用户名: 密码: 验证码:
低温下ABA调控冬小麦糖代谢及抗寒基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东农冬麦1号是我国首能例能在黑龙江省(最低温可达-30℃)严寒条件下越冬的强抗寒冬小麦新品种,返青率大于85%;济麦22是在我国华北地区广泛种植的冬小麦品种,也具有较强的抗寒能力,但不能在黑龙江省越冬。本研究以这两种冬小麦为试验材料,在苗期低温下及越冬期探讨了外源ABA对糖代谢及抗寒基因表达的影响,以期了解外源ABA调控冬小麦糖代谢及抗寒基因表达的生理及分子基础,为揭示外源ABA提高冬小麦抗寒性提供新的研究思路。本研究所用材料东农冬麦1号为黑龙江省高寒地区唯一可以种植的冬小麦品种,具有典型性和代表性;国内外对冬小麦抗寒性的研究大多采用室内不同低温处理小麦幼苗,本研究采用室内模拟低温和大田严寒情况下相结合,更接近生产实际;本研究采用生理生化技术与分子生物学技术相结合的实验方法,首次系统全面地从糖代谢及抗寒基因表达角度研究ABA调控冬小麦抗寒性,从总体上把握糖类物质的来源和去路,阐明ABA对冷胁迫下植株能量流向、渗透水平,及在信号作用下能量代谢及抗寒基因调节过程的影响,为揭示冬小麦抗冻机理提供理论依据。最终为北方高寒地区栽培冬小麦的改良做出重要贡献。本文的主要研究
     结果如下:
     1.苗期低温下外源ABA对冬小麦糖代谢的影响
     苗期低温胁迫时,外源ABA促进了抗寒性强的东农冬麦1号叶片中蔗糖、果糖的积累,从而提高了可溶性糖的含量,在地下茎中则在0℃以上时促进糖类的积累;而外源ABA没有促进济麦22的叶片和地下茎中糖类的积累;淀粉的积累在两品种小麦的叶片和地下茎中则受到抑制或与对照差异不显著。外源ABA对东农冬麦1号两种器官中TaRBC、TaFBP、TaPRK、TaUGP、TaSAInv、TaSPS、TaPK、TaG6PDH、TaTPT和TaSuT的表达有不同程度的促进作用,这些基因分别参与碳的固定、蔗糖的合成和分解、糖酵解、戊糖磷酸途径以及糖的运输,但在东农冬麦1号中,外源ABA处理后也有些基因如TaAGP、TaPD和TaHxK下调表达;在济麦22中,外源ABA处理后大部分糖代谢酶基因的表达都受到了抑制。
     2.越冬期外源ABA对冬小麦糖代谢的影响
     越冬期低温时,两品种冬小麦ABA处理组的叶片和分蘖节中都积累了更多的可溶性总糖、蔗糖和果糖,尤其是在越冬器官分蘖节中,在抗寒性强的东农冬麦1号中比抗寒性弱的济麦22中积累了更多的碳水化合物,外源ABA促进了东农冬麦1号两种器官和济麦22叶片中淀粉的积累,但对济麦22分蘖节中淀粉积累的影响却不明显。外源ABA不同程度地促进了东农冬麦1号和济麦22叶片和分蘖节中TaRBC、TaFBP、TaPRK、TaUGP、TaAGP、TaSAInv、TaSS、TaSPS、TaPK、TaH×K、TaPFK、TaPD、TaG6PDH和TaSuT基因的表达,但在东农冬麦1号中的促进程度大于济麦22,外源ABA显著地促进了TaPRK, TaUGP, TaSPS, TaSAInv, TaPD和TaPFK基因在两品种冬小麦叶片中的表达,而TaTPT仅在东农冬麦1号的叶片中上调表达。外源ABA促进蔗糖积累的同时也促进了蔗糖的分解,但积累大于分解,而蔗糖磷酸合成酶(SPS)与蔗糖合成酶(SS)在蔗糖积累方面起作用,尿苷二磷酸-葡萄糖焦磷酸化酶(UGP)对蔗糖的积累和分解同时起作用,酸性转化酶和碱性转化酶则在蔗糖的分解方向起作用;ABA处理不同程度地提高了两个品种小麦叶片及分蘖节中糖酵解代谢酶丙酮酸激酶、己糖激酶和磷酸果糖激酶的活性,尤其在最低温-25℃时明显抑制这几种酶活性的降低,从而减缓温度下降给冬小麦带来的伤害,但这种影响在抗寒性强的东农冬麦1号中表现得更明显,而在冷敏感的济麦22中相对不明显,丙酮酸激酶活性在济麦22分蘖节中甚至受到ABA的抑制。
     3.糖含量与糖代谢关键酶基因表达以及酶活性间的相关分析
     ABA处理组的糖含量与糖代谢酶基因表达之间的相关性更为普遍,外源ABA对糖含量与糖代谢酶基因的调控具有一定的一致性,但在苗期和越冬期,对照和ABA处理组中糖含量与糖代谢酶基因之间的相关性并不完全一致,表明糖类物质的积累与糖代谢酶基因的表达之间具有复杂的关系。越冬期通过对糖含量与糖代谢酶活性间的相关分析表明,ABA处理后也使糖含量与酶活性间的相关更为普遍,两小麦的叶片中糖含量与糖代谢酶活性的相关程度都高于糖含量与糖代谢酶基因表达之间的相关程度,外源ABA通过调控低温下冬小麦蔗糖代谢相关酶的活性和呼吸代谢相关酶的活性而影响着蔗糖代谢及呼吸代谢,蔗糖代谢酶之间,以及呼吸代谢酶之间相互影响、相互协调,错综复杂地调控蔗糖代谢和呼吸代谢的进行。
     4.低温胁迫时外源ABA对冬小麦抗寒基因表达的影响
     外源ABA主要通过依赖于ABA的信号途径影响冬小麦抗寒基因的表达,并且这种影响在抗寒性强的东农冬麦1号中比冷敏感的济麦22中更明显。苗期低温时,在东农冬麦1号叶片中外源ABA在低温胁迫8h前促进了依赖于ABA的TaCBFIVd-D22和TaMYB80基因的表达,在低温胁迫2h前促进了依赖于ABA的TaWabi5和TaWrab17基因的表达,在东农冬麦1号地下茎中,外源ABA在低温胁迫时促进了TaMYB80、TaWabi5和TaWrab17基因的表达,低温胁迫8h后促进TaCBFIVd-D22基因的表达;在济麦22叶片中,外源ABA在低温胁迫0.5h前促进了TaWabi5基因的表达,在低温胁迫8h前促进了TaCBFIVd-D22和TaMYB80基因的表达,但在济麦22的地下茎中,外源ABA则抑制了这四种基因的表达。在越冬期时,在东农冬麦1号叶片中,外源ABA促进了TaMYB80、TaWabi5和TaWrab17基因的表达,在0℃及以下低温时也促进了TaCBFIVd-D22基因的表达,在济麦22叶片中,0℃以上温度时促进了TaCBFIVd-D22、TaMYB80和TaWrab17基因的表达,在-10℃以上温度时也促进了TaWabi5基因的表达;在东农冬麦1号和济麦22的分蘖节中,外源ABA促进了TaCBFIVd-D22基因的表达,在0℃以上温度时也促进了TaWabi5基因的表达,在东农冬麦1号分蘖节中,外源ABA抑制了TaMYB80和TaWrab17基因的表达,在济麦22分蘖节中0℃以上温度时促进了TaWrab17基因的表达,而TaMYB80基因的表达也受到抑制。低温时外源ABA对不依赖于ABA的信号途径中的抗寒基因TaCBFII-5.2、TaWcor15、TaWcs120和TaCOR39的表达也有一定的影响,也能在一定程度上促进这些基因的表达,但多数情况下影响不明显或抑制这些基因的表达。
