用户名: 密码: 验证码:
树脂基碳纤维智能层的功能特性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是在国家自然科学基金项目.“基于核安全壳应力监测的复合敏感层传感机理及成像”的资助下,以大型结构的长期健康监测为目的,开展树脂基碳纤维智能层的功能特性及其机理研究。研究内容包括树脂基碳纤维智能层的一维、二维力阻效应、力阻机理、温敏效应及其机理、以及相关应用研究。主要获得了以下几个方面的研究成果:
     (1)通过构造单向应变场,得到了树脂基碳纤维智能层对单向的纵向应变或单向的横向应变的响应,其结果表明这两个方向的应变均能引起树脂基碳纤维智能层电阻的增大,进一步的分析揭示出这两种应变对智能层电阻率的影响系数;在此基础上构建了平面二维应变作用下的力阻效应本构模型,根据偏轴加载的试验结果,采用一剪应变影响因子对该本构模型进行了修正。
     (2)建立了树脂基碳纤维智能层的叠层构造,分析了碳纤维叠层中的2种接触界面,即搭接式接触和交叉式接触。通过实验发现了这两种碳纤维接触界面的高力阻灵敏性和良好的稳定性,从而揭示了树脂基碳纤维智能层力阻效应的机理;并对搭接式接触的界面电阻建立电学模型,分析了界面力阻效应的产生机制。
     (3)揭示了环氧树脂基碳纤维智能层的温敏效应。树脂基碳纤维智能层在-10℃-25℃表现出NTC效应,在25℃-50℃表现出PTC效应;进一步的实验表明智能层在NTC效应和PTC效应独立表现阶段具有温度传感特性;通过实验揭示了树脂基中碳纤维单丝电阻随温度线性变化的NTC效应和树脂基中碳纤维接触电阻随温度非线性变化的的PTC效应,并在此基础上解释了树脂基碳纤维智能层的温敏响应机制。
     (4)通过对被测结构预制缺陷,揭示了树脂基碳纤维智能层对结构损伤的敏感性,基于该敏感性,利用碳纤维智能层有效地监测了混凝土梁结构在单调载荷下作用下损伤产生过程。
     (5)阐明了温度对变形检测的影响效应。温度变化对变形检测的影响体现在两方面:一方面温敏效应直接导致电阻的变化;另一方面温度的升高导致智能层灵敏度的上升。此外,在实验中采用差动解耦方式,实现了变形检测中的温度补偿。
The dissertation was supported by the project of National Science Foundation "The mechanism of compound sensitive surface and imaging method of stress monitoring for nuclear safety shells" (No.50878169).Aiming at the long-term health monitoring for large-scale structures, the research on the functional properties and its mechanism of the polymer-matrix carbon fiber smart layer was carried out. The study includes one-dimensional load sensitivity, two-dimensional load sensitivity, mechanism of load sensitivity, temperature sensitivity and its mechanism, and the related applicatons.The following conclusions and innovation can be obtained:
     Firstly, by constructing of unidirectional strain field, the responses of polymer-matrix carbon fiber smart layer to the longitudinal or the transverse unidirectional strain were obtained. The result indicated that each of the above strain can induce the resistance increase of the smart layer, and the piezoresistive coefficients were revealed by the further analyses. Based on the piezoresistive coefficients, the two-dimensional load sensitivity constitutive model was built up. The constitutive mode was modified by the result of off-axis experiment.
     Secondly, the laminated construction of polymer-matrix carbon fiber smart layer was built up. Two kind of contact interface, the overlapped contact interface and the crossed contact interface were researched. The high gage factors and favorable stabilities of the two contact interfaces were discovered, which revealed the mechanism of load sensitivity for polymer-matrix laminated carbon fiber smart layer. The electrical model was built up for the overlapped contact interface, and the mechanism of its sensitivity was discussed.
     Thirdly, the temperature sensitivity of epoxy matrix carbon fiber smart layer was revealed. The epoxy matrix carbon fiber smart layer exhibits NTC effect in-10℃~25℃and exhibits PTC effect in 25℃~50℃. Further experiment demonstrates its sensing properties in the temperature scale in which the NTC effect or PTC effect exhibits individually. The linear NTC effect for the single carbon fiber in the epoxy matrix and the non-linear PTC effect for the contact interface of carbon fiber in the epoxy matrix were revealed. Base on the two effects, the mechanism of the temperature sensitivity for the epoxy matrix carbon fiber smart layer was explained.
