钼酸盐功能材料的选择性合成与新型碳材料制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Selective Synthesis of Molybdate Functional Materials and Preparation of New Carbon Materials
  • 作者:丁益
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:俞书宏
  • 学科代码:070301
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2007-04-01
摘要
本论文进一步发展和拓宽了水热法中制备纳米材料的方法,提出了一些新的合成纳米棒,线及三维纳米材料的技术。特别是在合成三维纳米材料方面获得了很大的进展,利用温和的水热法制备出了结构新颖的微米尺寸的钼酸铁。廉价的农作物废弃物稻壳为原料,以磷酸为催化剂来水热碳化,获得较为均匀的碳球,这种方法将可能产生较好的经济效益和对环境保护也有较大益处。详细内容归纳如下:
     1.利用水热法,通过调节反应体系的温度和pH值合成钼酸铁三维微米结构材料。该研究通过水热法合成纯相的传统催化剂钼酸铁材料,同时研究了不同相的钼酸铁的磁学性质,单斜相和正交相的分别显示了亚铁磁和反铁磁性质。钼酸铁新颖的纳米结构和比较大的比表面积将会在催化领域有比较重要的意义。
     2.水热合成一系列的磁性金属钼酸盐功能纳米材料,研究发现反应温度和pH值对产物的物相以及形貌有着重大的影响。同时,通过深入的研究,加入了一种友好的表面活性剂PEG400,发现钼酸盐的相和形貌有了很大的变化。对这一系列的功能性金属钼酸盐纳米材料的磁学和电化学性能做了比较细致的研究,a-NiMoO_4,β-CoMoO_4和a-MnMoO_4的电化学性能优越,首次放电容量分别可以达到850mAh g~(-1),130mAh g~(-1)和180mAh g~(-1)。这几种材料通过催化降解品红得到了系统的测试,进一步拓宽了金属钼酸盐的催化性能研究。此类化合物新颖的纳米结构的有效调控与高产量广普合成对进一步探索钼酸盐光电磁等方面的性质将具有重要的意义。
     3.利用农作物的废弃物稻壳为原料,以磷酸为催化剂,利用水热碳化的方法,获得来了相对均匀的碳球,进一步拓宽了获得高质量活性炭的途径。对水热碳化的产物分离,以硝酸为氧化剂利用水热方法进一步处理未碳化和不能碳化的部分获得工业原料二氧化硅。这种处理稻壳的方法对提高经济效益和环境保护都有很重大的现实意义。
In this dissertation, hydrothermal process has been successfully developed to synthesis of nano-rods, nano-wires and three-dimensional (3D) materials. Particularly, progress has been achieved on the synthes is of 3D nano-structure materials. Novel micro-scale iron molybdate has been obtained via hydrothermal approach. Uniformly carbon spheres can be obtained by hydrothermal process in the presence of the H_3PO_4 and rice husk is raw mateial. This method possibly will have the better economic efficiency and also has a bigger profit to the environmental protection.
     1 . Novel structure iron molybdate can be synthesized by a hydrothermal approach. The microstructure and phasecan be controlled through adjusting the react conditions such as tempertaure and pH value. This research synthesizes the pure phase traditional catalyst, iron molybdate.And the magnetic property of different phase iron molybdate is observed. The magnetic property of monoclinic and orthorhombic Fe_2(MoO_4)_3 complex spheres displays ferrimagnetic and antiferromagnetic performance respectively. The novel nanometer structure and quite relative bigger surface will have the quite vital signification on the catalyzed domain.
     2. A series of molybdates can be synthesized by a hydrothermal approach. The microstructure, phase can be controlled, through adjusting the react conditions. At the same time, througu the thorough research,friendly PEG400 is added, the phase and the morphology has beenchanged greatly. Magnetism and the electrochemical performances of aseries of functions metal molybdate nanometer material have beendiscussed. Their electrochemical performances are excellent,a-NiMoO_4,β-CoMoO_4 and a-MnMoO_4 delivered the first dischargespecific capacity of 850 mAh g~(-1), 130 mAh g~(-1) and 180 mAh g~(-1),respectively. The photocatalytic activity of metal molybdate particles withdifferent morphologies has been tested by the degradation of acidfuchsine under visible light and open up the metal molybdate catalyzedperformance research. this facile route to synthesize molybdatesnanocrystals at large scale is very significative for further investigation onthe optical, electric and magnetic properties of molybdates nanomaterials.
     3. Uniformly carbon spheres can be obtained by hydrothermalprocess in the presence of the H3PO4 and rice husk is raw mateial. It hasbeen successfully developed the new way obtained carbon. Carbonizedproducts is separated, further process is developed, industry materimalSiO_2 is obtained by hydrothermal process in the presence of the HNO3and the nitric acid is the oxidant , the remanent is raw mateial. Thisprocessing rice husk's method to enhances the economic efficiency andthe environmental protection has the very significant practicalsignificance.
引文
[1] 巩雄,张桂兰,汤国庆,陈文驹,杨宏秀,化学进展, 1997,9,349。
    [2] 李言荣,恽正中。材料物理学概论。北京:清华大学出版社。2001。
    [3] Kock, C. C. Nanostructured Mater. 1993, 2, 109.
