用户名: 密码: 验证码:
机敏混凝土结构的温差变形自调节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究课题来源于国家自然科学基金重点项目(项目编号:50238040)。
     混凝土是土木工程中应用最广泛的结构材料,重大工程结构的使用期长达几十年、甚至上百年。但常见的混凝土工程结构往往处在环境、气候较为恶劣的情况下,尤其是水工混凝土建筑物如混凝土坝等结构,温度荷载是其主要荷载之一,温度的正负交替会引起结构的不均匀变形、裂缝、冻融破坏、疲劳破坏等,这些因素将影响结构的正常使用甚至引发灾难性的事故。另外,混凝土结构在长期的服役过程中,由于荷载的作用、徐变、结构内部温差等多种因素的影响,存在结构变形,这种变形有时会影响结构的正常工作。如常磁悬浮列车的线路路面的苛刻平整度要求问题,由于温度变化所引起的路面桥梁结构的徐变而影响列车的速度和全天候运行。因此,重大土木工程结构和基础设施的诊断与控制方法与技术已成为土木工程领域的重要研究课题。
     以混凝土结构的温度、变形自调节为目的,研制了集功能特性与结构性能于一体的机敏混凝土叠层梁结构,并从理论分析、数值模拟、实验等多方面进行结构的驱动、传感功能以及结构自检测、自调节等若干问题的研究。本文的主要成果及创新之处如下:
     1、利用碳纤维机敏混凝土的功能特性,并利用叠层结构的功能可复合性与材料特性可设计性,研制了集传感与驱动等功能特性和结构性能于一体的碳纤维(毡)机敏混凝土叠层结构,并通过实验研究分析了叠层梁的电热效应和电热响应,得到叠层梁的电热驱动规律,为结构的温差、变形调节提供实验依据。
     2、将输入功率处理为热传导边界条件,建立了机敏混凝土叠层梁电-热-力耦合问题的数学模型,并结合热弹性理论获得了机敏混凝土梁结构内部温度场、应力场及变形响应的解析解。结果显示:碳纤维机敏混凝土覆层电热效应驱动下的梁内温升及变形与输入功率成正比,变形主要由梁上下表面的温差引起,稳定温差导致梁稳定的变形;并将该解析解与实验进行了对比,其结果与实验结果规律相同。该解析解为机敏混凝土结构温差与变形自调节提供了重要理论基础。
    
     3、建立了混凝土叠层梁电一热一力祸合的有限元平面和三维模型,利用Marc
    有限元软件进行数值计算,将所得结果与解析结果及实验结果进行比较,进一
    步验证了理论模型的可行性和有限元数值模拟的有效性。在有限元数值模拟过
    程中,分别对有钢筋和无钢筋的机敏混凝土结构的电、热性能的影响进行了分
    析。结果显示:由于混凝土的热学参数与力学参数与钢筋相差甚远,导致有筋
    叠层梁的电热温度场及变形与无筋叠层梁不同,在箍筋附近的表面,发热面温
    度比无筋处略低,而低温面则相反:梁的变形比无筋叠层梁小;但钢筋对结构
    的电性能无明显影响。该问题的研究为实际钢筋混凝土结构的运用打下必要的
    基础。
     4、通过对碳纤维机敏混凝土的温敏性、以及温敏混凝土的布置设计研究,
    从结构层次上首次实施了碳纤维水泥基复合材料的温度、温差、变形自监测、
    温度与变形自调节的功能。具体研究了短切碳纤维(毡)混凝土叠层梁的温敏
    性和Seebeck效应,并实施了温度、温差在线检测;提出了在温度调节过程中,
    叠层梁变形检测的温度补偿。
     5、针对电热作动系统大惯性、大迟延的特点,提出了采用模糊与神经网络
    相结合的控制方法对叠层梁的温差、变形进行调节:并通过实验研究了叠层梁
    的温差与变形的自调节,从实验结果可知,利用碳纤维机敏混凝土覆层的电热
    效应及热力效应,能有效、准确地实现梁结构的温差、变形调节。
     本文研究成果,对机敏混凝土结构的自诊断与自调节的应用具有重要指导
    意义,对智能混凝土的发展具有一定的推动作用。
This dissertation was supported by the Key Project of National Science Foundation under grants No. 50238040.