     The fourth, the damage sensitivity of the smart layer was revealed by the monitoring for a beam with prefabricated defect. Based on its damage sensitivities, the smart layer was effectively applied in the health monitoring for a concrete beam under three-point bending.
     Finally, the temperature effect on the deformation detection was clarified. The temperature change influences the deformation detection in two aspects:on one hand, the temperature sensitivity directly causes the resistance change; on the other hand, the temperature increase causes the gage factor increase. In additional, the temperature compensation was realized by the differential voltage method in the experiment.
引文
[1]李卓球.智能复合材料及其结构体系,武汉:武汉理工大学出版社,2005.10-50
    [2]欧进萍.重大工程结构智能传感网络与健康监测系统研究与应用.中国科学基金.2005,1:8-12
    [3]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究.建筑技术,2002.33(4):270-272
    [4]Jinping Ou,"Research and Practice of Intelligent health monitoring Systems for Civil Infrastructures in mainland China",Proc.of Third China-Japan-US Symposium on Structural Health Monitoring and Control,Dalian,China,Oct.13-14,2004,pp.3-15.
    [5]A. E. Aktan,M. Pervizpour, N. Catbas,K. Grimmelsman, R.Barrish, J.Curtis and.Qin,"Information Technology Research for Health Monitoring of Bridge Systems",Proc.of the 3rd International Workshop on Structural Health Monitoring:The Demands and Challenges,Stanford,CA,USA,September 12-14,2001,pp.1441-1465.
    [6]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展,2004,(02)
    [7]翟伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法.地震工程与工程振动,2002.22(1):43-48
    [8]李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002.101-153
    [9]Carino JN, Sansalone M, Impact-echo:A new method for inspecting construction materials. Proc. Conf. NDT&E Manuf. Constr., University of Illinois at Urbana-Champaign,1988
    [10]Ohtsu M, Watanabe T. Stack imaging of spectral amplitudes based on impact-echo. NDT&E International,2002.35:189-196
    [11]Kim DS, et al. Feasibility study of the IE-SASW ethod for nondestructive evaluation of containment building structures in nuclear power plants. Nuclear Engineering and Design,2002.219:97-110
    [12]傅翔,宋人心等.冲击回波法检测预应力预留孔灌浆质量.施工技术,2003.32(11):37-38
    [13]Krause M, Mielentz F, Milman B, et al. Ultrasonic Imaging of Concrete Members Using an Array System. NDT&E International,2001.34:403-408
    [14]Salawu OS. Detection of structural damage through changes in frequency:a review. Engineering Structures,1997.19(9):718-741
    [15]Hidalgo PA, Jordan RM, Martinez MP. An analytical model to predict the inelastic seismic behavior of shear-wall, reinforced concrete structures. Engineering Structures,2002.24:85-98,
    [16]Hyeung-Yun Kim, Woonbong Hwang. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams. Composite Structures, 2002.55:51-62
    [17]Chotard TJ, Pasquiet J, Benzeggagh ML. Impact response and residual performance of GRP pultruded shapes under static and fatigue loading.Composites Science and Technology, 2002.60:895-912
    [18]Crema LB, Castellani A, Romani A. Damage detection by eigenfrequency measurements in macroelement divided structures. In:Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801,1997.476-483
    [19]Ratcliffe CP. Damage detection using a modified laplacian operator on mode shape data. Journal of Sound and Vibration,1997.204(3):505-522
    [20]Maeck J, De Roeck G., Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates. Journal of Sound and Vibration,1999.225(1):153-223
    [21]Maeck J, Abdel Wahab M, De Roeck G. Damage localization in reinforced concrete beams by dynamic stiffness determination. Proceedings of International Model Analysis Conference 17, Kissimmee, Florida, USA,1999.1289-1295
    [22]Maeck J, De Roeck G. Detection of damage in civil engineering structures by dynamic stiffness derivation. Proceedings of Eurodyn 99, Prague, Czech Republic,1999.485-490
    [23]B.A.奥尔特.固体中的声场和波.北京:科学出版社.1982.45-63
    [24]H.J.佩因著.振动与波动物理学.(陈难先,赫松安译).北京:人民教育出版社,1980.75-89
    [25]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988.80-93
    [26]Yih-Hsing Pao,Chao-Chow Mow.弹性波的衍射与动应力集中.北京:科学出版社,1993.63-78.