    [4] Cerrina, E; Marrian, C. Mater. Res. Bull 1996, December, 56.
    [5] (a). Gibson, J. M. Phys. Today 1997, October, 56.
    (b). Matsui, S. Ochiai, Y. Nanotechnology 1996, 7, 247
    [6] (a). Hong, S. H.; Zhu, J.; Mirkin, C.A. Science 1999, 286, 523.
    (b) Dagata, J. A. Science 1995, 270, 1625.
    [7] (a) Levenson, M. D. Solid State Technol. 1995, September, 81.
    (b). Dunn, P. N Solid State Technol. 1994, June, 49.
    [8] Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823.
    [9] Walton, R. I. Chem. Soc. Rev. 2002,31, 230
    [10] (a) Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
    (b) Feng, S.; Xu, R. Acc. Chem. Res.2001. 34, 239.
    [11] (a)Yanagisawa, K.; Nishioka, M. J. Nucl. Sci. Tech. 1989,26, 395.
    (b) 苏勉曾,谢高阳,申泮文等译,固体化学及其应用,复旦大学出版社,1989.
    (c) Shi,E.W.J. Mater. Res. 1994, 9, 2915.
    (d) Chen, Q. W.; Qian, Y. T. Appl. Phys. Lett. 1995, 66,1608.
    (e) 施尔畏,夏长泰,王步国,仲维卓,无机材料学报1996,11,193.
    (f) Wells, R. L.; Gladfelter, W. L.J. Chester Sci. 1987, 8, 217.
    [12] (a)Lou, X. W.; Zeng, H.C. Chem. Mater. 2002, 14, 4781.
    (b) Liu, B.; Zeng, H. C. J. Am. Chem. Soc.,2004,126,16744-16746
    (c) Liu, B.; Zeng, H. C.;J. Am. Chem. Soc.,2004, 12, 8124.
    [13] (a) Xie, Q.; Dai, Z.; Huang, W. W.; Liang, J.B.; Jiang, C. L.; Qian, Y.T.; Nanotechnology. 2005, 16, 2958.
    (b) Jiang, C.L.; Zhang ,W.Q.; Zou, G.. E; Yu, W. C.; Qian, Y. T., J. Phys. Chem. B 2005, 109,1361
    (c) Mo, M.S.; Zeng, J.H.; Liu, X.M.; Yu, W.C.; Zhang, S.Y.; Qian,Y.T. Adv. Mater. 2002, 14,1658.
    (d) Liu, Z.P.; Li, S., Yang, Y.; Peng, S.; Hu, Z. K.; Qian, Y. T. Adv. Mater.2003, 15,1946.
    (e) Tang, Q.;Zhou, W. J.; Shen, J. M.; Zhang, W.; Kong, L.E; Qian, Y. T. Chem. Commun. 2004,5, 712.
    [14] (a)Wang, X .and Li, Y. D. Angew. Chem. Int. Ed 2002, 41 4790
    (b) Liu, J. E; Li, Q.H.; Wang, T.H.; Yu, D.P.; Li, Y.D.Angew. Chem.Int. Ed. 2004,43, 5048. (c) Sun. X. M.; Li. Y. D. Adv.Mater. 2005.17,2626.(d) Deng, H.;Wang, J.W.; Peng, Q.;Wang, X.; Li, Y. D. Chem. Eur. J. 2005,11, 6519.(e) Deng, H.; Li, X.L.; Peng,Q.; Wang, X.; Chen, J.P.; Li, Y. D. A. Angew. Chem. Int. Ed. 2005, 44, 2782.
    [15] (a) Wu, C. Z.; Xie, Y.; Lei, L.Y.; Hu,S.Q.; OuYang, C.Z. Adv. Mater. 2006, 18, 1727. (b) Xiong, Y.J.; Xie, Y.; Li, Z.Q.; Li, X.X.; Gao, S.M.Chem. Eur. J. 2004,10,654.(c) Wu, C.Z.; Xie, Y.; Wang, D.; Yang, J.; Li, T.W.; J. Phys. Chem. B 2003,107,13583.(d) Xiong, Y. J.; Li, Z.Q.; Zhang, R.; Xie, Y.; Yang, J.; Wu, C.Z.; J. Phys. Chem. B 2003, 107, 3697. (e) Xiong, Y. J.; Xie, Y.; Li, Z.Q.; Wu, C. Z.Chem. Eur. J.2003, 9, 1645.(f) Xiong, Y. J., Xie, Y., Wu, C. Z., Yang, J., Li, Z.Q, Xu, EAdv. Mater. 2003, 15, 405.
    [16] (a) Fang, Y. P.; Xu, A. W.; Song, R. Q.; Zhang, H.X.; You, L.P.;Yu, J.C.;Liu, H.Q. J. Am. Chem. Soc.,2003,125,16025. (b) Fang, Y.P.; Xu, A.W.; Qin, A.M.;Yu, R. J.Crys. Grow. Des. 2005,5, 1221.