    Concrete is one of popular engineering structural materials. Some momentous concrete structures must be used for decades even hundreds years. Regular concrete structures for water conservancy usually work in abominable climate and environment, such as concrete dams. Temperature is main load of these structures, and alternant between positive and negative temperature would cause asymmetric deformation, crack, freezing-thawing damage and fatigue damage of structures, affecting their normal work and even resulting in disasters. In addition, Cement structures such as bridges often come into being distortion or excessive temperature stresses due to the sun radiation, creep, or shrinkage. MAGLEV railway is a good example. The flatness of MAGLEV railway is one of the most important factors restricting speed of MAGLEV trains. Therefore, study of diagnostic and control method for momentous structures is important in construction engineering.
    Some research works were done to adjust temperature differential and deformation of carbon fiber mat concrete laminate beams which were possessed of multi-function, in addition to their structural performance. The study involved theoretical derivation, finite element simulation and experimental research.
    The following conclusions and innovation can be obtained:
    Firstly, carbon fiber mat concrete laminate beams possessed of sensing and acting functions and structural performance were designed and fabricated according to the sensing and acting functions of carbon fiber concrete and multiple and designable functions of laminate structures. Experimental researches were done for electro-thermal effects of the laminate beams. Laws of electro-thermal effects and response of the samples were obtained, which are the basis of self-adjustment.
    Secondly, the theoretical model was set up for electro-thermal-mechanical problem of smart concrete laminate beams, and then temperature stress and deformation responses driven by the electro-thermal effect of a type of carbon fiber mat cement beams were studied. The results shows that the temperature increment and deformation driven by electro-thermal effects of the carbon fiber mat laminate beams is proportional to input electrical power, and the deformation is mainly caused by the temperature differential between the top and bottom surface. Stable temperature differential determines stable deflection of the beam. The theoretical results are similar to the experimental results. The theoretical results are important basis of self-adjustment.
    Thirdly, infinite element plain and three-dimentional models were set up for
    
    
    electro-thermal -mechanical problem. Numerical simulate analysis was done using MARC infinite element software. The results are similar to the experimental results and theoretical results, which could verify the correctness of the theoretical analysis and the vadility of the numerical simulate analysis. In this dissertation, some simulate researches were done to analyze the electro-thermal-mechanical effects of the steel reinforced concrete laminate beams. The results show that temperature field and deformation driven by the electro-thermal-mechanical effects of the steel reinforced concrete laminate beams are different from laminate beams without steel bars due to difference of their thermal and mechanical parameters. But steel bars have little influence on the electrical features of the samples.
    The forth, according to the temperature-sensing and Seebeck effects of carbon fiber reinforced concrete, some transducers were designed and disposed. The temperature-sensing and Seebeck effects of carbon fiber (mat) reinforced concrete were researched. In order to eliminate the interfere of input power, an insulated interface was used. Then temperature and temperature differential were detected on line. Temperature compensate method was proposed to detect the deformation in the course of the temperature adjustment.
    Fuzzy and neural netwo
引文
1.宋恩来,温度作用对运行期间混凝土坝的影响。大坝与安全,2003(2):16-18.
    2.施士升,冻融循环对混凝土力学性能的影响,土木工程学报,1997,30(4):35-42.
    3.刘桂芳,苏健辉.水工建筑物混凝土的碳化、冻融破坏及其防治,海河水利,2001,1:20—23.
    4.赵东虹,混凝土冻融破坏机理的研究,林业科技情报,2002,34(3):9—10.
    5.ICOLD(1998).WORLD REGISTER OF DAMS: 5.
    6.吴中如,朱伯芳编,三峡水利枢纽工程几个关键问题的应用基础研究丛书:三峡水工建筑物安全监测与反馈设计,北京:中国水利水电出版社,1999:10.
