用户名: 密码: 验证码:
碳纳米管水泥基复合材料制备及功能性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,大多数建筑黏结材料通常是水性的波特兰水泥,它主要由石灰石、某些粘土矿物和石膏组成。人们一直尝试研究了一系列添加材料来减弱水泥材料引起的结构失效。拥有高长径比和弹性模量的微纤维充当增强组分,可以很好地改善水泥材料的力学性能。近几十年来,在水泥基中添加一些导电微米级碳纤维(CF)引起了广泛的兴趣。这种复合材料不仅在增强、阻裂、增韧等方面拥有独特的优势,而且还呈现一定的智能自感知功能性。它可制作成本征传感器件,嵌到土木大型结构的关键部件中,“实时、长期、在位”监测其所承受的应力及可能的损伤。然而,水泥的主要水化产物钙矾石的尺度一般为几百个纳米,相应微纤维增强水泥材料在纳米尺度仍有诸多缺陷。自从碳纳米管(CNT)在1991年被发现以来,作为拥有超高长径比的终极纤维材料,它受到越来越多的关注。CNT具有优异的力学性能,优良的化学稳定性和热稳定性,良好的电性能及微波吸收等特性,以及独特的一维纳米结构所特有的纳米效应。性能优异的CNT已成为各种基体材料理想的增强体,并能赋予复合材料许多新的功能性能。因此,CNT可很好地替代CF充当水泥材料的增强体,发展一种拥有单一或多项功能的本征纳米复合材料。
     然而,在处理这种纳米材料时,由于存在强大的分子间范德华力,CNT极易缠绕,形成聚团,相应在水泥基体内分散性很差。如何将CNT均匀分散在水泥基体中,提高CNT与基体间界面黏结力,将是首要解决的关键问题。本文尝试表面活性剂(SAA)、(槽式或探针式)超声分散、化学共价修饰,或电场诱导的几种工艺将多壁CNT(MWNT)分散于水中,然后尝试机械搅拌或高速匀质混合法来获得MWNT在水泥基体中的均匀分布。结果表明,经过合适的SAA和充分的Tip超声处理,以及高速匀质搅拌,MWNT在基体中拥有高度的分散,甚至能以单独个体存在。MWNT在微观尺度上的均匀分散促使MWNT/水泥基复合材料(MWNT/CC)试件的宏观力学性能(抗折、抗压强度)、电导率,较之参比净浆试件(Plain/C)均有显著的提高。
     采用ASTM标准,三点弯曲法获得MWNT/CC试件梁的荷载–裂缝嘴张开宽度(P-V)曲线。结果表明:少量的MWNT就可在纳米尺度阻止裂纹的扩展,提高水泥基体的断裂性能。相比于Plain/C,相应MWNT/CC试件梁的断裂韧度(KIC)、临界张开宽度(δc)分别能提高175.21%、54.77%。
     采用自由振动衰减法测试弹性支撑悬挂的MWNT/CC试件梁的减振性能。分别采用时域法、模态频域法识别其共振阻尼比(ξ)和基频(f1)。之后研究了相应试件梁的抗折强度(σt)。MWNT/CC试件拥有的较好阻尼能力及力学增强主要归功于MWNT的微纳米填充桥联、相互间内摩擦与弹塑性波动效应,以及良好分散的MWNT与水化产物质点界面摩擦。相比于Plain/C试件,相应ξc、σt的最大提高幅度分别达58.29%、31.63%。
     探讨了湿含量、温度对MWNT/CC试件初始电阻率(ρ0)的影响。测试了试件的DC伏安特性及AC阻抗响应。湿含量越小,MWNT掺量越高,极化效应越小,对MWNT/CC试件进行烘干、封装处理,可隔绝湿含量影响。在-10℃~50℃内,MWNT掺量2.0%的试件的ρ0随环境温度近似线性变化。在±2.5V范围内,MWNT/CC试件DC I-V图有较明显非线性、不稳定性特征。频率(f)小于8×104 Hz时MWNT/CC试件阻抗模或复阻抗(Z)随f变化图呈现相似的“U”形,而f超过105 Hz后其Z值持续降低。
     采用四电极法测MWNT/CC试件的电阻率(ρ),其ρ随MWNT掺量增加而显著降低,从1.526 vol.%开始显现出较明显的渗滤现象。用分压法采集MWNT/CC试件的电阻值,同时采集压力传感器上的压力,应变片上的纵向应变。研究了在单调荷载,两种不同加载速率、应力幅值的循环荷载作用下MWNT/CC的压阻性能。结果表明:无论是单调加载段、还是循环加载、卸载段,掺0.5%MWNT的MWNT/CC试件应力–应变曲线良好,其压阻特性曲线的灵敏度及往复稳定性在所有组试件中是最高、最好的。此时MWNT在基体间的隧穿电流密度及可能的接触电阻会随着MWNT纤维间距(势垒宽度)变化而显著改变。
     酸氧化处理可较好地改善MWNT纤维的分散性、及其与基体间的黏结力,进而MWNT/CC的力学性能及断裂韧性有更大的提高。混杂纳米CB,较之混杂CF,更为有利于MWNT/CC的断裂韧性及压阻性能的进一步提高。利用MWNT/CC的自增强(力学、断裂韧性、阻尼)性能可发展其成为优良的交通铺道增强、增韧材料;利用复合材料的本征机敏等功能性能可发展其成为一种新型传感器件,应用到混凝土结构“实时,在位”健康监测。
Most construction cements today are hydraulic, and generally based on Portland cement, composed primarily of limestone, certain clay minerals and gypsum. Effort to mitigate structural failures in cement is a constant endeavor that has employed a range of materials. Owing to the high aspect ratio and elastic modulus, microfiber reinforcement has led to significant improvement of cement mechanical properties. Recently, the cement-based composite filled with some conductive microsize carbon fiber (CF) has attracted considerable interest. This type of composite not only presents superiority in strengthening, anti-cracking, and toughness, but also smart self-sensing functions. It could be embedded into key components of civil infrastructure as an intrisic sensor, real-time diagnosing the stress and possible damages in long-term service. Yet, the dimension of the domain hydration product of cement, calcium silicate hydrates, is generally hundreds of nanometers, flaws at the