The Triticum aestivum Dongnongdongmai1cultivar has an85%winter survival rate and isthe only winter wheat variety grown in Heilongjiang Province (minimum temperature up to-30℃).The T. Aestivum Jimai22cultivar is widely planted in northern China, also has a strong coldresistance, but cannot survive in the cold winter temperatures in Heilongjiang Province. In thisstudy, both winter wheat were used as test materials, and the effects of exogenous ABA on sugarmetabolism and expression of antifreeze genes at low temperature stress were discussed in theseedling stage and wintering stage, and to understand the physiological and molecular basis forexogenous ABA regulating winter wheat sugar metabolism and expressions of antifreeze genes,and it will provide new ideas for revealing exogenous ABA improving cold hardiness of winterwheat. Dongnongdongmai1is the only winter wheat varieties that can be grown in the alpineregion of Heilongjiang Province, and it is typical and representative; Low temperature treatingwheat seedlings in room was adopted in studying cold resistance of winter wheat at home andabroad, but in this study, stimulated low temperature and natural low temperature in the field werecombined, and it is closer to the actual production; In this study, physiological and biochemicaltechnology and molecular biology techniques experimental method were used to study the ABAregulating winter wheat cold tolerance from the point of sugar metabolism and cold tolerance geneexpression at first time to overall grasp the source and path of the carbohydrate, and clarify theeffects of the ABA on plant energy flows, the penetration level, the energy metabolism undersignal effect and cold tolerance gene regulation process, and will provide theoretical basis forantifreeze mechanism of winter wheat, and make an important contribution to the improvement ofthe cultivation of winter wheat in the northern alpine region in the end. The results are as follows:
     1. Effect of exogenous ABA on winter sugar metabolism in seedling stage at low temperatures
     Exogenous ABA promoted the accumulation of soluble sugar、sucrose content and fructosecontent to improve the soluble sugar content in the leaves of Dongnongdongmai1with strong coldresistance in seedling stages at low temperatures, and exogenous ABA promoted the accumulatonof sugars in the underground stems above0℃; Accumulation of sugars in the leaves andunderground stems of Jimai22was not promoted by exogenous ABA. Starch accumulation wassuppressed by exogenous ABA in the leaves and underground stems of the two wheat or the differences between control and ABA treatment was not significant. Exogenous ABA promoted theexpression levels of TaRBC、TaFBP、TaPRK、TaUGP、TaSAInv、TaSPS、TaPK、TaG6PDH、TaTPT and TaSuT in the leaves and underground stems of Dongnongdongmai1to different extent,and these genes are involved in the carbon fixed, synthesis and degradation of sucrose、glycolysis、pentose phosphate pathway and sugar transport. But, some genes such as TaAGP, TaPDand TaHxK were down-regulated by exogenous ABA in Dongnongdongmai1; Most key enzymesgenes of sugar metabolism were suppressed by exogenous ABA in Jimai22.