    7.魏得荣,“九五”期间水电站大坝安全监测的进展及发展前景,大坝观测与士工测试,2001.25(1):1-4.
    8. P. Leger, M. Cote, R. Tinawi. Thermal protection of concrete dams subjected to freeze-thaw cycles. Canadian Journal of Civil Eingineering, 1995,Vol.22(3): 588-602.
    9.邵丙衡,陶生桂,倪光正.论磁悬浮列车的类型核心技术与选型.机车电传动,1998,(3):1-4.
    10. Pu-Woei Chen, D.D.L.Chung. Carbon fiber reinforced concrete for smart structures capable of non-destructive flow detection. Smart Mater. Struct., 1993, 2: 22-30.
    11. S.B. Park, B. I. Lee, Y. S. Lim. Experimental Study On The Engineering Properties Of Carbon Fiber Reinforced Cement Composites. Cement and Concrete Research, 1991,21(4): 589-600.
    12. Yoshihiko Ohama, Mikio Amano, Mitshuhiro Endo. Properties of carbon fiber reinforced cement with silica fume. Concrete international, 1985,3:58-62.
    13. Mahmoud M.Reda Taha, Nigel G.Shrive. Enhancing fracture toughness of high performance carbon fiber cement composites. ACI materials journal, 2001, 98(2): 168-178.
    14. A. Katz, A. Bentur. Mechanical Properties And Pore Structure Of Carbon Fiber Reinforced Cementitious Composites. Cement and Concrete Research, 1994,24(2): 214-220.
    15. Qijun Zheng, D.D.L. Chung. Carbon Fiber Reinforced Cement Composites Improved by Using Chemical Agents. Cement and Concrete Research, 1989,19(1): 25-41.
    16. Xiaoming Yang, D.D.L. Chung. Latex-Modified Cement Mortar Reinforced by Short Carbon Fibers. Composites, 1992,23(6): 453-460.
    17. Pu-Woei Chen, D.D.L. Chung. Concrete Reinforced with up to 0.2 vol.% of Short Carbon
    
    Fibers. Composites, 1993,24(1): 33-52.
    18. Pu-Woei Chen, Xuli Fu, D.D.L.Chung. Microstructural and Mechanical Effects of Latex, Methylcellulose and Silica Fume on Carbon Fiber Reinforced Cement. ACI Materials Journal, 1997,94(2): 147-155.
    19.吴寅.碳纤维增强混凝土的力学性能.纤维复合材料,1995,9:47-49
    20. Pu-Woei Chen, D.D.L. Chung. Low-Drying-Shrinkage Concrete Containing Carbon Fibers. Composites, Part B, 1996,27B:269-274.
    21. Zeng-Qiang Shi, D.D.L. Chung. Improving the Abrasion Resistance of Mortar by Adding Latex and Carbon Fibers. Cement and Concrete Research, 1997,27(8): 1149-1153.
    22.沈家洪,程育仁.水泥基纤维增强复合材料(FRC)发展应用综述.铁道物质科学管理,1997,2:33-34
    23. Pu-Woei Chen, Xuli Fu, D.D.L. Chung. Improving the Bonding Between Old and New Concrete by the Addition of Carbon Fibers to the New Concrete. Cement and Concrete Research, 1995,25(3): 491-496.
    24.李湘洲,王伟.碳纤维增强混凝土的现状和趋势.混凝土,2000,8:31-33
    25.张跃,职任涛,朱逢吾等.碳纤维(LCF).-无宏观缺陷(MDF)水泥基复合材料电学性能的研究.材料科学进展,1992,6(4):357-362.
    26. Shui Zhonghe, Li Jizhong, Huang Fengping, Yan Depo, Study on the electrical properties of carbon fiber-cement composites, J. Wuhan Univer. of Technology (Mater. Sci. Edition), 1995, 10(4):37-41.
    27. Xie Ping, Gu Ping, Beaudoin J J. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibres. Journal of Materials Science, 1996,31(15): 4093-4097.