nanoscale remain with microfiber reinforcement. Since carbon nanotube (CNT) was documented in 1991, CNT has increasingly drawn great attention as the ultimate fiber with ultrahigh aspect ratio. CNT exhibits excellent mechanical property, good chemical and thermal stability, predominant electrical and microwave absorption property, and has the unique nano-effect of one dimensional nano-structure. CNT has developed to be the perfect reinforce for various matrix material, and gives the composite many novel functions. Hence, CNT could be a superior candidate substituted CF as the reinforce to cement matrix to develop a type of intrinsic nanocomposite with single or multiple functions.
     However, during processing such nano-material, CNT tend to tangle and form aggregates due to strong intermolecular van der Waals interactions, which leads to the poor dispersion of CNT in cement matrix. How to disperse CNT uniformly in cement matrix and increase the interfacial interaction between CNT and matrix are the primary problems urgent to be solved. Several processes of surfactant (bath or tip) ultrasonic dispersion, chemical functionalization, or electrical field-induced were experimentally utilized to disperse multi-walled CNT (MWNT) in aqueous solution, associated with beating or high-speed homogenizing mixture methods, to provide MWNT dispersion in the cement matrix. Results reveals, after suitable surfactant selection and sufficient tip ultrasonic dispersion, and high-speed homogenized mixing, isolated MWNT fibers with a high degree of dispersion in the matrix have been achieved. The uniform MWNT distribution at the microscale contributes to the observed increase in mechanical property (flexural, compressive strength), electrical conductivity of the cured MWNT/cement composite (MWNT/CC), with respect to the reference cement paste (Plain/C).
     The loading-crack mouth opening displacement (P-V) curve of MWNT/CC was acquired with three-point bending method under ASTM procedure. The test results indicate that modest MWNT addition inhibits cracking at the nanoscale level, and improve the fracture property of cement matrix. The resultant fracture toughness (KIC) and critical opening displacement (δc) of MWNT/CC can be enhanced by 175.21%, 54.77%, relative to the Plain/C, respectively.
     The vibration-reduction behavior of MWNT/CC beam suspended with elastic backups was tested with free attenuation method. Time domain, model frequency domain technique was utilized to acquire its critical damping ratio (ξ) and basic frequency (f1), respectively. The flexural strength (σt) of MWNT/CC was subsequently studied. The in-filling and bridging and the elastic-plastic fluctuation effect of MWNT, the inner surface frictions between the network MWNTs and the interface between well-dispersed MWNT and cement hydration are attributed to the observed good damping capacity and mechanical reinforcement afforded by the MWNT/CC. Relative to the Plain/C, theξandσt of MWNT/CC can increase by 58.29%, 31.63%, respectively.