     2. Effect of exogenous ABA on winter sugar metabolism in wintering stage at low temperatures
     In wintering period, more soluble sugars, sucrose and fructose were accumulated in leaves andtillering nodes of ABA treated seedlings of the two wheat cultivars, especially in the winteringorgan tillering nodes. More carbohydrates were accumulated in cold-resistant wheat cultivarDongnongdongmai1than in cold-sensitive wheat cultivar Jimai22. Exogenous ABA improved theaccumulation of starch in the two tissues of Dongnongdongmai1and the leaves of Jimai22, butthe accumulation in the tilleringnodes of Jimai22was not obviously effected by exogenous ABA.Exogenous ABA promoted the expression of TaRBC、TaFBP、TaPRK、TaUGP、TaAGP、TaSAInv、TaSS、TaSPS、TaPK、TaH xK、TaPFK、TaPD、TaG6PDH and TaSuT gene expression in the leavesand tillering nodes of Dongnongdongmai1and Jimai22to different extent, but a greater extentwas showed in the Dongnongdongmai1than Jimai22. Exogenous ABA significantly promotedexpression of TaPRK, TaUGP, TaSPS, TaSAInv, TaPD, and TaPFK gene in leaves of two varietiesof winter wheat, and TaTPT only upregulated in the leaves of Dongnongdongmai1. ExogenousABA promoted sucrose accumulation and also promoted the decomposition of sucrose, but theaccumulation was greater than decomposition, while the SPS and SS played a role in terms ofsucrose accumulation, and UGP played important role in sucrose accumulation and decompositionat the same time, acid invertase and alkaline invertase enzymes played roles in the decompositionof sucrose; ABA treatment improved the glycolytic metabolic enzyme pyruvate kinase, hexokinaseand phosphofructokinase activity to varing degrees in the leaves and tillering nodes of the twovarieties of wheat, especially in the minimum temperatures-25℃,enzyme activities decreaseswere inhibited by exogenous ABA, there by slowing the injury of temperature drops to winterwheat, but this effect was even more marked in cold-resistant wheat cultivar Dongnongdongmai1than in cold-sensitive wheat cultivar Jimai22, and the acetoneacid kinase activity was inhibited byABAin the tillering nodes of Jimai22.
     3. Correlation analysis between the sugar content and the expression of key enzyme genes of andenzyme activity of sugar metabolism
     The correlation between sugar content and gene expression of sugar metabolism was more prevalent in ABA treated group. There was a certain consistency regulation on sugar content andsugar metabolism gene expression by exogenous ABA. But the correlation between the sugarcontents and sugar metabolism gene expression in control and ABA treated group were not entirelyconsistent at seedling stage and wintering period, this indicated that there was a complexrelationship between the accumulation of carbohydrate and sugar metabolism gene expression.Correlation analysis between the sugar content and the activities of sugar metabolism in winteringstage indicated that the correlation was more prevalent in ABA treated group.The degree ofcorrelaton between sugar content and sugar metabolic enzymes activites was higher than thecorrelation between sugar content and sugar metabolism gene expression in leaves of the twowheat cultivars. Exogenous ABA affected sucrose metabolism and respiratory metabolism troughregulating the sucrose metabolism enzyme activities and respiratory metabolism related enzymesactivities in winter wheat at low temperatures. Surose metabolism enzymes as well as respiratoryMetablosm enzymes were affected and coordinated each other and regulated the sucrosemetabolism and respiratory metabolism intricately.
     4. Effect of exogenous ABA on expression of antifreeze genes at low temperatures
     Exogenous ABA affected antifreeze genes expressions of winter wheat by ABA-dependentsignaling pathways, and these effects were more obvious in in cold-resistant wheat cultivarDongnongdongmai1than in cold-sensitive wheat cultivar Jimai22. In seedling stage, at lowtemperatures, exogenous ABA promoted the expressions of TaCBFIVd-D22and TaMYB80genesbefore8h low temperature stress, and promoted the expressions of TaWabi5and TaWrab17genesin leaves of Dongnongdongmai1, and exogenous ABA promoted the expression of TaMYB80、TaWabi5and TaWrab17genes, and promoted the expression of TaCBFIVd-D22genes before8hlow temperature stress in underground stems of Dongnongdongmai1; In the leaves of Jimai22, theexpression of TaWabi5was upregulated by exogenous ABA at0.5h of low temperature stress, andthe expressions of TaCBFIVd-D22and TaMYB80were upregulated before8h low temperaturestress, the expression of these four genes were all inhibited by exogenous ABA in undergroundstems of Jimai22. In wintering stage, exogenous ABA promoted the expressions of TaMYB80、TaWabi5and TaWrab17genes and promoted the expression of TaCBFIVd-D22above0℃in theleaves of Dongnongdongmai1, and the expressions of TaCBFIVd-D22、TaMYB80and TaWrab17genes were promoted by exogenous ABA and the expression of TaWabi5gene was promoted byexogenous ABA as well in leaves of Jimai22; In tillering nodes of Dongnongdongmai1and Jimai22, exogenous ABA promoted the expression of TaCBFIVd-D22, and also pomoted the expressionof TaWabi5gene above0℃, and the expressions of TaMYB80and TaWrab17were all inhibitedby exogenous ABA in tillering nodes of Dongnongdongmai1, while in tillering nodes of Jimai22,exogenous ABA promoted the expression of TaWrab17, and inhibited the expression of TaMYB80. There were some impacts of exogenous ABA on cold resistance genes in the ABA-independentsignaling pathways as well, and expressions of these genes were promoted by exogenous ABA to acertain extent.
引文
[1]和红云,田丽萍,薛琳.植物抗寒性生理生化研究进展[J].天津农业科学,2007,13(2):10-13.
    [2]陈思思.苗期和拔节期低温胁迫对扬麦16产量和生理特性的影响[D].扬州:扬州大学,2010.
    [3]陈中杰,徐春香.植物冷害及其抗冷生理[J].福建果树,1998,2:21-23.
    [4]赵俊杰,荆树科,欧行奇,等.低温处理对不同品种小麦叶POD活性的影响[J].安徽农业科学,2010,38(34):19268-19274.
    [5]王树刚,王振林,王平,等.不同小麦品种对低温胁迫的反应及抗冻性评价[J].生态学报,2011,31(04):1064-1072.
    [6]郭兴,潘登奎,罗晓丽.植物超氧化物歧化酶的研究及其在基因工程中的应用[J].山西农业科学,2008,36(3):3-6.
    [7]朱政,蒋家月,江昌俊,等.低温胁迫对茶树叶片SOD,可溶性蛋白和可溶性总糖含量的影响[J].安徽农业大学学报,2011,38(1):24-26.
    [8]RJUS S E,MOILER B L.Photosystem Ι is an early target of Photo inhibition in barleyilluminated at chilling temperatures [J].Plant Physiol,1998,116:75-77.
    [9]STEPINSKI D.Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybeanroot meristematic cells treated with chilling stress and after recovery[J].Protoplasma,2009,235(1-4):77-89.