    28. Sun Mingqing, Li Zhuoqiu, Mao Qizhao, Shen Darong. Study on the hole conduction phenomena in carbon fiber reinforced concrete. Cement and Concrete Research, 1998:28(4): 549-553.
    29.毛起炤,赵斌元,沈大荣等.极化效应对碳纤维增强水泥(CFRC)导电性的影响.材料研究学报,1997,11(2):195-198.
    30.毛起炤,杨元霞,李卓球等.外加剂对CFRC导电性能的影响.无机材料学报,1997,12(3):415-419.
    31. Xuli Fu, D.D.L. Chung. Effects of Silica Fume, Latex, Methylcellulose, and Carbon Fibers on the Thermal Conductivity and Specific Heat of Cement Paste. Cement and Concrete Research, 1997,27(12): 1799-1804
    
    
    32. Xuli Fu, D.D.L. Chung. Effect of Admixtures on the Thermal and Thermomechanical Behavior of Cement Paste. ACI Materials Journal, 1999, 96(4): 455-461
    33. Yunsheng Xu, D.D.L. Chung. Increasing the Specific Heat of Cement Paste by Admixture Surface Treatments. Cement and Concrete Research, 1999,29(7): 1117-1121
    34. Yunsheng Xu, D.D.L. Chung. Effect of Sand Addition on the Specific Heat and Thermal Conductivity of Cement. Cement and Concrete Research, 2000,30(1): 59-61
    35. Yunsheng Xu, D.D.L. Chung. Cement of High Specific Heat and High Thermal Conductivity, Obtained by Using Silane and Silica Fume as Admixtures. Cement and Concrete Research, 2000,30(7): 1175-1178
    36. Pu-Woei Chen, D.D.L. Chung. Effect of Polymer Addition on the Thermal Stability and Thermal Expansion of Cement. Cement and Concrete Research, 1995, 25(3): 465-469
    37.孙明清,李卓球,沈大荣.碳纤维水泥基复合材料的Seebeck效应.材料研究学报,1998,12(1):111-112
    38. Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al. Study on the hole conduction phenomena in carbon fiber reinforced concrete. Cement and Concrete Research. 1998:28(4):549-553
    39.孙明清,李卓球,毛起熠等.CFRC塞贝克效应的主要影响因素.材料研究学报,1998,12(3):329-331
    40. M. Sun, Z.Li, Q.Mao, D.Shen. Study on thermal self-monitoring of carbon fiber reinforced concrete. Cement and Concrete Research, 1999:29(5): 769-771.
    41. Sihai Wen, D.D.L. Chung. Seebeck Effect in Carbon Fiber Reinforced Cement. Cement and Concrete Research, 1999,29(12): 1989-1993.
    42. Sihai Wen, D.D.L. Chung. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers. Cement and Concrete Research 30 (2000) 1295-1298.
    43. Sihai Wen, D.D.L. Chung. Enhancing the Seebeck Effect in Carbon Fiber Reinforced Cement by Using Intercalated Carbon Fibers. Cement and Concrete Research, 2000,30(8): 1295-1298.
    44. Sihai Wen, D.D.L. Chung. Seebeck Effect in Steel Fiber Reinforced Cement, Cement and Concrete Research, 2000,30(4): 661-664.
    45. Sihai Wen, D.D.L. Chung. Electrical behavior of cement-based junctions including the pn-junction. Cement and concrete research, 2001,31:129-133.
    46. Sihai Wen, D.D.L. Chung. Cement-based thermocouples. Cement and concrete research, 2001,31:507-510.
    
    
    47.张跃,职任涛,朱逢吾等.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究.材料科学进展,1992,6(4):357-362
    48. Sihai Wen, D.D.L. Chung. Carbon Fiber-Reinforced Cement as a Thermistor. Cement and Concrete Research, 1999,29(6): 961-965
    49. Farhad Reza, Gordon B. Batson, Jerry A. Yamamuro, et al. Volume Electrical Resistivity of Carbon Fiber Cement Composites. ACI Materials Journal, 2001,98(1): 25-35
    50.唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究:[博士学位论文].武汉理工大学工程结构与力学系,2002:16-20
    51.唐祖全,李卓球,徐东亮.CFRC路面材料的温敏性研究.武汉理工大学学报,2001,23(3):5-7.