     Effect of environment moisture content and temperature on initial resistivity (ρ0) of MWNT/CC were tested and analyzed. The DC I-V and AC impedance characteristic of MWNT/CC was measured. The polarized effect is dramatically reduced with high MWNT loading and low moisture content, hereby MWNT/CC was encapsulated with epoxy after oven-dried to isolate it from moisture. Theρ0 of MWNT/CC with 2.0% MWNT loading almost linearly changes with temperature in the range of -10~50℃. The DC I-V characteristic of MWNT/CC exhibits nonlinear feature within applied±2.5 V. The feature of AC impedance module or complex impedance (Z) versus frequency (f) of MWNT/CC show similar“U”shape, and the Z steadily decreases with f higher than 105 Hz.
     The resistivity (ρ) of MWNT/CC tested with four-electrode method, is dramatically affected by the addition of MWNT, its percolation threshold is around 1.526 vol.%. Theρof MWNT/CC was real-time sampled by voltage-dividing method, associated with the applied pressure of a transducer, and the longitudinal stains of the strain guages. The piezoresistivity property of MWNT/CC under monotonic and cyclic loading with two different loading rates and stress amplitudes was repectively studied. Results reveal, there exists good stress-strain relationship of MWNT/CC with 0.5% MWNT loading, and the sensitivity and repetitive stability of piezoresistivity feature of the MWNT/CC under either monotonic loading phase, or cyclic upload phase, or cyclic download phase, is the highest and best of all compositions nanocomposites. The tunneling current density and possible contact resistance of MWNT distribtuted in the corresponding composite can be effectively altered with MWNT fiber spacing (the barrier width).
     Acid oxidation treatment can greatly improve the dispersing efficiency of MWNT, and the bonding between it and cement matrix, which is helpful to further improvement of the mechanical property and fracture toughness of MWNT/CC. Hybrid nanoscale carbon black (CB) is helpful to further enhance the fracture toughness and piezoresistivity property of MWNT/CC, rather than hybrid CF.
     The self-reinforced (mechanical, fracture toughness, damping) properties of MWNT/CC faciliate to develop it into a promising multifunctional pavement reinforcement material. Its intrinsic stress/strain-sensing property faciliate to develop this type of nanocomposite into a kind of new smart sensor, which could also be embedded into concrete structure for“real-time, on-site”monitoring.
引文
1.吴人洁.复合材料,天津大学出版社. 2002: 1~16
    2.杜善义.智能材料系统和结构,科技出版社. 2001: 1~18
    3.姚康德,成国祥.智能材料.北京:化学工业出版社, 2002:1~7
    4.陶宝祺,智能材料与结构,国防工业出版社. 1997
    5.张立德.纳米材料,化学工业出版社. 2000
    6.张立德,牟季美.纳米材料和纳米结构.科学出版社. 2001
    7. S. Iijima. Helicial microtubes of graphitic carbon. Nature. 1991, 354(7): 56-58
    8. S. Rodney, F. Ruo, J. Tersof, et al. Radial deformation of carbon nanotubes by van der Waals forces. Nature. 1993, 364: 514~516
    9. M. F. Yu, O. Lourie, M. J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000, (287): 637~640
    10. S. C. Teang, Y. K. Chen, J. F. Harrisand, et al. A simple chemical method of opening and filling carbon nanoubes. Nature. 1994, 372:159~162
    11.朱艳秋,魏秉庆,梁吉等.巴基管(BUCKYTUBE)稳定性的研究.材料研究学报. 1996, 10(3): 333~336
    12. W. A. Heer, A. Chatelain, D. A. Ugrate. Carbon nanotube field-emission electron source. Science. 1995, 270:1179~1180
    13. A. Hiroshi, A. Tsuneya. Magnetic properties of carbon nanotubes. J Phys Soc Jpn. 1993, 62(7): 2470~2480