    [10]李树德.中国主要蔬菜抗病育种进展[M].北京:科学出版杜,1995,457-462.
    [11]刘忠,邓俭,唐其展.植物抗冷性研究进展[J].广西农业科学,2006,37(6):667-670.
    [12]简令成,吴素萱.植物抗寒性的细胞学研究小麦越冬过程中细胞结构的变化[J].植物学报,1965,13:1-15.
    [13]简令成,孙德兰,施国雄,等.不同柑桔种类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,1986,13(3):163.
    [14]STEPONKU P L. Role of the plasma membrane in freezing injury and coldacclimation[J].Ann Rev Plant Physiology,1984,5:543-548.
    [15]TASSEVAG,DAVY D V J,CANTREL C,et al. Changes in the endoplasmicreticulum lipidproprieties in response to lowtemperature in Brassica napus[J].Plant Physiology andBiochemistry,2004,42:811-822.
    [16]DEPALMA M,GRILLO S,MASSARELLI I,et al. Regulation of desaturase gene expression,changes in membrane lipid composition and freezing tolerance in potato plants[J]. MolecularBreeding,2008,21:15-26.
    [17]沈漫.不同温度条件下常春藤叶片磷脂变化的比较分析[J].园艺学报,2003,30(4):431-435.
    [18]沈漫.不同抗寒性的杜鹃品种叶片磷脂和脂肪酸组成差异性比较分析[J].南京林业大学学报,1997,21(2):67-69.
    [19]周瑞莲,赵哈林.高寒山区牧草根质膜和脂肪酸组分对冷冻低温的适应反应[J].植物生态学报,2001,25(1):115-118.
    [20]马宁,王玉,周克福,等.自然降温过程中茶树叶片脂肪酸含量分析[J].青岛农业大学学报(自然科学版),2012,29(2):101-105.
    [21]马倩,常平,刘少云,等.烤烟品种幼苗低温反应敏感度与其生化差异性研究[J].中国烟草科学,2011-10,32(5):92-95.
    [22]徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展[J].林业科学,2007,43(4):88-94.
    [23]SHAHNIYAR M B,HESEN G B,MINAKHANIM N K,et al.Effect of water stress on proteincontent of some calvin cycle enzymes in different wheat genotypes[J].Proceedings of ANAS(Biological Sciences),2010,65(5-6):106-111.
    [24]CRISTINA G F,MERCEDES B.Linking microalgae and cyanobacteria culture conditions andkey-enzymes for carbohydrate accumulation[J].Biotechnology Advances,2012,30(6):1655-1661.
    [25]STEPHEN C M,CARINE C,RENE G,et al.Phylogenetically-based variation in theregulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphatedehydrogenase, in algae [J].Journal of Experimental Botany,2012,1(3):735-745.
    [26]刘洋,林希昊,姚艳丽,等.高等植物蔗糖代谢研究进展[J].中国农学通报,2012,28(06):145-152.
    [27]DANIEL D,MENG M,AGNIESZKA G,et al.Substrate kinetics and substrate effects on thequaternary structure of barley UDP-glucose pyrophosphorylase[J].Phytochemistry,2012,79:39-45.
    [28]SHAILENDRA S,NESE S,VOKKALIGA T H,et al.Delineating the structural, functionaland evolutionary relationships of sucrose phosphate synthase gene family Ⅱ in wheat andrelated grasses[J].BMC Plant Biology,2010,10:134.
    [29]KUMUTHA D,SAIRAM R K,EZHILMATHI K,et al.Effect of waterlogging on carbohydratemetabolism in pigeon pea (Cajanus cajan L.):Upregulation of sucrose synthase and alcoholdehydrogenase[J].Plant Science,2008,175(5):706-716.
    [30]STURM A.Invertases primary structures,functions,and roles in plant development andsucrose partitioning[J]. Plant Physioloy,1999,(121):1-7.
    [31]CHRISTINA K,CHRISTOPHER P G.Sucrose transporters of higher plants[J].CurrentOpinion in Plant Biology,2010,13(3):287-297.
    [32]PETER L K, ALAN M M. Biochemistry and genetics of starch synthesis[J].Annual Reviewof Food Science and Technology,2010,1:271-303.
    [33]贺正辉,李明启.光对花生叶片绿色细胞糖酵解代谢的影响[J].植物生理学报,1987,13(3):308-315.
    [34]陈牧,刘锐,翁屹.三羧酸循环的发现与启示[J].医学与哲学,2012,33(1A):71-73.
    [35]MARGAREHA J V,SONIA O,WAGNER L A,et al.Tricarboxylic acid cycle activityregulates tomato root growth via effects on secondary cell wall production[J].PlantPhysiology,2010,153(2):611-621.
    [36]ESPOSITO S,MASSARO G,VONA V,et al.Glutamate synthesis in barley roots: the role ofthe plastidial glucose-6-phosphate dehydrogenase[J].Planta,2003,216:639647.
    [37]HUTCHINGS D,RAWSTHORNE S,EMES M J.Fatty acid synthesis and the oxidativepentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.)[J].JExp Bot,2005,56(412):577585.
    [38]HUANG J,WANG J F,ZHANG H S.Advances on plant pentose phosphate pathway and itskey enzymes[J].Chin Bull Bot,2004,21(2):139145.
    [39]MOEZ S,ABDELILAH C,NICOLAS R,et al.Effect of cadmium on resumption of respirationin ucotyledons of germinating pea seeds[J].Ecotoxicology and Environmental Safety,2010,73(6):1246-1254.
    [40]LIU Y,WAN Q,WU R,et al.Role of hydrogen peroxide in regulating glucose-6-phosphatedehydrogenase activity under salt stress[J].Biologia Plantarum,2010,56(2):313-320.
    [41]THOMASHOW M F. So What's New in the Field of Plant Cold Acclimation? Lots![J].PlantPhysiology,2001,125(1):89-93.