    52.唐祖全,李卓球,张华.混凝士路面温度自诊断特性的实验研究.工程力学(增刊),200I(Ⅱ):228-232.
    53. Pu-Woei Chen, D.D.L.Chung. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J. American Ceramic Society, 1995, 78(3): 816-818.
    54. Xuli Fu, D.D.L.Chung. Self-monitoring of fatigue damage in carbon fiber reinforced Cement and Concrete Research, 1996, 26(1): 15-20.
    55. Xuli Fu, D.D.L.Chung. Effect of curing age on the self-monitoring behaviour of carbon fiber reinforced mortar. Cement and Concrete Research, 1997, 27(9), 1313-1318.
    56. Xuli Fu, D.D.L.Chung. Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers., Cement and Concrete Research 1998, 28(2): 183-187.
    57. Dragos-Marian, DDL Chung, Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement, Cement and Concrete Research 2000, 30 (4): 651-659
    58. Yunsheng Xu and D.D.L. Chung, Cement-Based Materials Improved by Surface Treated Admixtures, ACI Mater. J. 2000, 97(3): 333-342.
    59. Sihai Wen, D.D.L. Chung, Carbon fiber-reinforced cement as a strain-sensing coating, Cement and Concrete Research, 2001, 31: 665-667.
    60. Shi, D.D.L. Chung, Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion Zeng-Qiang Cement and Concrete Research 1999, 29: 435-439.
    61. Sihai Wen, D.D.L. Chung. Defect dynamics of cement paste under repeated compression studied by electrical resistivity measurement. Cement and Concrete Research, 2001, 31:
    
    1515-1518
    62. Jingyao Cao, D.D.L. Chung Defect dynamics and damage of concrete under repeated compression, studied by electrical resistance measurement Cement and Concrete Research 2001, 31: 1639-1642
    63. Jingyao Cao, D.D.L. Chung. Minor damage of cement mortar during cyclic compression monitored by electrical resistivity measurement. Cement and Concrete Research 2001, 31: 1519-1521
    64. Sihai Wen, D.D.L. Chung, Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions, Cement and Concrete Research 2001, 31: 297-301
    65.毛起炤,赵斌元,沈大荣,李卓球等.水泥基碳纤维复合材料压敏性的研究.复合材料学报,1996,13(4):8-11.
    66.毛起炤,杨元霞,沈大荣,李卓球.碳纤维增强水泥压敏性影响因素的研究,硅酸盐学报,1997:25(6):734-737.
    67. Mao Qizhao, Chen Pinhua, Zhao Binyuan, Li Z,, Vol.huoqiu, A Study on the Compression Sensibility and Mechanical Model of Carbon Fiber Reinforced Cement Smart Material, ACTA MECHANICA SOLIDA SINICA, 1997, 10: 338-344.
    68.毛起炤,陈品华,赵斌元,李卓球,沈大荣.小应力下碳纤维增强水泥的压敏性和温敏性,材料研究学报,1997,11(3):322-324.
    69.毛起炤,赵斌元,沈大荣,李卓球.极化效应对碳纤维增强水泥的导电性的影响,材料研究学报,1997,11(2):195-198.
    70.王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的机敏性.硅酸盐学报,1998,26(3):253-257.
    71.周振君,杨正方.带有碳涂层的尼龙纤维增强混凝土的机敏性研究.硅酸盐学报,2001,29(2):192-195.
    72.郑立霞,宋显辉,李卓球,王建军.碳纤维增强水泥在受压时的电容测量.混凝土,2003,3:25—27.
    73.郑立霞,宋显辉,李卓球.不同电参数对CFRC应变敏感性的响应,武汉理工大学学报,2004,26(1):35—38.
