用户名: 密码: 验证码:
基于红外热像的碳纤维混凝土损伤分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究课题来源于国家自然科学基金重点项目——机敏混凝土及其
    结构(项目编号:50238040)。
     大型水坝、桥梁、核电站安全壳等重大混凝土工程的安全可靠性、耐久性
    问题是涉及国家经济发展与国家安全的重大问题。而已有的混凝土大型结构和
    基础设施的损伤积累和灾变行为日趋突出。因此,对重大混凝土工程结构进行
    损伤监测与分析已成为土木工程领域中的重要研究课题之一。
     本文提出了利用碳纤维混凝土的功能特性,对混凝土中的损伤进行红外检
    测的方法,并从实验、理论、数值计算等多方面对检测机理、影响因素等进行
    了分析。同时对将此方法应用于实时监测时所产生的力、电、热耦合问题进行
    了一定的分析与研究。主要成果与创新之处如下:
     1、利用碳纤维混凝土的功能特性,提出并设计了基于电热的碳纤维混凝土
    红外热像检测方法,并通过实验研究证实了方法的可行性,检测结果显示只需
    通低压电源就能使远离缺陷的正常部位温度升高1~2℃,而在缺陷附近的表面
    处温度大幅度上升,因此比一般红外检测方法更利于缺陷的检出。同时,检测
    结果也显示了检测与时间、材料组分、缺陷形态的相关性。
     2、建立了碳纤维混凝土红外热像方法的瞬态热传导温度分析模型,研究分
    析了材料组分及外部环境因素从材料电、热性能参数方面对检测的影响机理,
    以及检测的主导机制:宏观缺陷的存在和缺陷局部微观特性导致的非均匀内热
    源效应,并采用等效电阻串、并联模型对其进行了解释。
     3、建立了基于碳纤维混凝土红外热像方法的碳纤维混凝土缺陷体电-热耦
    合有限元分析模型,利用大型有限元软件Marc及自编用户子程序进行了数值计
    算,将所得结果与实验结果进行模拟与比较,进一步验证了检测方法的可行性
    和有限元数值模拟的有效性。同时,大量的数值结果分析显示了此种红外检测
    方法的敏感因素,为具体检测方案的选择和优化提供了依据。
     4、研究了利用格林函数法求解缺陷体电、热耦合问题温度场的方法。在分
    析了不同缺陷情况下电场分布的基础上,利用瞬态热传导格林函数法求解得到
    二维缺陷体温度场的近似理论解,编程计算的结果显示了所求温度分布与实测
This dissertation was supported by the Key Project 'smart concrete and structures' of National Science foundation under grants No. 50238040.The safety, reliability and durability of large concrete project, including large dam, bridge, containment vessel of nuclear power station and etc., are momentous problems relating to national economic development and national safety. However, the problems of accumulation damages and catastrophic behavior of the in being larger concrete structures and national infrastructure become very prominent. Therefore, study on monitoring and analyzing the damage of momentous concrete structures is one of the important research subjects in civil engineering.A nondestructive detection method with infrared imaging is presented by making use of the functional property of carbon fiber-reinforced concrete (CFRC). Its detection mechanism and influencing factors are analyzed with experiments, theory, and numerical analyses. Meanwhile, studies have been made to some degree on the coupling problems of force, electricity and heat potentially in real-time monitoring. The main research works and innovations of this paper are as follows:Firstly, an improved infrared imaging method is proposed and designed to detect the damage of concrete by using of the functional properties of electro-thermal carbon fiber-reinforced concrete. The feasibility of the method is verified by experiments. The detection results show that under lower DC voltage the temperature of normal areas far from defects is able to rise 1~2°C in specimen, however, the surface temperature near the defects rises greatly. Thus, it makes the infrared imaging method more powerful to inspect the defects out. At the same time, it shows that the detection results are related to the inspection time, material components and defect shape.Secondly, model for analyzing the temperature of this transient heat transfer application is constructed based on the improved infrared imaging detection method. The mechanisms influencing on the detection from the material components and the surrounding environment are studied in terms of the electrical and heat parameters of the material. The existence of macro defects and the micro characteristic of local area near the defects, which lead to the effect of inhomogeneous internal heat source, are also studied as the leading mechanism to the detection.Thirdly, the MARC finite element analysis software and subroutine program is used to analyze the model of the Joule's heating problem for the defective CFRC specimen. By comparing the numerical results with the experimental results, the feasibility of this method and the validity of the finite element simulation are verified. At the same time, large quantity of numerical results reveals the sensitivity factors of this detection method. The study provides reference for selecting and optimizing the detection scheme in practice.Fourthly, the theoretical solution with Green's function is developed to solve the
    Joule's heating problem and get the temperature field in the defective specimen. On the basis of analyzing the electrical field in the defective bodies with different defect shape, two-dimensional temperature field is obtained by using the Green's function solution. The computation results by programming indicate that the distribution of temperature is the same as that of actual measurement. And the mechanism of this defection is further disclosed in theory.Fifthly, microscopic mechanism of the coupling phenomenon of force, electricity and heat, which appears in real-time monitoring, is analyzed. For the situation of simply loading, the variation of effective load area is applied to describe the damage in specimen, which can reflect not only the variation of mechanical property of material, but also the variation of electrical parameter. With the damage variable in terms of effective load area, the evolvement law of electrical parameter with the damage of CFRC is established under compression load. Combining with the corresponding Mazars damage mechanical model and energy equation, the temperature field for odd coupling problem of force and electricity, electricity and heat is obtained.The study involves several science areas such as mechanics, electricity, concrete material science, heat transfer and so on. The production has significant meanings in improving the efficiency and precision of infrared nondestructive detection in concrete, and enhancing its application in the concrete construct. Moreover, it has certain guiding effect to the realization of real-time damage monitoring and the application of CFRC in key civil engineering structures.