    [17] (a) Qian, H.S.; Yu, S.H.; Luo, L.B.; Gong, J.Y.; Fei, L.F.; Liu, X.M. Chem. Mater. 2006, 18, 2102. (b) Qian, H.S.; Yu, S.H, Gong, J.Y.;Luo, L.B.;Fei ,L.F. Langmuir 2006, 22, 3830. (c) Liu, B.; Yu, S.H.; Zhang, F.; Li, L.J.; Zhang, Q.;Ren, L.; Jiang,K J. Phys.Chem. B 2004,108,4338. (d) Yu ,S.H.; Cui, X.J.; Li, L.L.; Li, K.; Yu, B. Antonietti M, Colfen H Adv. Mater. 2004, 16,1636.(e) Luo, L.B.; Yu, S.H.; Qian, H.S.;Zhou, T. J. Am. Chem. Soc.2005, 127,2822.
    [18] Bibby, D. M.; Dale, M. P. Nature 1985, 317, 157.
    [19] Inoue, M. et al. J. Am. Ceram. Soc. 1989, 72, 352.
    [20] (a) Gao, Q.; Xu, R. et al. J. Am. Chem. Soc. 1994, 1364. (b) Huo, Q.; Xu, R. et al. J. Chem. Soc. Chem. Commun. 1992, 875.
    [21] Sheldrick, W. S.; Wachold, M. Angew. Chem. Int. Ed. 1997, 36, 206.
    [22] (a) Yu, S. H.; Qian, Y. T. et al. Chem. Mater. 1998, 10, 2309. (b) Yu, S. H.; Qian, Y. T. et al. J. Mater. Chem. 1999, 9, 1283.
    [23] Li, Y. D.; Liao, H. W.; Qian, Y. T. et. al. Inorg. Chem. 1999, 38,1382.
    [24] Yang, J.; Xue, C.; Yu, S. H.; Zeng, J.; Qian, Y. T. Angew. Chem. Int. Ed. 2002, 41, 4697.
    [25] Yu, D. B.; Wang, D. B.; Meng, Z.; Qian, Y. T. J. Mater. Chem. 2002, 12, 403.
    [26] (a)Yao, W.T.;Yu, S.H.; Pan, L.; Li, J.;Wu, Q.S.;Zhang, L.; Jiang, H .Small. 2005, 1,320.
    (b) Yao, W.T.;Yu, S.H., Huang, X.Y.; Jiang, J.; Zhao, L.Q.;Pan, L.;Li, J.Adv. Mater. 2005, 17,2799.
    (c) Yao ,W.T.; Yu, S.H.; Jiang, J.; Zhang, L. Chem. Eur J.2006, 12, 2066.
    (d) Yao, W.T.;Yu, S.H.; Wu, Q. S. Adv.Funt. Mater 2007, 17, 723.
    [27]. Hoar, T. P.; Schulman, J. H. Nature 1943, 152, 102.
    [28] Danielsson, I.; Lindman, B. Colloids and Surfaces 1981, 3, 391.
    [29] Pileni, M. P. Nature Materials 2003, 2, 145.
    [30] Li, M.; Schnablegger, H. Mann, S. Nature 1999, 402, 393.
    [31] Pope, M. T. Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983.
    [32] Berzelius, J. PoggAnn, J.1826, 6:369.
    [33] (a) Madeira, L. M.; Portela, M. F.; Mazzocchia, C. Catal. Rev.-Sci. &Eng. 2004,46,53.
    (b) 汪信,陆路德.无机化学学报,2000,16(2):213.
    (c) 鲍骏,卞国柱,伏义路.催化学报,1999,20(6):645.
    [34] Wanklyn, B.M.; Wondre, F.R.; Davison, W. L. Mater. Sci. Ⅱ(1976) 1607.
    [35] Ringsdoff, H.; Schlarb, B.; Venzmer, J. Angew. Chem. Int. Ed. 1988. 27, 113.
    [36] Kwan, S.; Kim, F.;Akana, J.; Yang, P. D. Chem. Commun. 2001, 5, 447.
    [37] (a) Qi, L.; Coffen, H.; Antonietti, M. Angew. Chem. Int. Ed. 2000, 39, 1704.
    (b) Shi, H.; Qi, L.; Ma, J. Cheng, J. Chem. Commun. 2002, 104.
    (c) Qi, L.; Li, J.; Ma, J. Adv. Mater 2002, 14, 300.
    (d) Zhang, D.; Qi, L.; Ma, J. Cheng, H. Adv. Mater. 2002, 14, 1499.
    (e) Shi, H.; Qi, L.; Ma, J.; Cheng, H. J. Am. Chem. Soc. 2003, 125, 3450.
    (f) Shi, H.T.; Qi, L.M.;Ma, J.M.;Wu, N.Z.Adv.Funct. Mater. 2005, 15,442-450.
    [38] (a)Gong, Q.; Qian, X. F.; Cao, H.L.; Du, W.M.; Ma, X.D.; Ma, M.S.J. Phys.Chem. B 2006,110,19295.
    (b) Gong, Q.; Li, G..;Qian, X.F.; Cao, H.L.; Du, W.M.; Ma, X.D.J. Colloids and Interfcce Science 2006, 304, 408.
    (c) Gong, Q.; Qian, X.F.; Ma, X.D.;Zhu, Z.K. Cryst. Growth. Des. 2006, 6, 1821.
    [39] (a) Gen, J.; Zhu, J.J.; Chen, H.Y. Cryst. Growth. Des. 2006, 6, 321.