    74.宋显辉,郑立霞,李卓球.碳纤维水泥变形传感器研制.测控技术,2004,23(2):22—24
    75. Lixia Zheng, Guanmo Xie, Zhuoqiu Li, Xianhui Song. Corrosion monitoring of rebars in
    
    reinforcedconcrete. Proceedings of the sixth international symposinm on microstructure properties of new engineering materials, 2003, 10: 295—299.
    76.唐祖全,李卓球,侯作富,徐东亮.导电混凝土融雪化冰机理分析.混凝土,2001,7:8-11.
    77.唐祖全,李卓球,侯作富,徐东亮.导电混凝土电热层布置对路面除冰效果的影响.武汉理工大学学报,2002.24(2):45-48.
    78. Hou Zuofu Li Zhuoqiu and Tang Zuquan, The Finite Element Analysis and Design of Electrically Conductive Concrete for Roadway Deicing or Snow-melting System, ACI Materials Journal, 2003, 100 (6): 469—476.
    79.唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究:[博士学位论文].武汉理工大学工程结构与力学系,2002
    80. Hou Zuofu Li Zhuoqiu and Hu Shengliang, Carbon Fiber (CF) Conductive Concrete for Roadway Deicing System, Microstructures and Mechanical Properties of New Engineering Materials, Proceedings of IMMM2003, Nov. 2003, Wuhan, China.
    81. Hou Zuofu Li Zhuoqiu and Guan kejian, The Joule Heating Analysis of Electrically Conductive Concrete for Roadway Deicing System, Seventh International Symposium on Structural Engineering for Young Exports, August 28-31 2002, Tianjin, China.
    82.侯作富,李卓球,唐祖全,导电混凝土除冰化雪系统输入功率的有限元计算,华中科技大学学报(城市科学版),2002,19(1):82—85.
    83. D. D. L. Chung. Cement-matrix composites for thermal engineering. Applied Thermal Engineering.2001, 21: 1607-1619.
    84. Randy Chugh, D.D.L. Chung. Flexible graphite as a heating element. Carbon 2002, 40: 2285-2289.
    85.姚武,吴科如,智能混凝土的研究现状及其发展趋势,新型建筑材料,2000,10:22—24.
    86.梁文泉,王信刚,何真,李相国.智能混凝土的研究,混凝土与水泥制品,2003,6:33—35.
    87.程国俊,张洪济,张慕瑾等.高等传热学.重庆:重庆大学出版社,1991:299
    88.郭宽良.计算传热学.合肥:中国科学技术大学出版社,1988:327
    89.戴锅生编.传热学.北京:高等教育出版社,1991:374
    90.徐芝纶.弹性力学.北京:高等教育出版社,1982:374
    91.钟伟芳,皮道华.高等弹性力学.武汉:华中理工大学出版社,1993:62.
    
    
    92.陈火红.Marc有限元实例分析教程.北京:机械工业出版社,2002:341—368.
    93.[日]山田嘉昭.非线性有限元法基础.北京:清华大学出版社,1988:201.
    94.[美] B.V.卡里卡,R.M.戴斯蒙德著,刘吉萱译.工程传热学.北京:人民教育出版社,1981:467—491.
    95.果玉忱.半导体物理学.北京:国防工业出版社,1988:56—70.
    96. Deborah. D.L. Chung. Applied Materials Science. CRC Press, 2001: 120-125.
    97.王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1999:309
    98.吴捷.计算机控制系统.广州:广东科技出版社,1995:355
    99.冯冬青,谢宋和等.模糊智能控制.北京:化学工业出版社,1998:202
    100.章卫国.模糊控制理论与应用.西安:谣北工业大学出版社,1999:1—27.
    101.徐丽娜.神经网络控制.哈尔滨:哈尔滨工业大学出版社,1999:1—100.
    102.李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998:656
    103.彭道刚,韩璞,于希宁,杨平.模糊与神经网络相结合的控制方法.华北电力大学学报,2003,30(1):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700