引文
1.欧进萍,大型桥梁应加强监测与控制,经济参考,2004,7(20).
    2.富文权,韩素芳.混凝土工程裂缝分析与控制.北京:中国铁道出版社,2002.
    3.黄军生,钢筋混凝土桥梁裂缝成因综述,世界桥梁,2002(02):59-63.
    4.赵全胜,混凝土结构物裂缝成因与防治,吉林水利,2002(10):23-24.
    5.欧进萍,重大工程结构智能传感网络与健康监测系统的研究与应用,中国科学基金,2005(01):8-12.
    6.罗荣芳,混凝土损伤本构理论研究及其应用,长沙铁道学院学报,第16卷,第4期,1998,57-60.
    7.张盛东,混凝土本构理论研究进展与评述,南京建筑工程学院学报,2002年,第3期,44-53.
    8.封伯昊,张立翔,李桂青,混凝土损伤研究综述,昆明理工大学学报,第26卷,第3期,2001,21-30.
    9.陈惠发著,余天庆等译,土木工程材料的本构方程,华中科技大学出版社,2001.
    10. Bazant Z P, Oh B H. Crack band theory for fracture of concrete. Mater. Struct. (RILEM),1983, 16(93):155-177.
    11. Yamaguchi E, Chen W E Cracking model for finite element analysis of concrete materials. Journal of Engineering Mechanics, 1990a, 116(EM6):1242-1260.
    12. Bazant Z P, Cedolin L. Fracture Mechanics of Reinforced Concrete. Journal of the Engineering Mechanics Division, ASCE, 1980, 106(EM6): 1287-1306.
    13. Enrique Alarcon, Alfonso Recuero, Ricardo Perera. A repairability index for reinforced concrete members based on fracture mechanics. Engineering structures. 2001.23(6):687-697.
    14.李杰,混凝土随机损伤本构关系研究新进展,东南大学学报(自然科学版),第32卷,第5期,2002,750-755.
    15.陈建兵,李杰,混凝土结构非线性随机损伤状态的演化分析,东南大学学报(自然科学版),第32卷,第5期,2002,756-759.
    16. Meyer Christian, Peng Xianghe. Comprehensive description for damage of concrete subjected to complex loading. Structural Engineering and Mechanics. 1997, 5(6):679-689.
    17. Ulm Franz-Josef, Acker Paul, Levy Michel. Churmel' fire, Ⅱ:Analysis of concrete damage. Journal of Engineering Mechanics. 1999, 125(3):283-289.
    18.李兆霞编著,损伤力学及其应用,北京:科学出版社,2002.
    19.余寿文,冯西桥,损伤力学,清华大学出版社,1997.
    20.余天庆,钱济成,损伤理论及其应用,国防工业出版社,1993.
    21.沈为,损伤力学,华中理工大学出版社,1995.
    22. D. Tikhomirov and E. Stein. Finite element computations of anisotropic continuum damage in reinforced concrete. Computers and Structures. 2001.79(22-25)2249-2260.
    23.郭少华,混凝土损伤的非线性细观统计模型,内蒙古工业大学学报,第16卷,第3期,1997,85-88.