    14. J. Cumings, A. Zettle. Low friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science. 2000, 289: 602~604
    15. D. Puglia, L. Valentini, I. Armentano, J. M. Kennv. Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy. Diamond Related Mater. 2003, 12: 827~832
    16. J. Sandler, M.S.P. Shaffer, Y. Prasse, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer. 1999, 40(21): 5967~5971
    17. Y. Ren, F. Li, H. M. Cheng, K. Liao. Fatigue behaviour of unidirectional single-walled carbon nanotube reinforced epoxy composite under tensile 1oad. Adv Compos Lett. 2003, 12 (1): 19~24
    18. J. Ajayan, M. Pubckel, L. S. Schadler, et a1. Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater. 2000, 12(10): 750~753
    19. X. Y. Gong, J. Liu, S. Baskaran, et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater. 2000, 12: 1049~1052
    20. D. Penumadu, A. Dutta, G. M. Pharr, et a1. Mechanical properties of blended single-wall carbon nanotube composites. J Mater Res. 2003, l8(8): 1849~1853
    21. L. S. Schadler, S. C. Giannaris, P. M. Ajayan. Load transfer in carbonnanotube epoxy composites. Appl Phys Lett. 1998, 73(26): 38~42
    22. J. Jang, J. Bae, S. H. Yoon. A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composite. J Mater Chem. 2003, 13: 676~681
    23. X. T. Zhang, J. Zhang, Z. F. Liu. Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon. 2005, 43: 2186~2191
    24. E. Flahaut, A. Peigney, C. Laurent, et al. Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater. 2000, 48: 3803~3812
    25. J. W. Ning, J. J. Zhang, Y. B. Pan, J. K. Guo. Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites. Ceram Int. 2004, 30: 63~67
    26. T. Seeger, T. Kohler, T. Frauenheim, et al. Nanotube composites novel SiO2 coated nanotubes. Chem Commun. 2002, 1: 34~35
    27.吴军,马仁志,魏秉庆,等.巴基管/纳米SiC陶瓷材料的研究.硅酸盐通报. 1999, 4: 33~36
    28.范锦鹏,赵大庆.多壁碳纳米管-氧化铝复合材料的制备及增韧机理研究.纳米技术与精密工程. 2000, 2(3): 182~186
    29. G. L. Hwang, K. C. Hwang. Carbon nanotube reinforced ceramics. J Mater Chem. 2001, 11: 1722~1725
    30. J. Makar, J. Beaudoin. Carbon nanotubes and their application in the construction industry. Proceedings 1st International Symposium on Nanotechnology in Construction. Royal Society of Chemistry, 2004: 331~341
    31. I. Campillo, J. Dolado, A. Porro. High-performance nanostructured materials for construction. Proceedings 1st International Symposium on Nanotechnology in Construction. Royal Society of Chemistry, 2004: 215~225
    32. G.Y. Li, P. M. Wang, X. H. Zhao. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon. 2005, (43): 1239~1245
    33. S. Y. Ibarra, J. J. Gaitero, E. Erkizia, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi A. 2006, (203): 1076~1081
    34. S. Wansom, N. J. Kidner NJ, L.Y. Woo, et al. AC-impedance response of multi-walled carbon nanotube/cement composites. Cem Concr Compos. 2006, 26: 509~519
    35. G.Y. Li, P. M. Wang, X. H. Zhao. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos. 2007, 29: 377~382
    36.王永龄.功能陶瓷性能与应用.科学出版社. 2003: 78~80
    37.阎鑫,胡小玲,等.雷达波吸收剂材料的研究进展.材料导报. 2001, (1):62~64
    38.欧进萍.重大工程结构的累积损伤与安全性评定,走向21世纪的中国力学—中国科协第9次“青年科学家论坛”报告文集,清华大学出版社. 1996: 179~189
    39.叶青,胡国君.水泥基复合材料的研究与开发.材料科学与工程. 1995, 13(2): 62~65
    40. D. D. L. Chung. Cement reinforced with short carbon fibers: a multifunctionalmaterial. Composites: Part B. 2000, 31: 511~526
    41.韩宝国,关新春,欧进萍.钢纤维水泥基材料吸波性能实验与隐身效能分析.功能材料. 2006, 10(37): 1683~1688
    42. P. W. Chen, D. D. L. Chung. Carbon fiber reinforced concrete for smart structures capable of non-destructive flow detection. Smart Mater Struct. 1993,(2):22~30