    [27]Ruotolo R, Surace C. Damage assessment of multiple cracked beams:numerical results and experimental validation. Journal of Sound and Vibration,1997.206(4):567-88
    [28]Stubbs N, Osegueda R. Global non-destructive damage evaluation in solids. International Journal of Analytical and Experimental Modal Analysis,1990.5(2):67-79
    [29]Carrasco CJ, Osegueda RA, Ferregut CM, Grygier M. Damage localization in a space truss model using modal strain energy. In:Proceedings of the 15th International Modal Analysis Conference Society for Experimental Mechanics, Bethel, CT06801,1997.1786-1792
    [30]Doebling SW, Hemez FM, Peterson LD, Farhat C. Improved damage location accuracy using strain energy-based model selection criteria. AIAA J,1997,35(4):693-699
    [31]Pu-Woei Chen, D.D.L.Chung. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J. American Ceramic Society, 1995.78(3):816-818
    [32]Constable, SC. Occams inversion:A practical algorithm for generating smooth models from electro magnetic sounding data. Geophysics,1987.52(3):289-300
    [33]Su MB, Fracture monitoring within concrete structure by Time Domain Reflectometry. International Conference on Fracture and Damage of Concrete and Rock, Vienna (Austria), 1990.35(1):313-320
    [34]Feng MQ, De Flaviis F, Kim YJ. Use of Microwaves for Damage Detection of Fiber Reinforced Polymer-Wrapped Concrete Structures. Journal of Engineering Mechanics, ASCE,2002.128(2):172-183
    [35]Xuli Fu, D.D.L.Chung. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cem. Concr. Res.,1996.26(1):15-20
    [36]Zeng-Qiang Shi and D.D.L. Chung, Carbon Fiber Reinforced Concrete for Traffic Monitoring and Weighing in Motion, Cem. Concr. Res.1999.29(3):435-439
    [37]Xuli Fu, D.D.L.Chung. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar. Cem. Concr. Res.,1997.27(9):1313-1318
    [38]Yunsheng Xu and D.D.L. Chung, Cement-Based Materials Improved by Surface Treated Admixtures. ACI Mater, J.2000.97(3):333-342
    [39]李湘洲,王伟.碳纤维增强混凝土的现状与趋势.混凝土,2000.8:3 1-33,43.
    [40]Pierri R, Brancaccio A, De Blasio F. Multifrequency Dielectric Profile Inversion for a Cylindrically Stratified Medium. IEEE Trans. Geoscience and Remote sensing, 2000.38(4):1716-1724
    [41]Grellier S, Robain H, Bellier G, et al. Influence of temperature on the electrical conductivity of leachate from municipal solid waste.J.Hazard.Mater.,2006.137(1):612-617
    [42]LaBrecque DJ, Sharpe R, Wood, et al. Small-scale electrical resistivity tomography of wet fractured rocks. Ground.Water,2004.42(1):111-118
    [43]Gao P, Collins L, Garber PM, et al. Classification of Landmine-Like Metal Targets Using Wideband Electromagnetic Induction. IEEE Transactions on eosciences and Remote Sensing, 2000.38:1352-1361
    [44]Won IJ, Keiswetter DA, Novikova TAE. Electromagnetic Induction Spectroscopy. Journal of Environmental and Engineering Geophysics,1998.3:27-40
    [45]Aruliah DA, Ascher UM, Haber E, et al. A Method for the Forward Modelling of 3-D Electromagnetic Quasi-static Problems. Mathematical Models and Methods in the Applied Sciences,2001.11:1-21
    [46]Nagataki S, Kamada T,Matsumoto A. Application of infrared thermography technique for evaluation of cracks in concrete structures. Journal of the Society of Materials Science, Japan,1997.46(2):198-203
    [47]Akbar Darabi Xavier Maldague. Neural network based defect detection and depth estimation in TNDE. NDT&E International.2002.35:165-175
    [48]Takahide Sakagami, keiji Ogura. Thermographic NDT based on transient temperature field under Joule effect heating. SPIE Proceedings,1994.2245:120-130