    [42]MARKOVSKAYA E F, SHERUDILO E G., Galibina N A, et al. The role of carbohydrates inthe responses of chilling-sensitive plants to short and long-term low-temperaturetreatments[J].Russian Journal of Plant Physiology,2010,57(5):641-647.
    [43]TOGNETTI J,Salerno C,CRESPI M, et al. Sucrose and fructan metabolism of differentwheat cultivars at chilling temperatures[J]. Physiologia Plantarum,1990,78(4):554-559.
    [44]KOSTER K L,Lynch D V.Solute Accumulation and compartmentation during the coldacclimation of Puma Rye[J].Plant Physiology,1992,98(1):108-113.
    [45]FABIO L P,HENRIQUED V, ANA P D R, et al.Cold induced changes on sugar contents andrespiratory enzyme activities in coffee genotypes[J].Ciência Rural,SantaMaria,2010,40(4):781-786.
    [46]GUILLAUME C,THIERRY A.The timing of leaf fall affects cold acclimation by interactionswith air temperature through water and carbohydrate contents[J].Environmental andExperimental Botany,2011,72(3):351-357.
    [47]EDUARDO M, MARILYN G, ANDRZEJ M,et al.Proteins accumulate in the apoplast ofwinter rye leaves during cold acclimation [J].Physiologia Planarum,1993,87(4):499-507.
    [48]SASAKI H, ICHIMURA K, Oda M. Changes in sugar content during cold acclimation anddeacclimation of cabbage seedlings[J]. Annals of Botany,1996,78(3):365-369.
    [49]KAURIN A,JUNTTILA O,HANSON J. Seasonal changes in frost hardiness in cloudberry(Rubus Chamaemorus) in relation to carbohydrate content with special reference to sucrose[J].Physiologia Plantarum,1981,52(2):310-314.
    [50]POLLOCK C J,LLOYD E J,STODDART,et al.Growth, photosynthesis and assimilatepartitioning in Lolium Temulentum exposed to chilling temperatures[J].PhysiologiaPlantarum,1983,59(2):257-262.
    [51]WANNER L A,JUNTTILA O.Cold-induced freezing tolerance in Arabidopsis[J].PlantPhysiology,1999,120(2):391-400.
    [52]ECE T, SERGUL E.Soluble sugars and sucrose-metabolizing enzymes related to coldacclimation of sweet cherry cultivars grafted on different rootstocks[J].The Scientific WorldJournal,2012, doi:10.1100/2012/979682.
    [53]YAN Z,JING Y,JING C,et al.Detection of sugar accumulation and expression levels ofcorrelative key enzymes in winter wheat (Triticum aestivum) at low temperatures[J].Bioscience Biotechnology Biochemistry,2011,75(4):681-687.
    [54] GUY C L,HUBER J L A,HUBER S C.Sucrose phosphate synthase and sucrose accumulationat low temperature[J]. Plant Physiology,1992,100(1):502-508.
    [55]ONEILL S D.Osmotic adjustment and the development of freezing resistance in FragariaVirginiana[J].Plant Physiology,1983,72(4):938-944.
    [56]XIN Z,BROWSE J.Cold comfort farm: the acclimation of plants to freezing temperatures[J].Plant cell&Environment,2000,23(9):893-902.
    [57]LI C,JUNTTILA O,PALVA E T.Environmental regulation and physiological basis of freezingtolerance in woody plants[J]. Acta Physiologiae Plantarum,2004,26(2),213-222.
    [58]SAKAI A,YOSHIDA S.The Role of sugar and related compounds in variations of freezingresistance[J].Cryobiology,1968,5(3):160-174.
    [59]STEPONKUS P L.Role of the plasma membrane in freezing injury and old acclimation[J].Annual Review of Plant Physiology,1984,35(1):543-584.
    [60]MACKENZIEA,DERBYSHIRE W,REID D.Non-Equilibrium freezing behaviour of aqueoussystems and discussion. Philosophical Transactions of the Royal Society of London[J].Series B,Biological Sciences,1977,278(959):167-189.
    [61]于晶,张林,崔红,等.高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J].作物学报,2008,34(11):2019-2025.
    [62]WANNER L A,JUNTTILA O.Cold-induced freezing tolerance in Arabidopsis[J].PlantPhysiology,1999,120(2):391-400.
    [63]UEMURA M,WARREN G,STEPONKUS P L.Freezing sensitivity in the Sfr4mutant ofarabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness[J].Plant Physiol,2003,131(4):1800-1807.
    [64]ESQUIVEL M G.Biochemical aspects of the RuBP carboxilase[J].Anais do insituto Superiorde Agronomia,1995,45:211-239.
    [65]KWOK E Y, HANSON M R.Gfp-labelled rubisco and aspartate aminotransferase are presentin plastid stromules and traffic between plastids[J].Journal of experimental botany,2004,55(397):595-604.
    [66]MARUYAMA S,YATOMI M,NAKAMURA Y.Response of rice leaves to low temperature I.changes in basic biochemical parameters[J].Plant and cell physiology,1990,31(3):303-309.
    [67]VAN HEERDEN P,KRUGER G,LOVELAND J,et al.Dark Chilling Imposes MetabolicRestrictions on Photosynthesis in Soybean[J]. Plant, Cell&Environment,2003,26(2):323-337.
    [68]姜振升,孙晓琦,艾希珍等.低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响[J].应用生态学报,2010,21(8):2045-2050.
    [69]莫亿伟,郭振飞,谢江辉.温度胁迫对柱花草叶绿素荧光参数和光合速率的影响[J].草业学报,2011,20(1):96-101.
    [70]HURRY V M,MALMBERG G,GARDESTROM P, et al. Effects of a short-term shift to Lowtemperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphatecarboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye(Secale Cereale L.)[J].Plant Physiology,1994,106(3):983-990.