    24. J. Maeck, M. Abdel Wahab, B. Peeters, G. De Roeck. Damage identification in reinforced concrete structures by dynamic stiffness determination. Engineering structures. 2000.22(10):1339-1349.
    25. Victor C. Li, Takashi Matsumoto. Fatigue crack growth analysis of fiber reinforced concrete with effect of interracial bond degradation. Cement & Concrete Composites. 1998.20(5):339-351.
    26. Dragos-Marian Bontea, D. D. L. Chung and G. C. Lee. Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement. Cement and concrete research. 2000.30(4):651-659.
    27. Pu-Woei Chen, D.D.L.Chung. Carbon fiber reinforced concrete for smart structures capable of non-destructive flow detection. Smart Mater. Struct., 1993, 2:22-30.
    28. Mahmoud M.Reda Taha, Nigel G.Shrive. Enhancing fracture toughness of high performance carbon fiber cement composites. ACI materials journal, 2001, 98(2):168-178.
    29.吴寅.碳纤维增强混凝土的力学性能.纤维复合材料,1995,9:47-49
    30. Pu-Woei Chen, D.D.L. Chung. Low-Drying-Shrinkage Concrete Containing Carbon Fibers. Composites, Part B, 1996, 27B:269-274.
    31. Zeng-Qiang Shi, D.D.L. Chung. Improving the Abrasion Resistance of Mortar by Adding Latex and Carbon Fibers. Cement and Concrete Research, 1997, 27(8):1149-1153.
    32. Pu-Woei Chen, Xuli Fu, D.D.L. Chung. Improving the Bonding between Old and New Concrete by the Addition of Carbon Fibers to the New Concrete. Cement and Concrete Research, 1995,25(3): 491-496.
    33.李湘洲,王伟.碳纤维增强混凝土的现状和趋势.混凝土,2000,8:31-33
    34.张跃,职任涛,朱逢吾等.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究.材料科学进展,1992,6(4)::357-362.
    35. Shui Zhonghe, Li Jizhong, Huang Fengping, Yah Depo, Study on the electrical properties of carbon fiber-cement composites, J. Wuhan Univer. of Technology (Mater. Sci. Edition), 1995, 10(4):37-41.
    36. Xie Ping, Gu Ping, Beaudoin J J. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibres. Journal of Materials Science, 1996,31(15):4093-4097.
    37. Sun Mingqing, Li Zhuoqiu, Mao Qizhao, Shen Darong. Study on the hole conduction phenomena in carbon fiber reinforced concrete. Cement and Concrete Research, 1998:28(4):549-553.
    38.毛起炤,赵斌元,沈大荣等.极化效应对碳纤维增强水泥(CFRC)导电性的影响.材料研究学报,1997,11(2):195-198.
    39.毛起炤,杨元霞,李卓球等.外加剂对CFRC导电性能的影响.无机材料学报,1997,12(3):415-419.
    40.侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究:[博士学位论文].武汉:武汉理工大学工程结构与力学系,2003.
    41.唐祖全,李卓球,侯作富,徐东亮.导电混凝土电热层布置对路面除冰效果的影响.武汉理工大学学报,2002,24(2):45-48.
    42.Hou Zuofu Li Zhuoqiu and Tang Zuquan, The Finite Element Analysis and Design of Electrically Conductive Concrete for Roadway Deicing or Snow-melting System, ACI Materials Journal, 2003, 100(6):469—476.
    43.唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究:[博士学位论文].武汉理工大学工程结构与力学系,2002.
    44. Hou Zuofu Li Zhuoqiu and Hu Shengliang, Carbon Fiber (CF) Conductive Concrete for Roadway Deicing System, Microstructures and Mechanical Properties of New Engineering Materials, Proceedings of IMMM2003, Nov. 2003, Wuhan, China.
    45. Hou Zuofu Li Zhuoqiu and Guan kejian, The Joule Heating Analysis of Electrically Conductive Concrete for Roadway Deicing System, Seventh International Symposium on Structural Engineering for Young Exports, August 28-31 2002, Tianjin, China.
    46.侯作富,李卓球,唐祖全,导电混凝土除冰化雪系统输入功率的有限元计算,华中科技大学学报(城市科学版),2002,19(1):82—85.