    [49]Maierhofer C, Wiggenhauser, et al. Quantitative numerical analysis of transient IR-experiments on buildings. Infrared Physics and Technology,2004.46(1):173-180
    [50]Wiggenhauser H.Active IR-applications in civil engineering. Infrared Physics & Technology,2002.43:233-238
    [51]Maierhofer Ch,Brink A,Rollig M,et al. Transient thermography for structural investigation of concrete and composites in the near surface region, Infrared Physics&Technology 2002.43:271-278
    [52]Takahide Sakagami, Shiro Kubo. Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography. Infrared Physics&Technology,2002. 43:311-316
    [53]孙格靓,王厚亮,李建保.碳纤维增强混凝土构件的内部缺陷红外热像技术检测.炭素技术,2002.(4):47-49
    [54]梅林,陈自强,王裕文.脉冲加热红外热成像无损检测的有限元模拟及分析.西安交通大学学报,2000.(1):66-70
    [55]黄莉.基于红外热像的碳纤维混凝土损伤分析与研究:[博士学位论文].武汉:武汉理工大学.2005
    [56]张荣成.红外热像法检测建筑物外墙饰面施工质量的试验研究.建筑科学,2002.18(1):40-44
    [57]杜红秀,张雄,乔俊莲.红外热像用于水泥砂浆火灾损伤的检测与评定.同济大学学报,2000.27(4):422-425
    [58]Molyneaux TK, Millard SG, et al. Radar assessment of structural concrete using neural networks. NDT&E International,1995.28(5):281-288
    [59]Shaw MR, Molyneaux TCK, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks. Non-Destructive Testing and Condition Monitoring,2003,45(12):813-816
    [60]Shaw P, Bergstrom J, In-situ testing of reinforced concrete structures using stress waves and high-frequency ground penetrating radar. Non-Destructive Testing and Condition Monitoring,2000.42(7):454-457
    [61]张季如,陈超敏,管昌生.路面水泥混凝土质量检测的x射线衍射分析.广西工学院学报,2001.12(4):29-32
    [62]詹炳根.尿素包装厂房结构混凝土损伤调查与损伤机理分析.土木工程学报,2006.39(7):52-60
    [63]徐超.基础底板的检测写处理.安徽建筑,2002.(7):62-62
    [64]陆萍,吴海军.基于动力响应的大型桥梁健康监测的一些问题.重庆交通学院学报.2004.23(6):15-18,49
    [65]胡自力,熊克,杨红.基于智能材料结构的几种损伤评价方法[J].航空学报,2002,(01).1-5
    [66]李宏男,阎石,林皋.智能结构控制发展综述[J].地震工程与工程振动,1999,(02)30-36
    [67]贾振安,周晓波,乔学光,王琳.分布式光纤温度传感器发展状况及趋势[J].光通信技术,2008,(11).36-39
    [68]杨杰,吴月华.形状记忆合金及其应用.中国科学技术大学出版社,1993.5
    [69]李传兵,廖昌荣,张玉磷,陈伟民,黄尚廉.压电智能结构的研究进展[J].压电与声光,2002,(01).42-46
    [70]A. Todoroki and J. Yoshida., "Electrical resistance change of unidirectional CFRP due to applied load", JSME Int J.A. Papers 47(3),357-364(2004).
    [71]K. Schulte and Ch. Baron. Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Composites Science and Technology,1989,36(1):63-76
    [72]Shoukai Wang and D.D.L. Chung, "Piezoresistivity in Continuous Carbon Fiber Polymer-Matrix Composite", Polym. Compos.21(1),13-19 (2000).
    [73]Dwayne A. Gordon, Shoukai Wang and D.D.L. Chung, "Piezoresistivity in Unidirectional Continuous Carbon Fiber Polymer-Matrix Composites:Single-Lamina Composite Versus Two-Lamina Composite", Composite Interfaces 11(1),95-103 (2004).
    [74]Shoukai Wang, D.D.L. Chung and Jaycee Chung, "Self-Sensing of Damage in Carbon Fiber Polymer-Matrix Composite Cylinder by Electrical Resistance Measurement", J. Intelligent Material Systems and Structures 17(1),57-62 (2006).
    [75]Shoukai Wang, D.D.L. Chung and Jaycee Chung, "Self-Sensing of Damage in Carbon Fiber Polymer-Matrix Composite by Measurement of the Electrical Resistance or Potential Away from the Damaged Region", J. Mater. Sci.40(24),6463-6472 (2005):
    [76]Shoukai Wang and D.D.L. Chung, "Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement", Carbon 44(13), 2739-2751(2006).
    [7.7]D.D.L. Chung, "Damage Detection Using Self-Sensing Concepts", J. Aerospace Eng. (Proceedings of the Institution of Mechanical Engineers, Part G) 221(G4),509-520 (2007).
    [78]Zhen Mei, Victor H. Guerrero, Daniel P. Kowalik and D.D.L. Chung, "Reverse Piezoelectric Behavior of Carbon Fiber Thermoplastic-Matrix Composite", Polym. Compos. 23(5),697-701 (2002).