    43. X. L. Fu, D. D. L. Chung. Improving the strain-sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers. Cem Concr Res. 1998, 28(2): 183~187
    44. Y. S. Xu, D. D. L. Chung. Cement-based materials improved by surface treated admixtures. J ACI Mater. 2000, 97(3): 333~342
    45.韩宝国.碳纤维水泥基复合材料压敏性能的研究.哈尔滨工业大学硕士学位论文. 2001: 12~19
    46.韩宝国.压敏碳纤维水泥石性能、传感器制品与结构.哈尔滨工业大学博士学位论文. 2005: 8~10
    47. B.G. Han, J. P. Ou. Embedded piezoresistive cement-based stress/strain sensor. Sens Actuators A. 2007, 138: 294~298
    48.韩宝国,关新春,欧进萍.碳纤维水泥石压敏传感器电极的实验研究.功能材料. 2004, 35(2): 262~264
    49.毛起炤,赵斌元,沈大荣,李卓球.极化效应对碳纤维增强水泥的导电性的影响.材料研究学报. 1997, 11(2):195~198
    50.吴冰,姚武,吴科如.用交流阻抗法研究碳纤维混凝土导电性.材料科学与工艺. 2001, 19(1): 76~79
    51.毛起炤,杨元霞,沈大荣,李卓球.碳纤维增强水泥压敏性影响因素的研究.硅酸盐学报. 1997, 25(6): 734~737
    52. M. Q. Sun, Q. P. Liu, Z. Q. Li, Y. Z. Hu. A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading. Cem Concr Res. 2000, 30: 1593~1595
    53. Z. Mei, D. D. L. Chung. Effects of temperature and stress on the interface between concrete and its carbon fiber epoxy-matrix composite retrofit, studied by electrical resistance measurement. Cem Concr Res. 2000, 30: 799~802
    54.韩宝国,关新春,欧进萍.碳纤维水泥基材料导电性与压敏性的试验研究.材料科学与工艺. 2006, 14(1): 1~4
    55.韩宝国,关新春,欧进萍.纳米氧化钛与碳纤维水泥石的电阻率及压敏性.硅酸盐学报. 2004, 32(7): 884~887
    56.张巍,谢慧才,曹震.碳纤维水泥净浆外贴碳布电极的试验研究.混凝土与水泥制品.2002,(4):32~34
    57. X. L. Fu, D. D. L. Chung. Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out. Cem Concr Res, 1995, 25(7): 1391~1396
    58. S. H. Wen, D. D. L. Chung. Electric polarization in carbon fiber-reinforced cement. Cem Concr Res. 2001, 31: 141~147
    59. S. H. Wen, D. D. L. Chung. Effect of stress on the electric polarization in cement. Cem Concr Res. 2001, 31: 291~295
    60. S. H. Wen, D. D. L. Chung. Enhancing the Seebeck effect in carbon fiber reinforced cement by using intercalated carbon fibers. Cem Concr Res. 2000, (30):1295~1298
    61. S. H. Wen, D. D. L. Chung. Uniaxial tension in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions. Cem Concr Res. 2000, 30:1289~1294
    62. D. D. L. Chung. Self-monitoring structural materials. Mater Sci Engng. 1998, 22:57~78
    63. R. O. Claus, J. C. Mckeenman, R. G. May, et al. Opitical fiber sensors and signal processing for smart materials and structures ARO smart materials, structures and mathematical issues workshop proceeding. Virginia Polytechnic Institute and state University Blacksburg, VA, 1988:15~16
    64.赵廷超,黄尚廉,陈伟民.机敏土建结构中光纤传感技术的研究综述.重庆大学学报. 1997, 20(5): 104~109
    65.周智,田石柱,欧进萍.光纤传感器在土木工程中的应用.国际结构控制与健康诊断研讨会(CD-ROM),深圳, 2000
    66.戴鸿哲,碳纤维混凝土机敏特性试验研究.哈尔滨工业大学硕士学位论文. 2005: 21~29
    67. O. Figovsky, D. Beilin, N. Blank, et al. Development of polymer concrete with polybutadiene matrix. Cem Concr Compos. 1996, 18: 437~444
    68.欧进萍,匡亚川.内置胶囊混凝土的裂缝自愈合行为分析和试验.固体力学学报. 2004, 25(2): 320~324
    69.匡亚川,欧进萍.内置纤维胶液管钢筋混凝土梁裂缝自愈合行为试验和分析.土木工程学报. 2005, 38(4): 53~59
    70.匡亚川.具有裂缝自修复功能的智能混凝土及其结构构件研究.哈尔滨工业大学博士学位论文. 2006
    71. Y. Wang, D. D. L. Chung. Effect of sand and silica fume on the vibration damping behavior of cement. Cem Concr Res. 1996, 28(10): 1353~1356
    72. X. L. Fu, D. D. L. Chung. Vibration damping admixtures for cement. Cem Concr Res. 1996, 126(1): 69~75
    73.刘铁军,欧进萍,李家和.硅粉的硅烷化对水泥砂浆阻尼性能的影响.硅酸盐学报. 2003, 31(11): 1125~1129
    74.刘铁军.自增强阻尼混凝土与高阻尼结构.哈尔滨工业大学博士学位论文. 2004
    75.欧进萍,刘铁军,梁超锋.复合纤维增强混凝土阻尼测试装置开发与试验研究.实验力学. 2006, 21(4): 403~410
    76.欧进萍,关新春,李惠,应力自感知水泥基复合材料及其传感器的研究进展.复合材料学报. 2006, 23(4): 1~8