    [71]DAIE J,CYTOSOLI C.Fructose-1,6-Bisphosphatase: A key enzyme in the sucrosebiosynthetic pathway. Photosynthesis research,1993,38(1):5-14.
    [72]CADET F,MEUNIER J C,FERTE N.Effects of Ph and fructose2,6-bisphosphate onoxidized and reduced spinach chloroplastic fructose-1,6-bisphosphatase[J]. European Journalof Biochemistry,1987,162(2):393-398.
    [73]VAN HEERDEN P,KRUGERr G,LOVELAND J,et al. Dark chilling imposes metabolicrestrictions on photosynthesis in soybean[J].Plant, Cell&Environment,2003,26(2):323-337.
    [74]BOGDAOVI J,MOJOVI M,MILOSAVI N, et al. Role of fructose in the adaptation of plantsto cold-induced oxidative stress[J]. European Biophysics Journal,2008,37(7):1241-1246.
    [75]POORMOHAMMAD K S,GRIEU P,MAURY P, et al.Genetic Variability for physiologicaltraits under drought conditions and differential expression of water stress-associated genes insunflower (Helianthus Annuus L.)[J].TAG Theoretical and Applied Genetics,2007,114(2):193-207.
    [76]XUE G P,MCINTYRE C L,GlASSOP D,et al.Use of expression analysis to dissectalterations in carbohydrate metabolism in wheat leaves during drought stress[J].PlantMolecular Biology,2008,67(3):197-214.
    [77]CHAVES M,FLEXAS J,PINHEIRO C.Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell[J].Annals ofBotany,2009,103(4):551-560.
    [78]MICHALOWSKI C B,DEROCHER E J,BOHNERT H J,et al.Phosphoribulokinase from iceplant:Transcription,transcripts and protein expression during environmental stress[J].Photosynthesis research,1992,31(2):127-138.
    [79]NGUYEN H T,Leipner J,Stamp P,et al.Low temperature stress in Maize (Zea MaysL.)induces genes involved in photosynthesis and signal transduction as studied by suppressionsubtractive hybridization[J].Plant Physiology and Biochemistry,2009:47(2),116-122.
    [80]陈虎.龙眼种质资源遗传多样性分析及低温对石硖龙眼影响研究[D].南宁:广西大学,2012.
    [81]MENG M,GEISLER M,JOHANSSON H,et al.Differential tissue/organ-dependent expressionof two sucrose-and cold-responsive genes for UDP-glucose pyrophosphorylase inPopulus[J].Gene,2007,389(2):186-195.
    [82]AHMADI A,BAKER D A.The effect of water stress on the activities of key regulatoryenzymes of the sucrose to starch path way in wheat[J].Plant Growth Regul,2001,35:81-91.
    [83]赵宏伟,李秋祝,魏永霞.不同生育时期干旱对大豆主要生理参数及产量的影响[J].大豆科学,2006(3):329-332.
    [84]CRESPI M D,ZABALETA E J,PONTIS H G,et al.Sucrose synthase expression during coldacclimation in wheat[J].Plant physiology,1991,96(3):887-891.
    [85]GUY C L,HUBER J L A,HUBER S C.Sucrose phosphate synthase and sucrose accumulationat low temperature[J].Plant Physiology,1992,100(1):502-508.
    [86]STRAND,FOYER C,GUSTAFSSON P,et al.Altering flux through the sucrose biosynthesispathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at lowtemperatures and the development of freezing tolerance[J].Plant, Cell&Environment,2003,26(4):523-535.
    [87]KLOTZ K L,HAAGENSON D M.Wounding, Anoxia and cold induce sugar beet sucrosesynthase transcriptional changes that are unrelated to protein expression andactivity[J].Journal of plant physiology,2008,165(4):423-434.
    [88]石永春,刘卫群,王小彦.低温对烟草叶片中蔗糖向顶端分生组织转运的影响[J].中国农业科学,2009,42(12):4390-4395.
    [89]刘玉凤,李天来,焦晓赤.短期夜间亚低温及恢复对番茄光合作用和蔗糖代谢的影响[J].园艺学报,2011,38(4):683-691.
    [90]WANG L J,LI T L.Effect of low night temperature treatment on sucrose synthesis ability oftomato leaves in seedling stage[J].Agricultura lScience&Technology,2011,12(5):707-709,755.
    [91]王丽娟,李天来,范文静.苗期夜间低温处理对西红柿叶片蔗糖代谢的影响[J].湖北农业科学,2011,50(14):2886-2888.
    [92]ECE T,SERGUL E.Soluble sugars and sucrose-metabolizing enzymes related to coldacclimation of sweet cherry cultivars grafted on different rootstocks[J].Scientific WorldJournal,2012,2012:979682.
    [93]齐红岩,姜岩岩,华利静.短期夜间低温对栽培番茄和野生番茄果实蔗糖代谢的影响[J].园艺学报,2012,39(2):281-288.
    [94]International Conference on Biomedical Engineering andBiotechnology,2012[C].Macao:China,2012.
    [95]MATSUURA E C,KOBAYASHI A,NODA T T S,et al.Changes in sugar content and activityof vacuolar acid invertase during low temperature storage of potato tubers from six Japanesecultivars[J].Journal of Plant Research,2004,117:131-137.
    [96]任旭琴.辣椒(Capsicum annuum L.)耐冷性鉴定与冷适应生理机制研究[D].扬州:扬州大学,2008.
    [97]AMANI A L.Activity of sucrose synthase and acid invertase in wheat seedlings during acold-shock using micro plate reader assays[J].Australian Journal of Basic and AppliedSciences,2008,2(1):53-56.
    [98]姚远,闵义,胡新文等.低温胁迫对木薯幼苗叶片转化酶及可溶性糖含量的影响[J].热带作物学报,2010,31(4):556-560.
    [99]郝敬虹,李天来,孟思达.夜间低温对薄皮甜瓜果实糖积累及代谢相关酶活性的影响[J].中国农业科学,2009,42(10):3592-3599.