    (b) Gen, J.; Lv, Y.N.; Lu, D.J.; Zhu, J.J. Nanotechnology 2006, 17, 2614.
    [40] Cui, X. J.;Yu, S. H.; Li, L. L.; Liu. B, L, H. B.; Mo M. S,;Liu, X. M., Chem. Eur. J. 2004, 10, 218.
    [41] Cui, X. J.;Yu, S. H.; Li,L. L.; Li, K.; Yu,B.Adv. Mater 2004, 16, 1109.
    [42] Gao, P.; Xie, Y.; Xie, L.; Chen, Y.; Li, Z. Chem. Lett. 2006, 35, 162.
    [43] Chen, Y.; Wang, Y.S.; Chen, D.Q.; Bao, H. J. Phys. Chem. B 2005,109,794.
    [44] Xu, Y.P.; Jiang, D.Y; Bu, W.B.; Shi, J.L. Chem. Lett. 2005, 34, 978.
    [45] Yu, J. Q.; Kudo, A., Chem.Lett. 2005, 34, 1528.
    [46] (a)Guo, X.H.; Yu, S.H.; Cai, G.B.Angew. Chem. Int. Ed. 2006, 45, 3977.(b) Yu, S. H.; Chen, S.E Current Nanoscience. 2006, 2, 81. (c) Yu, S, H.; Antonietti, M.;Colfen, H.; Giersig, M. Angew. Chem. Int. Ed. 2002, 41, 2356.(d) Yu, S.H.; Colfen, H.; Tauer. K.; Antonietti, M.; Nature Mater. 2005, 4, 51.
    [47] Yu, S.H.; Antonietti, M.;Colfen, H.;Hartmann, J. Nano. Lett. 2003, 3, 379.
    [48] Liu, B.; Yu ,S.H.;Li,L. J.; Zhang, Q.; Zhang, F.;Jiang, K. Angew. Chem. Int. Ed. 2004, 43, 4745.
    [49] Chen, D.;Tang, K.B.; Li, F.Q.; Zheng, H.G.. Cryst. Growth. Des. 2006, 6, 247.
    [50] Sugimoto, T. Adv. Colloid Interface Sci. 1987, 28, 65.
    [51] J. K. Bailey; C. J. Brinker; M. L. Mecartney J. Colloid Interface Sci. 1993, 157, 1.
    [52] Ocana, M.;Morales; M. P., Serna, C. J. J. Colloid Interface Sci. 1995, 171, 85.
    [53] Chemseddine, A.; Moritz, T. Eur. J. Inorg. Chem. 1999, 235.
    [54] Penn, R. L.; Banfield, J. F.Geochim. Cosmochim. Acta. 1999, 63, 1549.
    [55] Onuma, K., Ito, A.Chem. Mater 1998, 10, 3346.
    [56] Privman, V.; Goia, D. V.; Park, J.;Matijevic, E.J. Colloid Interface Sci. 1999, 213, 36.
    [57] Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.
    [58] Penn, R. L.; Oskam, G..;Strathmann, T. J.; Searson, P. C.; Stone, A. T.; Veblen, D. R. J. Phys. Chem. B 2001, 105, 2177.
    [59] Huang, F.; Zhang, H. Z.; Banfield, J. F. Nano Lett. 2003, 3,373-378.
    [60] Yeadon, M.; Ghaly, M.; Yang, J. C.; Averback, R. S.; Gibson, J. M.Appl. Phys. Lett. 1998,73, 3208-3210.
    [61] Banfield, F.;Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Science 2000, 289, 751-754.
    [62] Alivisatos, A. P. Science 2000, 289, 736-737.
    [63] Pacholski, C.;Kornowski, A.; Weller, H. Angew. Chem. Int. Ed. 2002, 41, 1188-1191.
    [64] Tang, Z. Y.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237-240.
    [65] Liu, B.; Yu,S.H.;Li. L.J.; Zhang, F.; Zhang, Q.;Yoshimura, M.;She, P.K.J. Phys. Chem. B 2004, 108, 2788.
    [66] Zhang, Q et al. J. Phys. Chem. C 2007, 111, 3927.
    [67] Kroto, H.W.; Heath, J. R.;O'Brien, S. C. et al. Nature, 1985, 318, 162.
    [68] Iijima, S. Nature. 1991, 354, 56.
    [69] (a) Ugarte, D. Nature. 1992, 359, 707.(b) Krishnan, A.; Dujardin, E.; Treacy, M. M. J. et al. Nature. 1997, 388,451. (c) Chen, X. Q.; Seji, M. Carbon, 1999, 37,1817. (d1 Ajayan, P. M., Nugent, J. M., Siegel, R. W. et al. 2000, 404,243.
    [70] Jose-Yacaman, M.; Miki-Yoshida, M.; Rendon, L.; Santiesteban, J. G. Appl. Phys. Lett. 1993, 62, 657.
    [71] Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P; Siegal, M. P.; Provencio, P. N. Science 1998, 282, 1105.
    [72] Liu, J. W.; Shao, M. W.; Chen, X. Y.; Yu, W. C.; Liu, X. M.; Qian, Y. T. J. Am. Chem. Soc. 2003, 27, 8089.