    77.刘忆,刘卫华,等.纳米材料的特殊性能及其应用.沈阳工业大学学报. 2000, (1):21~24
    78. M. F. Fu, J. G. Xiong, G. Q. Song. Study and application of nano-materials in concerte. Cem Concr Res. 2005,13(1):48~51
    79.叶青.纳米SiO2与硅粉的火山灰活性的比较.混凝土. 2000,(13):19~22
    80. G.Y. Li. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem Concr Res. 2004,34(6):1043~1049
    81. H. Li, H. G. Xiao, J. Yuan, J. P. Ou. Microstructure of cement mortar with nano-particles. Composites Part B. 2004, 35: 185~189
    82. H. Li, H. G. Xiao, J. P. Ou. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res, 2004, 34: 435~438
    83.肖会刚.水泥基纳米复合材料压阻特性及其自监测智能结构系统.哈尔滨工业大学博士学位论文. 2006
    84. G. A. Niklasson, C. G. Granquist. Optical properties and solar selectivity of coevaporated Co-Ti2O3 composite films. J Appl Phys. 1984, 55(9): 3382~3410
    85. H. Li, H. G. Xiao, J. P. Ou. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cem Concr Compos, 2006, 28: 824~828
    86. H. G. Xiao, H. Li. A study on the application of CB-filled cement-based composites as a strain sensor for concrete structures. Proceedings of SPIE-Smart Structures and Materials-Sensors and Smart Structures Technologies and Civil, Mechanical, and Aerospace Systems. V6174ⅡSan Diego, USA, 2006
    87. H. Li, H. G. Xiao, J. P. Ou. Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition. Compos Sci Technol, 2008, 68: 2114~2119
    88. Aip source: http://aip.org/mgr/png/2003/186.htm
    89. J. Liu, M. Shao, X. Chen, et al. Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J Am Chem Soc. 2003, 125(27): 8088~8089
    90. W. A. de Heer, W. S. Bacsa, A. Chaatelain, et al. Aligned carbon nanotube films: production, and optical and electronic properties. Science.1995, (268): 845~846
    91. S. Berber, Y. K. Kwon, D. Tomanck. Unusually high thermal conductivity of carbon nanotubes. Phys Rev B. 2000, (84): 4613~4616
    92. G. Y. Slepyan, S.A. Maksimenko, A. Lakhtakia, O.M. Yevtushenko. Electomagnet response of carbon nanotubes and nano ropes. Synths Metal. 2001, (124):121~123
    93. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato. Chemistry of carbon nanotubes. Chemical Reviews. 2006,106(3):1105~1136
    94. M. F. Islam, E. Rojas, D. M. Bergey, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Let. 2003, 3(2): 269~273
    95. R. Bandyopadhyaya, R. E. Nativ, O. Regev, et al. Stabilization of individual carbon nanotubes in aqueous solution. Nano Let. 2002, 2(1): 25~28
    96. M. L. Sham, J. K. Kim. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon. 2006, 44: 768~777
    97. C.A. Martina, J. K. W. Sandler, A. H. Windle, M. K. Schwarz, W. Bauhofer, K. Schulte, M. S. P. Shaffer. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer. 2005, 46: 877~886
    98. C. Zhang, Y. F. Zhu, L. Shi, J. Liang. Influence of AC electric field on dispersion of carbon nanotubes in liquids. J Dispersion Sci Technol. 2006, 27:371~375
    99. C. Ma, Y. F. Zhu, X. Z. Yang, L. J. Ji, C. Zhang, J. Liang. Macroscopic networks of carbon nanotubes in PMMA matrix induced by AC electric field. J Dispersion Sci Technol. 2008, 29: 502~507
    100.杨诗斌,徐凯,张志森.高剪切及高压均质机理研究及其在食品工业中的应用.粮油加工与食品机械. 2002, 4: 33~35
    101.任俊,沈健,卢寿慈.颗粒分散科学与技术.化学工业出版社, 2005:23~56
    102. S. W. Tsang, P. J. F. Harris, M. L. H. Green, et al. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature. 1993, 362:522~525
    103. Y. Chen, R. C. Haddon, R. E. Smally, et al. Chemical attachment of organic functional groups to single-walled carbon nanotube materials. J Mater Res. 1998, 13(9):2423~2431