    [79]Zhen Mei, Victor H. Guerrero, Daniel P. Kowalik and D.D.L. Chung, "Mechanical Damage and Strain in Carbon Fiber Thermoplastic-Matrix Composite, Sensed by Electrical Resistivity Measurement", Polym. Compos.23(3),425-432 (2002).
    [80]Zhen Mei and D.D.L. Chung, "Thermoplastic Matrix Phase Transitions in a Carbon Fiber Composite, Studied by Contact Electrical Resistivity Measurement of the Interface between Two Unbonded Laminae", Polym. Compos.23(5),824-827 (2002).
    [81]Victor H. Guerrero and D.D.L. Chung, "Interlaminar Interface Relaxation Upon Heating Carbon Fiber Thermoplastic-Matrix Composite, Studied by Electrical Resistance Measurement", Compos. Interfaces Lett.9(6),557-563 (2002).
    [82]Shoukai Wang, Daniel P. Kowalik and D.D.L. Chung, "Self-Sensing Attained in Carbon Fiber Polymer-Matrix Structural Composites by Using the Interlaminar Interface as a Sensor", Smart Mater. Struct.13(3),570-592 (2004).
    [83]Shoukai Wang and D.D.L. Chung, "The Interlaminar Interface of a Carbon Fiber Epoxy-Matrix Composite as an Impact Sensor", J. Mater. Sci.40,1863-1867 (2005).
    [84]C. E. Bakis, A.Nannib, J. A. Teroskya and S.W. Koehler. Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Composites Science and Technology,2001,61(6):815-823.
    [85]N. Angelidis, C.Y. Wei and P.E. Irving, The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain, Compos:Part A 35 (2004): 1135-1147
    [86]欧进萍,王勃,张新越,何政,钱民中.混凝土结构用CFRP筋的感知性能试验研究.复合材料学报,2003,20(6):47-51
    [87]王勃,欧进萍,张新越,何政.CFRP筋及其加筋混凝土梁感知性能试验与分析.哈尔滨工业大学学报,2007,39(12):220-224
    [88]欧进萍,周智,王勃.FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用.高技术通讯,2005,15(4):23-28
    [89]周文松,李惠,欧进萍.无环氧树脂基碳纤维束自监测功能.复合材料学报,2003,22(12):47-51
    [90]王钧,刘东,张联盟.碳纤维增强聚合物基复合材料自诊断性能研究.武汉理工大学学报,2002,24(4):36-38
    [91]王翔,王钧,钟龄.碳纤维复合材料的电阻-应变传感特性研究.玻璃钢/复合材料,2004(4),33-35.
    [92]沈烈,益小苏.一个单向碳纤维增强树脂基复合材料导电结构.复合材料学报,1998,15(3):66-70
    [93]Keiji Ogi,, Yoshihiro Takao. Characterization of piezoresistance behavior in a CFRP unidirectional laminate. Composites Science and Technology.65 (2005) 231-239
    [94]Sirong Zhu and D.D.L. Chung., "Analytical Model of Piezoresistivity for Strain Sensing in Carbon Fiber Polymer-Matrix Structural Composite under Flexure", Carbon. Papers 45(8), 1606-1613(2007).
    [95]汤浩,等.复合型导电高分子复合材料导电机理研究及电阻率计算.高分子材料与工程,1996,(12)
    [96]Taya M, Kim WJ, Ono K. Mech Mater 1998;28:53-9.
    [97]郑立霞,李卓球,宋显辉,吕泳.连续碳纤维单丝的应变电阻效应[J].功能材料,2008,(03),440-442
    [98]XIAOJUN WANG and D.D.L. CHUNG. Piezoresistive behavior of carbon fiber in epoxy. Carbon Vol.35, No.10-11,pp.1649-1679,1997
    [99]Frydman,U.K.Patent Specification,604695171814s,August,6,1948
    [100]F.Kohler.U.S.patent.3,243,753,I,March29,1996
    [101]Ohe K.,Natio Y.,Jap.J.Appl.Phys.,1971,10,99
    [102]Meyer J.Glass Transition TePolymer Suitable for PTC Materials.Polymer Engineering 13,462
    [103]Meyer J.Stability of Polymer Composites as Coefficient Resistors.Polymer Engineering&Science,1974,14(3),706
    [104]罗延龄,炭黑粒子偶联处理的HDPE复合材料PTC性能研究,炭素,2001,3,16
    [105]Jiyun Feng,Chi.-Ming Chan,Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41 (2000)4559
    [106]Narkis,M J Appl Polym Sci 1978,22,1163
    [107]Narkis M,Ram A,Stein Z.Electrical properties of carbon black filled crosslinked polyethylene,Pol Eng Sci 1981;21(16):1049
    [108]Narkis M,Ram A,Stein Z.,J App Pol Sci,1984,29,1639.