    [73] (a) Hatta, N.; Murata, K. Chem. Phys. Lett. 1994, 217(4), 398. (b) Gherghel, L.; Kubel, C.; Lieser, G.; Rader, H.J.; Mullen, K. J. Am. Chem. Soc. 2002, 124, 13130.(c) Hesamadeh, H.; Ganjipour, B.; Mohajerzadeh, S.; Khodadadi, A.; Mortazavi, Y.; Kiani, S. Carbon, 2004, 42, 1043.(d) Yang, S. M.; Chen, X. Q.; Motojima, S., Ichihara M, Carbon, 2005, 43, 827
    [74] Wang, W. Z.; Poudel, B.; Wang, D. Z.; Ren, Z. F. J. Am. Chem. Soc. 2005, 127, 18018.
    [75] Wang, W. Z.,Huang, J. Y.;Wang, D. Z.; Ren, Z. F. Carbon, 2005, 43, 1317.
    [76] Kang, Z.H.; Wang, E.B.;Mao, B.D.; Su, Z.M.; Lei, G.; Lian, S.Y. and Lin, X. 2005, 127, 6534.
    [77] Wang, Q.; Li, H.;Chen, L. Q.; Huang, X. J. Carbon, 2001, 39, 2211.
    [78] Wang, Q.; Li, H., Chen, L. Q.; Huang, X. J. Solid State Ionics. 2002, 152/153, 43.
    [79] (a) Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J. 2006, 12, 2039. (b) Sun, X. M.; Li, Y. D. Angew. Chem. Int. Ed. 2004, 43, 3827.
    [80] Yu, S. H.; Cui, X. J.; Li, L.; Li, K.; Yu, B., Antonietti, M.; Colfen, H. Adv. Mater. 2004, 16, 636.
    [81] Luo, L. B.; Yu, S. H.; Qian, H. S.; Gong, J. Y. Chem. Commun. 2005, 793.
    [82] Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Chem. Mater. 2006, 18, 2102-2108.
    [83] Qian, H. S., Antonietti, M., Yu, S. H.Adv. Funt.Mater. 2007, 17, 637.
    [84] Cui X. J.; Yu, S. H.; Antonietti, M. Small, 2006,2, 756-759.
    [85]Li, B. X.; Xie, Y.; Xu, Y.; Wu, C. Z.; Zhao, Q. R. J. Phys. Chem. B 2006, 110, 14186.
    [86] 黄惠忠。纳米材料分析.北京:化学工业出版社,2003。
    [1] (a) C. N. R. Rao, A. K. Cheetham J. Mater Chem. 2001, 11, 2887.
    (b) C. N. R. Rao, A. Müller, A. K. Cheetham(Eds.), The Chemistry of Nanomaterials, Wiley-VCH, Weinheim, 2004.
    (c) Y. N. Xia, P. D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater 2003, 15, 353.
    [2] (a) Z. L. Wang, J. H. Song, Science. 2006, 312, 242.
    (b) J. X. Huang, A. R. Tao, S. Connor, R. R. He, P. D. Yang, Nano. Lett. 2006, 6, 524.
    [3] D. Wang, C. M. Lieber, Nature Mater 2003, 2, 355.
    [4] (a) L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, A. P. Alivisatos, Nature Mater. 2003, 2, 382.
    (b) P. Gao, Z. L. Wang, J. Phys. Chem. B. 2002, 106, 12653.
    (c) J. Lao, J. Wen, Z. F. Ren, Nano. Lett. 2002, 2, 1287.
    (d) H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, J. Am. Chem. Soc. 2003, 125, 4728.
    [5] (a) Z. A. Peng, X. G. Peng, J. Am. Chem. Soc. 2001, 123, 183.
    (b) Y. C. Cao, J. H. Wang, J. Am. Chem. Soc. 2004, 126, 14336.
    (c) F. Gao, Q. Y. Lu, S. H. Xie, D. Y. Zhao, Adv. Mater. 2002, 14, 1537.
    [6] (a) B. Liu, H. C. Zeng, J. Am. Chem. Soc. 2004, 126, 16744.
    (b) N. Leng, L. Z. Gao, F. Ping, J. Y. Zhang, X. Q. Fu, Y. G. Liu, X. Y. Yan, T. H. Wang, Small 2006, 2,621.
    [7] X. W. Teng, H. Yang, Nano. Lett. 2005, 5, 885.
    [8] Z. P. Zhang, X. Q. Shao, H. D. Yu, Y. B. Wang, M. Y. Han, Chem. Mater 2005, 17,332.
    [9] C. Y. Wu, S. H. Yu, M. Antonietti, Chem. Mater 2006, 18, 3599.
    [10] (a) S. H. Yu, H. Colfen, J. Mater. Chem. 2004, 14, 2414.
    (b) S. H. Yu, H. Colfen, MRS Bull. 2005, 30, 727.
    (c) S. H. Yu, S. F. Chen,Current Nanoscience 2006, 2, 81.
    [11] (a) H. Colfen, Top. Curr. Chem. 2006, in press.
    (b) H. Imai, Top. Curt Chem. 2006, in press.
    (c) S. H. Yu, Top. Curr. Chem. 2006, in press.
    (d) Niederberger, M.; Colfen, H. Phys. Chem. Chem. Phys. 2006, 8, 3271.
    e) H. C. Zeng, J. Mater. Chem. 2006, 16, 649.