    104. J. Chen, M. A. Hamon, H. Hu, et al. Solution properties of single-walled carbon nanotubes. Science.1998, 282: 95~98
    105. P. Francisco, E. R. Daniel. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett. 2002, 2(4):369~373
    106. M. G. C. Kahn, S. Banerjee, S. S. Wong. Solubilization of oxidized single-walled carbon nanotubes in orgnaic and aqueous solvents through organic derivatization. Nano Lett. 2002, 2(11): 1215~1218
    107. E. Ami, J. Kuiyang, D. Doug, A. Rodney, L. S. Schadler. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater. 2003, 15:3198~3201
    108.陈宗淇,戴闽光.胶体化学.高等教育出版社, 2002:105~112
    109. P. C. Hiemenz.周祖康,马季铭译.胶体与表面化学原理.北京大学出版社, 1986.
    110.沈钟,赵振国,王果庭.胶体与表面化学(第三版).化学工业出版社, 2004: 445~447
    111. M. J. O’Connell, P. Boul, L. M. Ericson, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Let. 2001, 342: 265~271
    112.江琳沁,高濂.化学处理对碳纳米管分散性能的影响.无机材料学报. 2003, 18(5):1135~1138
    113. P. M. Ajayan, S. Iijima. Capillarity-induces filling of carbon nanotubes. Nature.1993, (361):333~334
    114. S. R. Dong, J. P. Tu, X. B. Zhang. An investigation of the sliding behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater Sci Tech A. 2001, (313):83~88
    115.吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社, 1999:2~26
    116. Cwirzen, H. Cwirzen, Penttala. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research. 2008, 20(2): 65~73
    117.胡晓波,陈志源.高效减水剂在水泥颗粒表面的吸附.硅酸盐学报. 2003, 31(8):784~789
    118.张天胜.表面活性剂应用技术.化学工业出版社, 2003: 45~49
    119.廉慧珍.等.建筑材料物相研究基础.清华大学出版社.1996: 58~76
    120. L.G.韦德JR.著,万有志等译.有机化学(Organic Chemistry).原著第五版(Fifth edition),北京:化学工业出版社, 2006:354~382.
    121. G. Kim, Y. Kim, J. Ihm. Encapsulation and polymerization of acetylene molecules inside a carbon nanotube. Chem Phys Let. 2005, 416(4-6):279~82
    122. L. S. Shondeep, A. M. Xu, J. Dipayan. Scanning Electron Microscopy, X-Ray Microanalysis of Concretes. In: V. S. Ramachandran, J. J. Beaudoin, (eds). Handbook of analytical techniques in concrete science and technology, Vol.7. Park Ridge NJ: Noyes & William Andrew. 2000: 236~248
    123.王铎,杜善义.断裂力学.哈尔滨工业大学出版社, 1989
    124. M. F. Kaplan. Crack propagation and the fracture of concrete. ACI Journal. 1961, 58(11):591~610
    125. A.M Neville. Magazine influence of size of concrete test cubes on mean strength and standard of Concrete Research. Cement and Concrete.1956, 8(11):101~110
    126. G. R. Irwin. Analysis of stresses and strains near the end of a crack transversing a plate. J App Mech. 1975, 24:361~364
    127. A. Hillerborg. Results of three comparative test series for determining the fracture energy GF of concrete. Materials and Construction. 1985, 107: 407~413
    128. A. Hillerborg. Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements.Cem Concr Res. 1976, 6:773~782
    129. P. C. Strange, A. H. Brgant. Experiment tests on concrete fracture. Journal of Engineering Mechanics Division. ASCE. 1979, 105:337~343
    130. F. H. Wittmann. Structure of concrete with respect to crack formation. In: F. H. Wittmann ed. Fracture Mechanics of Concrete. United Kingdom: Elsevier Science Publishers, l989
    131. EPRI and Nveleeh Corporation. Ductile fracture handbook. California: 1991.1~3
    132. C. E. Kesler, D. J. Naus, J. L. Lott. Fracture mechanics-its applicability to concrete. Mechanical Behavior of Materials. 1972, 4:113~124
    133.关振铎,张中太,焦金生.无机材料物理性能.清华大学出版社. 1992
    134. A. M. Neville.纤维增强水泥与混凝土.北京:中国建筑工业出版社, 1980
    135.欧进萍.结构振动控制—主动、半主动和智能控制.北京:科学出版社, 2003: 3~6
    136.李彦斌.纳米混凝土的延性和阻尼特性研究.哈尔滨工业大学硕士学位论文, 2007.