    47. D. D. L. Chung. Cement-matrix composites for thermal engineering. Applied Thermal Engineering.2001, 21:1607-1619.
    48. Xuli Fu, D.D.L. Chung. Effects of Silica Fume, Latex, Methylcellulose, and Carbon Fibers on the Thermal Conductivity and Specific Heat of Cement Paste. Cement and Concrete Research, 1997,27(12):1799-1804
    49. Xuli Fu, D.D.L. Chung. Effect of Admixtures on the Thermal and Thermomechanical Behavior of Cement Paste. ACI Materials Journal, 1999, 96(4):455-461
    50. Yunsheng Xu, D.D.L. Chung. Increasing the Specific Heat of Cement Paste by Admixture Surface Treatments. Cement and Concrete Research, 1999,29(7):1117-1121
    51. Yunsheng Xu, D.D.L Chung. Effect of Sand Addition on the Specific Heat and Thermal Conductivity of Cement. Cement and Concrete Research, 2000,30(1):59-61
    52. Yunsheng Xu, D.D.L. Chung. Cement of High Specific Heat and High Thermal Conductivity, Obtained by Using Silane and Silica Fume as Admixtures. Cement and Concrete Research, 2000,30(7):1175-1178
    53. Pu-Woei Chen, D.D.L. Chung. Effect of Polymer Addition on the Thermal Stability and Thermal Expansion of Cement. Cement and Concrete Research, 1995, 25(3):465-469
    54.张跃,职任涛,朱逢吾等.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究.材料科学进展,1992,6(4):357-362
    55. Sihai Wen, D.D.L. Chung. Carbon Fiber-Reinforced Cement as a Thermistor. Cement and Concrete Research, 1999,29(6):961-965
    56. Farhad Reza, Gordon B. Batson, Jerry A. Yamamuro, et al. Volume Electrical Resistivity of Carbon Fiber Cement Composites. ACI Materials Journal, 2001,98(1):25-35
    57.唐祖全.碳纤维机敏混凝土路面结构融雪化冰性能研究:[博士学位论文].武汉理工大学工程结构与力学系,2002:16-20
    58.唐祖全,李卓球,徐东亮.CFRC路面材料的温敏性研究.武汉理工大学学报,2001,23(3):5-7.
    59.唐祖全,李卓球,张华.混凝土路面温度自诊断特性的实验研究.工程力学(增刊),2001(Ⅱ):228-232.
    60. Pu-Woei Chen, D.D.L.Chung. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J. American Ceramic Society, 1995, 78(3):816-818.
    61. Xuli Fu, D.D.L.Chung. Self-monitoring of fatigue damage in carbon fiber reinforced Cement and Concrete Research, 1996, 26(1):15-20.
    62. Sihai Wen, D.D.L. Chung, Carbon fiber-reinforced cement as a strain-sensing coating, Cement and Concrete Research, 2001, 31:665-667.
    63. Shi, D.D.L. Chung, Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion Zeng-Qiang Cement and Concrete Research 1999, 29:435-439.
    64. Sihai Wen, D.D.L. Chung. Defect dynamics of cement paste under repeated compression studied by electrical resistivity measurement. Cement and Concrete Research, 2001, 31: 1515-1518
    65. Jingyao Cao, D.D.L. Chung Defect dynamics and damage of concrete under repeated compression, studied by electrical resistance measurement Cement and Concrete Research 2001, 31:1639-1642
    66. Jingyao Cao, D.D.L. Chung. Minor damage of cement mortar during cyclic compression monitored by electrical resistivity measurement. Cement and Concrete Research 2001, 31:1519-1521
    67. Sihai Wen, D.D.L. Chung, Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions, Cement and Concrete Research 2001, 31:297-301
    68.毛起炤,赵斌元,沈大荣,李卓球等.水泥基碳纤维复合材料压敏性的研究.复合材料学报,1996,13(4):8-11.
    69.毛起炤,杨元霞,沈大荣,李卓球.碳纤维增强水泥压敏性影响因素的研究,硅酸盐学报,1997:25(6):734-737.
    70. Mao Qizhao, Chen Pinhua, Zhao Binyuan, Li Z,, Vol.huoqiu, A Study on the Compression Sensibility and Mechanical Model of Carbon Fiber Reinforced Cement Smart Material, ACTA MECHANICA SOLIDA SINICA, 1997, 10: 338-344.
    71.毛起炤,陈品华,赵斌元,李卓球,沈大荣.小应力下碳纤维增强水泥的压敏性和温敏性,材料研究学报,1997,11(3):322-324.
    72.王秀峰,王永兰,金志浩.碳纤维增强水泥复合材料的机敏性.硅酸盐学报,1998,26(3):253-257.
    73.周振君,杨正方.带有碳涂层的尼龙纤维增强混凝土的机敏性研究.硅酸盐学报,2001,29(2):192-195.