    [12] M. E. Harlin, L. B. Backman, A. Krause, A. Krause, O. Jylha, J. Catal. 1999, 183, 300.
    [13] L. M. Madeira, M. F. Portela, C. Mazzocchia, Catal. Rev.-Sci. &_Eng. 2004, 46, 53.
    [14] O. K. Takagi, J. Fukazawa, Appl. Phys. Lett. 1980, 36, 278.
    [15] D. H. Bubb, D. Cohen, S. B. Qadri, Appl. Phys. Lett. 2005, 87, 131909.
    [16] Y. Taguchi, K. Ohgushi, Y. Tokura, Phys. Rev. B 2002, 65, 115102.
    [17] W. M. Sears, Sens. Actuators B. 2000, 67, 161.
    [18] J. Ghose, A. Roy, J. Appl. Phys. 2000, 87, 7133.
    [19] H. E. Swanson, M. C. Morris, R. P. Stinchfield, E. H. Evans,NBS Monogr. (US) 1963, 25, 24.
    [20] A. Ziehfreund, W. F. Maier, Chem. Mater. 1996, 8, 2721.
    [21] C. Mazzocchia, F. Di Renzo, Ch. Aboumrad, G. Thomas, Solid State lonics 1989, 32, 228.
    [22] H. Ehrenberg, I.. Svoboda, G. Wltschek,, M. Wiesmann; F. Trouw, H. Weitzel, H. Fuess, J. Magn. Magn. Mater. 1995, 150, 371.
    [23] (a) A. M. Beale, G. Sanker, Chem. Mater. 2003, 15, 146.
    (b) J. Q. Yu, A. Kudo, Chem. Lett. 2005, 34, 1528.
    (c) N.X. Song, C. Rhodes, J.K. Bartley, S. H. Taylor, D. Chadwick, G. J. Hutchings, J. Catal. 2005, 236, 282.
    [24] (a) S. H. Yu, M. Antonietti, H. Colfen, M. Giersig, Angew. Chem. Int. Ed. 2002, 41, 13.
    (b) S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, Adv. Funct. Mater. 2003, 13, 639.
    (c) X. J. Cui, S. H. Yu, L. L. Li, B. Liu, H. B. L, M. S. Mo, X. M. Liu, Chem. Eur. J. 2004, 10, 218.
    [25] (a) X. L. Hu, Y. J. Zhu, Langmuir 2004, 20, 2521.
    (b) D. Chen, G. Z. Shen, K. B. Tang, Z. H. Liang, H. G. Zheng, J. Phys. Chem. B. 2004, 108, 11280.
    (c) Q. Gong, X. F. Qian, X. D. Ma, Z. K. Zhu, Cryst. Growth. Des. 2006, 6, 1821
    [26] T. H. Kim, B. Ramachandra, J. S. Choi, M. B. Saidutta, K. Y. Choo, S. D. Song, Y. W. Rhee, Catal. Lett. 2004, 98, 161.
    [27] H. Ehrenberga, K. G. Bramnika, E. Muessiga, T. Buhrmestera, H. Weitzela, C. Ritterb, J. Magn. Magn. Mater. 2003, 261,353.
    [28] V. Massarotti, G. Flor, A. Marini, J. Appl. Cryst. 1981, 14, 64.
    [29] W. T. A. Harrison, Mat. Res. Bull. 1995, 30, 1325.
    [30] (a) Y. W. Jun, S. M. Lee, N. J. Kang, J. Cheon, J. Am. Chem. Soc. 2001, 123, 5150.
    (b) Y. H. Kim, Y. W. Jun, B. H. Jun, S. M. Lee, J. Cheon, J. Am. Chem. Soc. 2002, 124, 13656.
    [31] V. Diakov, D. Lafarga, A. Varma, Catal. Today. 2001, 67, 159.
    [32] J. W. Mullin, Crystallization, 3rd ed., butterworth-Heinemaan, Oxford, 1997.
    [33] (a) H. Colfen, M. Antonietti, Langmuir 1998, 14, 582. (b) H. Colfen, L. M. Qi, Chem. Eur. J. 2001, 7, 106.
    [34] a) L. M. Qi, H. Colfen, M. Antonietti, Angew. Chem. Int. Ed. 2000, 39, 604. (b) L. M. Qi, H. Colfen, M. Antonietti, Chem. Mater. 2000, 12, 2392. (c) S. H. Yu, H. Colfen, J. Hartmann, M. Antonietti, Adv. Funct. Mater. 2002, 12, 541.
    [35] a) R. Kniep, S. Busch, Angew. Chem. Int. Ed. 1996, 35, 2624; b) S. Busch, H. Dolhaine, A. DuChesne, S. Heinz, O. Hochrein, F. Laeri, O. Podebrad, U. Vietze, T. Weiland, R. Kniep, Eur. J. Inorg. Chem. 1999, 10, 1643; c) H. Colfen, Habilitation thesis, Potsdam, 2001. d) H. Tlatlik, P. Simon, A. Kawska, D. Zahn, R. Kniep, Angew. Chem. Int. Ed. 2006, 45, 1905.
    [36] H. Y. Chen, Mat. Res. Bull. 1979, 14, 1583.