    137.何军拥,姚立宁,施斌,等.柔性混凝土的阻尼结构及智能动态耗能研究.混凝土与水泥制品. 2006, 2: 40~42
    138. S. H. Wen, D. D. L. Chung. Enhancing the vibration reduction ability of concrete by using steel reinforcement and steel surface treatments. Cem Concr Res. 2000, 30:327~330
    139.曹树谦,张文德,萧龙翔.振动结构模态分析—理论、实验与应用.天津大学出版社. 2001:11~16
    140.刘习军,贾启芬,张文德.工程振动与测试技术.天津大学出版社, 2002:24~30
    141.王光远.建筑结构的振动.北京:科学出版社, 1978:25~36
    142. G. R. Ruschau, S. Yoshikawa, R. E. Newnham. Resistivities of conductive composites. J Appl Phys. 1992, 72(3): 953~959
    143. F. E. Tantawy, K. Kamada, H. Ohnabe. Electrical properties and stability of epoxy reinforced carbon black composites. Mater lett. 2002, 57:242~251
    144.曾戎,曾汉民.导电高分子复合材料导电通路的形成.材料工程. 1997, (10): 9~13
    145. D. Fish, G. B. Zhou, J. Smid. Ring opening polymerization of cyclotetrasiloxanes with large substituents. Polymer Preprint. 1990, 31(1):36~37
    146. R. Zallen. The physics of amorphous solids. New York, Wiley, 1983, Chp. 4
    147. R. Carmona, R. Conet, P. Delhaes. Piezoresistivity of heterogeneous solids J Appl Phys. 1987, 61(7): 2550~2557
    148. R. Landauer. Electrical conductivity in inhomogeneous media. In American Institute of Physics Conference Proceedings. New York, 1978: 2~45
    149. D. S. Mclachlan. Measurement and analysis of a model dual-conductivity medium using a Generalized Effective-Medium Theory. Journal of Physics C: Solid State Physics. 1988, 21(8): 1521~1532
    150. A. I. Medalia. Electrical conduction in carbon black composites. Rubber Chemical Technology. 1986, 59(3): 432~454
    151. J. G. Simmons. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J Appl Phys. 1963, 34(9): 2581~2589
    152. T. A. Ezquerra, M. Kulescza. Charge transport in polyethylene-graphite composite materials. Adv Mater. 1990, 2(12): 597~600
    153. P. Xie. Conductive Cement-based Composites. U. S. Patent, 1995, 544~564
    154.郑立霞,宋显辉,李卓球.碳纤维增强水泥压敏效应AC测试方法探讨.华中科技大学学报(城市科学版).2005, 22(2):27~29
    155.张晏清.硬化水泥砂浆湿度的交流阻抗研究.建筑材料学报. 2004, 7(3): 337~341
    156. LMS SCADAS III User and Installation Manual, also available at www.lmsintl.com
    157. M. Hussain, Y. H. Choa, K. Niihara. Fabrication process and electrical behavior of novel pressre-sensitive composites. Composites: Part A. 2001, 32: 1689~1696
    158. N. Probst, E. Grivei. Structure and electrical properties of carbon black. Carbon. 2002, 40: 201~205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700