    [109]Tang H,Liu ZY,Piao JH,Chen XF,Lou YX,Li SH.Electrical Behavior of Carbon Black-Filled Polymer Composites:Effect of Interaction Between Filler and Matrix,J App Pol Sci,1994,51(7):1159
    [110]唐守锋,熊克,梁大开等.用于结构健康监测的智能夹层研究进展.实验力学,2005.20 (2):226-233
    [111]Baz. A, Poh. S, Gilheany. J. A multi-mode distributed sensor for vibrating beams Journal of Sound and Vibration (0022-460X).1993.165 (3):481-495
    [112]M. Lin, W. T. Powers, X. Qing, A. Kumar, S. J. Beard. Hybrid Piezoelectric/Fiber Optic SMART Layers for Structural Health Monitoring. Proceeding of First European Workshop on Structural Health Monitoring. July 2002:641-648
    [113]T. Kusaka, P. X. Qing. Characterization of Loading Effects on the Performance of SMART Layer Embedded or Surface~Mounted on Structures. Proceeding of the Fourth International Workshop on Structural Health Monitoring. Stanford University. September 2003:1539-1546
    [114]M. Lin, A. Kumar, X. Qing et al. Monitoring the integrity of filament wound structures using built~in sensor networks. Proceedings of SPIE on Smart Structures and Material Systems. March 2003:222-229
    [115]李卓球,邓友生,方玺.碳纤维智能层及其场域诊断.公路,2007, (12):155-159
    [116]Xiao-Yu Zhang,Zhuo-Qiu Li,Xian-Hui Song and Si-Rong Zhu.Whole Field Structural Health Monitoring of Concrete Structures By Cement-based Smart Layer. ADVANCES IN STRUCTURAL ENGINEERING--Theory and Applications,2006, vl:775-779
    [117]张小玉,李卓球,宋显辉,朱四荣.水泥基智能表层的研制及特性.华中科技大学学报(自然科学版).2006,34(8):97-99
    [118]Sirong Zhu, Zhuoqiu Li, Xianhui Song and D.D.L. Chung. Deformation adjustment of concrete beams laminated with carbon fiber mats. Construction and Building Materials, 2007,21(3):621-625
    [119]郑立霞,宋显辉,李卓球.碳纤维增强水泥压敏效应和温敏效应的解耦.武汉理工大学学报(交通科学与工程版),2004,28(4):533-535,549
    [120]宋显辉,李卓球,郑立霞,朱四荣,王茵.含温度补偿的高灵敏度碳纤维水泥基电阻应变传感系统.发明专利号:ZL 031280102,2006年1月26日授权
    [121]Zhang, Xiao Yu, Li, Zhuo Qiu,Song, Xian Hui, Lv, Yong. Sensor characteristics of carbon fiber mat.Key Engineering Materials,2006,v 326-328 Ⅱ:1451-1454
    [122]刘冬,李卓球,宋显辉,朱四荣,郑华升.树脂基碳纤维复合材料应变传感稳定性研究.武汉理工大学学报,2008,12(30):8-10
    [123]宋显辉,刘冬,吕泳,李卓球.碳纤维树脂基复合材料的传感特性研究.工程塑料应用,2007,35(2):48-51
    [124]张小玉.碳纤维智能层的特性及其场域监测:[博士学位论文].武汉:武汉理工大学,2007
    [125]M.R. Piggott, The effect of fibre waviness on the mechanical properties of unidirectional fibre. Compos. Sci. Technol.53 (1995), pp.201-205
    [126]唐祖全,李卓球,徐东亮,CFRC路面材料的温敏性研究,武汉理工大学学报(自然科学版),23(3),302-305(2001)
    [127]唐祖全,李卓球,张华,混凝土路面温度白诊断特性的实验研究,工程力学(增刊),228-232(2001)
    [128]朱四荣,机敏混凝土结构的温差变形自调节研究.[博士学位论文].武汉:武汉理工大学工程结构与力学系,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700