    [100]程方民,蒋德安,吴平等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J].作物学报,2001,27(2):201-206.
    [101]林敏卓.南极冰藻(Chlamydomonas sp.)低温胁迫相关基因的克隆和功能验证[D].济南:山东轻工业学院,2012.
    [102]SOWOKINOS J.Stress-induced alteration in carbohydrate metabolism[M].Yayda M E,Park W D. Molecular and cellular biology of the potato.Wallingford:CAB Intrrnational,1990:137-158.
    [103]LYONS J M.Chilling injury in plant[J].Annual Review of Plant Biology,1973,24:445-446.
    [104]CHING T M.Temperature regulation of germination in crimson clover seeds[J].PlantPhysiology,1975,42:431-433.
    [105]曹玉芳.青檀抗寒性的初步研究[D].北京:北京林业大学,2005.
    [106]陈霞.马铃薯野生种(Solatium berthaultii)抗低温糖化基因的分离及表达特征分析[D].武汉:华中农业大学,2012.
    [107]李霞,李宪利,高东升等.温度对休眠期甜樱桃芽呼吸代谢影响的研究[J].落叶果树,2004(3):1-4.
    [108]HOOD L F.Current concepts of starch structure[J].Food Carbohydrates,1982,13:109-121.
    [109]DIXON W L,FRANKS F,REE T A.Cold-lability of phosphofructokinase from potatotubers[J].Phytochemistry,1981,20:969-972.
    [110]TAI S L,DARAN-LAPUJADE P,LUTTIK M H, et al.Control of the Glycolytic Flux inSaccharomyces Cerevisiae Grown at Low Temperature[J].Journal of Biological Chemistry,2007,282(14):10243-10251.
    [111]张亚娟,谢忠奎,高宏.东方百合低温打破休眠期间碳水化合物及呼吸代谢变化[J].中国沙漠,2012,32(1):100-104.
    [112]马怀宇,刘国成,吕德国.‘寒富’苹果花芽呼吸代谢途径对低温胁迫的响应特征[J].果树学报,2012,29(3):317-321.
    [113]SAGISAKA S.Injuries of cold acclimatized poplar twigs resulting from enzyme inactivationand substrate depression during frozen storage at ambient temperatures for a longperiod[J].Plant Cell Physiol,1985,26(6):11351145.
    [114]李宪利,闫田力,高东升.低温在诱导油桃芽解除休眠过程中对代谢的影响[J].中国生态农业学报,2002,10(3):27-29.
    [115]BREDEMEIJER G M M. Glucose6-phosphate dehydrogenase during cold-hardening inLolium perenne[J].Journal of Plant Physiology,1995,145(4):565-569.
    [116]曹玉芳.青檀抗寒性的初步研究[D].北京:北京林业大学,2005.
    [117]SCHNEIDER A, USLER R E,KOLUKISAOGLU,et al.An Arabidopsis Thaliana knock-outmutant of the chloroplast triose phosphate/phosphate translocator is severely compromisedonly when starch synthesis, but not starch mobilisation is abolished[J].The Plant Journal,2002,32(5),685-699.
    [118]白雪梅,张立军,吴晓丹,等.植物蔗糖转运蛋白[J].植物生理学通讯,2006,42(6):1195-1202.
    [119]LUNDMARK M,CAVACO A M,TREVANION S,et al.Carbon partitioning and export intransgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at lowtemperature:a role for metabolite transporters[J].Plant Cell andEnvironment,2006,29(9):1703-1714.
    [120]BURKLE L,HIBBERD J M,QUICKW P,et al.The H+-sucrose cotransporter NtSUT1isessential for sugar export from tobacco leaves[J].Plant Physiology,1998,118:59-68.
    [121]石永春,刘卫群,王小彦.低温对烟草叶片中蔗糖向顶端分生组织转运的影响[J].中国农业科学,2009,42(12):4390-4395.
    [122]李璨,杨天杰.植物抗寒基因工程研究进展[J].吉林农业科学,2011,36(2):15-20.
    [123]陈濡钢,巩振辉.植物抗寒基因工程研究进展[J].西北植物学报,2008,28(6):1247-1280.
    [124]林茂,闫海霞,眭顺照,等.植物CBF转录因子及其在基因工程中的应用[J].广西农业科学,2008,39(1):21-25.
    [125]王多佳,苍晶,牟永潮,等.植物抗寒基因研究进展[J].东北农业大学学报,2009,40(10):134-138.
    [126]KANGHM, SALTVEITME.Reduced chilling tolerance in elongating cucumber seedingsradicles is relate to their reduced antioxidant enzyme and DPPH-radicals scavengingactivity[J]. Plant Physical,2002,115:244-250.
    [127]SOU M B.Reactive oxygen species and oxidative burst roles in stress, senescence and signaltransduction in plants[J].Curr Sci,2005,89:1113-1121.
    [128]王华,杨建峰.植物抗寒基因工程研究进展[J].现代农业科技,2007,23:117-122.
    [129]INGRAM J,BARCELS D.The molecular basis of dehydration tolerance in plants[J].PlantMol Biol,1996,47:377-403.
    [130]XU D,DUAN X,WANG B.Expression of late embryogenesis abundant proteingene,HVAl,from harley confers tolerance to water degicit and salt stress in transgenic rice[J].Plant Physical,1996,110:249-257.
    [131]玄祖迎.滇杨对增强紫外辐射、干旱和喷施脱落酸的生态生理响应[D].北京:中国科学院,2007.
    [132]冯越,王彩玲,富炜琦,等.ABA对毛白杨抗冻性影响的研究[J].生物学杂志,2007,24(6):40-42.
    [133]RONALD W W,LAWRENCE V G,BO L,et al.Effects of abscisic acid (ABA) and ABAanalogs on freezing tolerance, low-temperature growth, and flowering inrapeseed[J].Journal of Plant growth regulation,1994,13(4):235-241.
