [116]刘红叶,周述光.水泥基渗透结晶型防水材料的研究与发展[J].江西建材技术,2006,(3):7-9.
    [117]Wang Chuang, Li Kezhi, Li Hejun,et al. Evaluation on Dispersion of CVI Treated Carbon Fibers in CFRC[J]. Journal of Material s Science & Engineering,2008,26(1):20-26.
    [118]李卓球,吴菁,宋显辉,等.基于界面效应的碳纤维混凝土压敏性的研究[J].混凝土2007,(6):10-12.
    [119]水中和,赵正齐,李超,等.表面处理对碳纤维在水泥浆体中分散性的影响[J].武汉理工大学学报,2003,25(12):17-19.
    [120]王大鹏,侯子义.碳纤维表面处理对纤维的分散性和CFRC压敏性的影响[J].材料科学与工程学报,2005,23,(2):266-268.
    [121]Peter, Tumidajski J. Electrical conductivity of Portland cement mortars[J]. Cement and Concrete Research,1996,26(4):529-534.
    [122]靳玉伟,李慧暄,陈东生.碳纤维表面处理及液相吸附性能[J].吉林工学院学报,2000,21(2):57-60.
    [123]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝土与水泥制品,2002,(6):36-39.
    [124]唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究[D].武汉:武汉理工大学博士学位论文,2002.
    [125]CHUNG D D L. Cement-matrix composites for smart structures[J].Smart Mater. Struct., 2000,9(4):389-401.
    [126]陈兵,姚武,吴科如.掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J].建筑材料学报,2004,7(3):261-268.
    [127]欧进萍,韩宝国.碳纤维水泥石压敏传感器及其性能研究[J].功能材料,2006,37(11):1851-1855,1858.
    [128]崔素萍,刘永肖,兰明章,等.石墨-水泥基复合材料的制备与性能[J].硅酸盐学报,2007,35(1):91-95.
    [129]Sun M, Li Z. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cement concrete research,1998,28(4),549-554.
    [130]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报,2004,32(1):34-38.
    [131]蒋正武,孙振平,王新友.导电混凝土技术[J].混凝土,2000,(9):55-58.
    [132]Li Hui, Xiao Huigang, Ou Jinping. A study on mechanical and pressive-senstive properties of cement mortar with nanophase material[J].Cement and Concrete Research,2004, 34(3):435-438.
    [133]关新春,韩宝国,欧进萍.碳纤维在水泥浆体中的分散性研究[J].混凝土与水泥制品,2002,(2):34-36.
    [134]王新民,薛国龙,俞锡贤,等.干粉砂浆添加剂选用[M].北京:中国建筑工业出版社,2007:81.
    [135]侯作富,李卓球,王建军.碳纤维水泥基复合材料研究中存在的若干问题探讨[J].电工材料,2007,(2):28-31,18.
    [136]匡亚川,欧进萍.混凝土的渗透结晶自修复试验与研究[J].铁道科学与工程学报,2008,5(1):6-10.
    [137]Mao Qizhao, Zhao Binyuan, Sheng Darong et al. Resistance Changement of Compression Sensible Cement Specimen under Different Stresses [J] Journal of Wuhan University of Technology-Mater. Sci. Ed.,1996,11 (3),41-45.
    [138]Wang W, Dai H Z, Wu S G. Mechanical Behavior and Electrical Property of CFRC-strengthened[J]. Materials Science and Engineering A,2008,479 (1-2),191-196.
    [139]龙曦,孙明清,李卓球等.纳米炭黑水泥基复合材料的压敏性研究[J].武汉理工大学学报,2008,30(3):57-59.
    [140]唐祖全,李卓球,侯作富,等.导电混凝土路面材料的性能分析及导电组分选择[J].混凝土,2002,(4):28-31.
    [141]Rajagopal S M. Studies on electrical conductivity of insulator conductor composites[J]. Appl. Phys.,1978,49(11):461-469.
    [142]Carmonn A F. Conducting filled polymers[J]. Solid State Commu.,1989,157 (1):461-469.
    [143]Jiang Cuixiang, Li Zhuoqiu, Song Xianhui,et al. Mechanism of Functional Responses to Loading of Carbon Fiber Reinforced Cement-based Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2008,23 (4),571-573.
    [144]姚武,王瑞卿.基于隧道效应的CFRC材料的导电模型[J].复合材料学报,2006,23(5):121-125.
    [145]欧进萍,关新春,李惠.应力自感知水泥基复合材料及其传感器的研究进展[J].复合材料学报,2005,23(4):1-8.
    [146]郑立霞,宋显辉,李卓球.机敏混凝土结构变形的自诊断[J].华中科技大学学报(自然科学版),2004,32(4):30-34.
    [147]关新春,欧进萍,韩宝国,等.碳纤维机敏混凝土材料的研究与进展[J].哈尔滨建筑大学学报,2002,35(6):55-59.
    [148]Ahmad S H, Shah S P. Complete Tri-Axial stress-strain curves for concrete[J]. Journal of Structural Division,1982,108 (4):728-741.
    [149]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002:93.
    [150]洪乃丰.混凝土中钢筋腐蚀与防护技术[J].工业建筑,1999,29(8):60-63.
    [151]樊云昌,曹兴国,陈怀荣.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出版社,2001:8-12.
    [152]范小平.浅谈混凝土结构中钢筋的锈蚀问题[J].福建建材,2008:14-16.
    [153]勒雪梅.关于钢筋锈蚀与保护的研究[J].建筑技术与应用,2007:11-14.
    [154]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,2002:29-39.
    [155]安新豪,王书磊,姬永生,等.混凝土结构中钢筋锈蚀过程的研究与现状[J].实验与研究,2008,42(4):42-45.
    [156]Chung D D L. Corrosion Control of Steel-Reinforced Concrete[J]. Journal of Materials Engineering and Performance,2000,9 (5):585-588.
    [157]ASTM G 109-99a (2005). Standard Test Method for Determining the Effects of Chemical Admixtures on the Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments[S].United States:ASTM Intenational,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700