    74.郑立霞,宋显辉,李卓球,王建军.碳纤维增强水泥在受压时的电容测量.混凝土,2003,3:25—27.
    75.郑立霞,宋显辉,李卓球.不同电参数对CFRC应变敏感性的响应,武汉理工大学学报,2004.26(1):35—38.
    76. Lixia Zheng, Guanmo Xie, Zhuoqiu Li, Xianhui Song. Corrosion monitoring of rebars in reinfrcedconcrete. Proceedings of the sixth international symposinm on microstructure properties of new engineering materials, 2003, 10:295—299.
    77.程玉兰,红外诊断现场实用技术,北京:机械工业出版社,2002。
    78. Oral Buyukozturk, Imaging of concrete structures, NDT & E International, Vol.31, No.4, pp.233-243, 1998.
    79. H. Wiggerthauser, Active IR-applications in civil engineering, Infrared Physics & Technology 43(2002) 233-238.
    80. Ch. Maierhofer, A. Brink, M. Rollig, H. Wiggenhauser, Transient thermography for structural investigation of concrete and composites in the near surface region, Infrared Physics & Technology 43(2002) 271-278.
    81. Takahide Sakagami, Shiro Kubo, Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography, Infrared Physics & Technology 43(2002) 311-316.
    82.张荣成,红外热像法检测建筑物外墙饰面施工质量的试验研究,建筑科学,第18卷,第1期,2002年,40-44.
    83.杜红秀,张雄,乔俊莲,红外热像用于水泥砂浆火灾损伤的检测与评定,同济大学学报,第27卷,第4期,2000年,422-425.
    84.孙格靓,王厚亮,李建保,碳纤维增强混凝土构件的内部缺陷红外热像技术检测,炭素技术,2002年第4期(总第109期),47-49.
    85.梅林,陈自强,王裕文,脉冲加热红外热成像无损检测的有限元模拟及分析,西安交通大学学报,2000.1:66-70
    86. Akbar Darabi Xavier Maldague. Neural network based defect detection and depth estimation in TNDE. NDT & E International. Vol.35. p.165-175, 2002.
    87. Takahide Sakagami, keiji Ogura. Thermographic NDT based on transient temperature field under Joule effect heating. SPIE Proceedings, 1994. 2245: 120-130.
    88.杨强生,浦保荣.高等传热学.上海:上海交通大学出版社,2001.
    89.赵镇南,传热学,北京:高等教育出版社,2002.
    90. Lindon C. Thomas. Heat Transfer[M]. New Jersey: Prentice Hall, Englewood Cliffs, 1992.
    91.陈火红.Marc有限元实例分析教程.北京:机械工业出版社,2002:341—368.
    92.[日]山田嘉昭.非线性有限元法基础.北京:清华大学出版社,1988.
    93.胡汉平,热传导问题的通用格林函数及格林函数解,中国科学技术大学学报,1998.12:718-721.
    94.李永平,姜静,张春青.求解格林函数级数解的两种方法.济南大学学报.1999.2:31-33
    95. Beck J V. Green's function solution for transient heat conduction problems. International Journal of Heat and Mass Transfer, 1984, V27, 1235-1244
    96. Kevin D Cole, David H Y Yen. Green's functions, temperature and heat flux in the rectangle. International journal of heat and mass transfer. 2001, vol.44: 3883-3894.
    97. Marcin Janicki, Gilbert De Mey, Andrzej Napieralski. Application of Green's functions for analysis of transient thermal states in electronic circuits, Microelectronics Journal, 2002.Vol. 33, P733-738.
    98. Beck J V, Cole K D, Haji-Sheikfi A, Litkouhi B, Heat Conduction Using Green's Functions, Hemisphere, Washington, DC, 1992.
    99. Zhi-gang Feng, efstathios, e.michaelides. The use of modified Green's functions in unsteady heat transfer. 1997, vol.40.No.12:2997-3002.
    100.李卓球,张雄,张江涛.焦耳内热源温度场求解的分离变量法,武汉理工大学学报,2004,26(11):71—73.
    101.L M Milne-thomson著,李裕立,晏名文译.理论流体动力学.北京:机械工业出版社,1984.
    102.刘晓利,矩形绕流问题的分析解,弹道学报,1999.12:45-49
    103.李其深,一种求泊松方程特解的方法,工程数学,1994.5:110-114
    104.杨卫,力电失效学,北京:清华大学出版社,2001.
    105.邓宗才,碳纤维混凝土在重复加卸载下力学行为的研究,建筑结构,2001,31(11):33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700