    [1] Adeira, L. M.; Portela, M. F.; Mazzocchia, C. Catal. Rev. Sci. Eng. 2004, 46, 53.
    [2] Livage, C.; Hynaux, A.; Marrot, J. ; Nogues, M.; Férey, G. J. Mater. Chem. 2002, 12, 1423.
    [3] Sears, W. M. Sens. Actuat. B: Chem. 2000, 67, 161.
    [4] Liu, B.; Yu, S. H.; Li, L. J.; Zhang, Q.; Jiang, K. Angew. Chem. 2004, 116, 4833; Angew. Chem. Int. Ed. 2004, 43, 4745.
    [5] Hyde, B. G.; Andersson, S.; Inorangic Crystal Structure. Wiley, New York. 1989.
    [6] Young, A. P.; Schwartz, C. H. Science. 1963, 141, 348.
    [7] Swanson, H. E.; Morris, M. C. ; Stinchfield, R. P.; Evans, E. H. NBS Monogr. (US) 1963, 25, 24.
    [8] Bonanni, M.; Spanhel, L.; Lerch, M.; Fuglein, E.; Muller, G. Chem. Meter. 1998, 10, 304.
    [9] (a) Kwan, S.; K.im, F.; Akana, J.; Yang, P. D. Chem. Commun. 2001, 5, 447.
    (b) Shi, H. T.; Wang, X. H.; Zhao, N. N.; Qi, L. M.; Ma, J. M. J. Phys. Chem. B 2006, 110, 748.
    [10] Yu, S. H.; Antonietti, M.; Colfen, H.; Giersig, M. Angew. Chem. 2002, 114, 2402; Angew. Chem. Int. Ed. 2002, 41, 2356.
    [11] (a) Yu, S. H.; Liu, B.; Mo, M. S.; Huang, J. H.; Liu, X. M.; Qian, Y. T. Adv. Funct. Mater. 2003, 13, 639. (b) Cui, X. J.; Yu, S. H.; Li, L. L.; Liu. B, L, H. B.; Mo, M. S.; Liu, X. M. Chem. Eur. J. 2004, 10, 218.
    [12] (a) Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Nature Mater. 2004, 3, 380. (b) Wang, D.; Qian, F.; Yang, C.; Zhong, Z.; Lieber, C. M. Nano Lett. 2004, 4, 871.
    [13] (a) Yang, H. G.; Zeng, H. C. Angew. Chem. 2004, 116, 6040; Angew. Chem. Int. Ed. 2004, 43, 5930. (b) Huang, Q.; Gao, L. Chem. Lett. 2004, 33, 1338.
    [14] Liu, B.; Yu, S.; Li, L.; Zhang, F.; Zhang, Q.; Yoshimura, M.; Shen, P.J. Phys. Chem. B 2004, 108, 2788.
    [15] (a) Ehrenberg, H.; Svoboda, I.; Wltschek, G.; Wiesmann, M.; Trouw, F.; Weitzel, H.; Fuess, H. J. M. M. M. 1995, 150, 371. (b) Vie, D.; Martynez, E.; Sapin, F.; Folgado, J. V.; Beltran, A.; Chem. Mater. 2004, 16, 1697. (c) Ehnmberg, H.; Wltschek, G.; Knener, F. T. T.; Weitzel, H.; Fues, H. J. M. M. M. 1994, 135, 355.
    [16] (a) Eda, K.; Uno, Y.; Nagai, N.; Sotani, N.; Whittingham, M. S. J. Sold. Stat. Chem. 2005, 178, 2791.(b) Eda, K.; Uno,Y.; Nagai, N.; Sotani, N.; Chen, C.; Whittingham, M. S. J. Sold. Stat. Chem. 2006, 179, 1453.
    [17] Madras, G.; Mccoy, B. J. Chem. Eng. Sci. 2002, 57, 3809.
    [18] (a)Yu, S. H.; Colfen, H.; Hartmann, J.; Antonietti, M. Adv. Funct. Mater. 2002, 12, 8. (b) Nassif, N.; Gehrke, N.; Pinna, N.; Shirshova, N.; Tauer, K.; Antonietti, M.; Colfen, H. Angew. Chem. 2005, 117, 6114; Angew. Chem. Int. Ed. 2005, 44, 6004.
    [19] (a)Chen, S. J.; Chen, X. T.; Xue, Z. L.; Zhou, J. H.; L, J.; Hong, J. M.; You, X. Z. J. Mater. Chem. 2003, 13, 1132. (b) Cheng, Y.; Wang, Y. S.; Chen, D. Q.; Bao, F. J. Phys. Chem. B 2005, 109, 794.
    [20] Zhang, D. F.; Sun, L. D.; Yin, J. L.; Yah, C. H. AdV. Mater. 2003, 15, 1022.
    [21] Yang, J.; Lin, C. K.; Wang, Z. L.; Lin, J. Inorg. Chem. 2006, 45, 8973.
    [22] (a) Brito, J. L.; Barbosa, A. L. J. Catal. 1997, 161, 467. (b) David, V.; Eduardo, M.; Fernando, S.; Jose,V. F.; Aurelio, B.; Rita, X. V.; Vicente, C. C. Chem. Mater 2004, 16, 1697.
    [23] (a) Rajaram,. P.; Viswanathan, B.; Sastri, M.V.C.; Srinivasan, J. J.J. Chem. 1974, 12, 1267. (b) Veleva, S.; Frifiro, F. React. Kinet. Catal. Lett. 1976, 4, 19. (c) Burrington, J. D.; Grasselli, R. K. J. Catal., 1979, 59, 79. (d) Burrington, J. D.; Kartisek, C.T.; Grasselli, R. K. J. Catal. 1980, 63, 235. (e) Aranda, R. M. M.; Portela, M. F.; Madeira, L. M.; Freire, F.; Oliveira, M. Applied Catalysis A: General 1995, 127, 201. (f) Jose, A. R; Sanjay, C.; Jonathan, C. H.; Alberto, A.; Joaquin, L. B. J. Phys. Chem. B 1998, 102, 1347, (g) Jose, A. R.; Sanjay, C.; Jonathan, C. H. J. Phys. Chem. B 1999, 103, 770.
    [24] (a) Beale, A. M.; Sankar, G. Chem. Mater. 2003, 15, 146. (b)Yu, J. Q.; Kudo, A. Chem. Lett. 2005, 34, 1528.
    [25] Leyzerovich, N. N.; Bramnik, K.G.; Buhrmester, T.; Ehrenberg, H.; Fuess, H. J. Pow. Sour.2004, 127, 76.
    [26] Sleight, A. W.; Chamberland, B. I. Inorg. Chem. 1968, 7, 1672.
    [27] Abrahams, S. C.; Reddy, J. M.; J. Chem. Phys. 1965, 43, 2533.
    [28] Corbet, F.; Eyraud, C. Bull Soc. Chim. Fr. 1961, 571.
    [29] Sinhamahapatra, P.K.; Bhattacharyya, S. K.; J. Therm. Anal 1975, 8, 45.
    [30] Smith, G. M.; Ibers, J. A.; Aata. Cryst. 1965, 19, 269.
    [31] Livage, C.; Hynaux, A.; Marot, J.; Nogues,M.; Ferey,G. J. Mater. Chem. 2002, 12, 1423.
    [1] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
    [2] Iijima, S. Nature 1991, 354, 56.
    [3] Jose-Yacaman, M.; Miki-Yoshida, M.; Rendon, L.; Santiesteban, J. G. Appl. Phys. Lett. 1993, 62, 657.
    [4] (a) Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P; Siegal, M. P.; Provencio, P. N. Science 1998, 282, 1105. (b) Li, W. Z.; Xie, S. S.; Qian, L. X.;, Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science 1996, 274, 1701.
    [5] Liu, J. W.; Shao, M. W.; Chen, X. Y.; Yu, W. C.; Liu, X. M.; Qian, Y. T. J. Am. Chem. Soc. 2003, 27, 8089.
    [6] (a)Yang, S. M., Chen, X. Q.; Motojima, S., Ichihara M, Carbon, 2005, 43, 827 (b) Hesamadeh, H, Ganjipour, B, Mohajerzadeh, S, Khodadadi, A, Mortazavi, Y, Kiani, S. Carbon, 2004, 42, 1043
    [7] (a)Gherghel L, Kubel C, Lieser G, Rader HJ, Mullen K, J. Am. Chem. Soc. 2002, 124, 13130 (b) Hatta N, Murata K, Chem. Phys. Lett. 1994, 217, 398.
    [8] (a)Sun, X. M.; Li, Y. D. Angew. Chem. Int. Ed. 2004, 43, 597.(b) Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Carbon 2001, 39, 2211.
    [9] Sun, X. M.; Li, Y. D. Langmuir 2005, 21, 6019.
    [10] (a) Luo, L. B.; Yu, S. H.; Qian, H. S.; Zhou, T. J. Am. Chem. Soc. 2005, 127, 2822. (b) Gong, J. Y.; Luo, L. B.; Yu, S. H.; Qian, H. S.; Fei, L. F. J. Mater. Chem. 2006, 16, 101. (c) Qian, H. S.; Luo, L. B.; Gong, J. Y.; Yu, S. H.; Li, T. W.; Fei, L. F. Cryst. Growth Des. 2006, 6, 607.
    [11] Yu, S. H.; Cui, X. J.; Li, L.; Li, K.; Yu, B.; Antonietti, M.; Colfen, H. Adv. Mater. 2004, 16, 636.
    [12] Luo, L. B.; Yu, S. H.; Qian, H. S.; Gong, J. Y. Chem. Commun. 2005, 793.
    [13] Cui X. J.; Antonietti, M.,Yu, S. H. Small, 2006,2, 756.
    [14] Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Chem. Mater. 2006, 18, 2102.
    [15] 张声俭.粮食与饲料工业.1999,1,20.
    [16] (a)陈爱国.新型碳材料.1999,3,58.
    (b) Liou, T. H.; Chang, F. W.; Lo, J. J. Ind. Eng. Chem. Res. 1997, 36, 568-573
    [17] 徐志勇.贵州化工.1994,1,29.
    [18] (a)周德凤,郝婕,巴晓微,任清.长春工业大学学报.2004,25,59.
    (b) 杨先和.无机化学学报.1992,7,379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700