    [134]HUA Y,HUANG L,LI Q R,et al.Effects of exogenous ABA on antioxidant enzymes indetached citrus leaves treated by rapid freezing[J].African Journal of Biotechnology,2011,10(48):9779-9785.
    [135]赵春章,刘庆,姚晓芹,等.长期喷施ABA对云杉幼苗生长和生理特性的影响[J].植物学通报,2008,25(3):284-291.
    [136]FUMINORI K,SHIGEO T,CHIHARU N.Increased freezing tolerance in anABA-hypersensitive mutant of common wheat[J].Journal of Plant Physiology,2008,165:224-232.
    [137]ALEXEY I Z,TATYANA S B,OKSANA I T.Oligosaccharin and ABA synergistically affectthe acquisition of freezing tolerance in winter wheat[J].Plant Physiology andBiochemistry,2009,47:854-858.
    [138]WANG G J,MIAO W,WANG J Y,et al.Effects of exogenous abscisic acid on antioxidantsystem in weedy and cultivated rice with different chilling sensitivity under chillingstress[J].Journal of Agronomy and Crop Science,2012,DOI:10.1111/jac.12004.
    [139]TAE E K,SEONG K K,TAEJ H,et al.ABA and polyamines act independently in primaryleaves of cold-stressed tomato (Lycopersicon esculentum)[J].PhysiologiaPlantarum,2002,115(3):370-376.
    [140]ZHOU B Y,GUO Z F,LIN L.Effects of abscisic acid application on photosynthesis andphotochemistry of Stylosanthes guianensis under chilling stress[J].Plant Growth Regulation,2006,48(3):195-199.
    [141]HU W R,LIU S Z,PANG X Q,et al.Alleviation of chilling injury in litchi fruit by ABAapplication[J].Acta Horticulturae,2010,863:533-538.
    [142]刘德兵,魏军亚,崔百明,等.脱落酸对香蕉幼苗抗寒性的影响[J].热带作物学报,2007,28(2):1-4.
    [143]杨亚军,郑雷英,王新超.冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J].茶叶科学,2004,24(3):177-182.
    [144]魏安智,杨途熙,张睿,等.外源ABA对仁用杏花期抗寒力及相关生理指标的影响[J].西农林科技大学学报(自然科学版),2008,36(5):79-84.
    [145]任旭琴.辣椒耐冷性鉴定与冷适应生理机制研究[D].扬州:扬州大学,2008.
    [146]汤日圣,唐现洪,钟雨,等.微生物源ABA对茄苗抗冷性和某些生理指标的影响[J].园艺学报,2006,33(1):149-151.
    [147]ANZU M,MANABU N,KEITA A,et al.Abscisic acid-induced freezing tolerance in themoss Physcomitrella patens is accompanied by increased expression ofstress-relatedgenes[J].Journal of Plant Physiology,2003,160(5):475-483.
    [148]ZHANG Y,IMED D.Improving Freezing Tolerance of ‘Chambourcin’ Grapevines withExogenous Abscisic Acid[J].HortScience,2012,47(12):1750-1757.
    [149]Bravo L A, Zú iga G E, Alberdi M, et al. The role of ABA in freezing tolerance and coldacclimation in barley[J]. Physiologia Plantarum,1998,103(1):17-23.
    [150]JAMES S M,HARARRY S.The effect of Abscisic acid on growth photosynthetic rate andcarbohydrate metabolism in Lemna minor L.[J].New Phytol.,1976,76:11-20.
    [151]KARMOKER J L,VAN STEVENINCK R F M.The effect of Abscisic acid on sugar levels inseedlings of Phaseolus vulgaris L. cv. Redland pioneer[J].Planta,1979,146:25-30.
    [152]KIYOHIDE K,YOSHIO Y,MASASHI Y.Effects of abscisic acid injection on sugar andorganic acid contents of citrus fruit[J].J.Japan.Soc.Hort.Sci,1995,64(1):17-21.
    [153]KENJIK K,HIROSHI G,SHUICHIi I.Sugar accumulation in peach fruit as affected byAbscisic acid treatment in relation to some sugar metabolizing enzymes[J].J. Japan. Soc.Hort. Sci.,1999,68(3):465-470.
    [154]KENJI K,SUMUKO S,HIROSHIG,et al.Effect of Abscisic acid (ABA) on sugaraccumulation in the flesh tissue of peach fruit at the start of the maturation stage[J].PlantGrowth Regulation,2001,35:215-223.
    [155]CLAUDIA T,ANA C C,HERMINDA R,et al.Exogenous abscisic acid increasescarbohydrate accumulation and redistribution to the grains in wheat grown under fieldconditions of soil water restriction[J].J Plant Growth Regul,2007,26:285–289.
    [156]王彦波,鲜开梅,刘慧英.外源激素对嫁接西瓜糖分积累的影响[J].北方园艺,2007(10):27-29.
    [157]ARYADEEP R,SUPRATIMB,DIBYENDU N S.Effects of exogenous abscisic acid on somephysiological responses in a popular aromatic indica rice compared with those from twotraditional non-aromatic indica rice cultivars[J].Acta Physiol Plant,2009,31:915-926.
    [158]WATTANA P.Exoggenous Abscisic acid enhances sugar accumulation in rice (Oryza sativa L.)under drought stress[J].Asian Journal of Plant Sciences,2011,10(3):212-219.
    [159]PASCALE G,DENIS L,NATHALIE D,et al.Influence of ABA on nitrate reductase activityand carbohydrate metabolism in chicory roots(Cicohorium intybus L.)[J].Journal ofExperimental Botany,1998,49(328):1855-1862.
    [160]MULLINS M G.Hormone-directed transport of assimilates in decapitated internodes ofPhaseolus vulgaris L[J].Ann.Bot.,1970,34:897-909.
    [161]KULL U,UNGER M.Wirkungen von abscisinsaure den konlenhydrat-und fettsaurehaushaltvon Coleus blumei Z.[J].Pflanzenphysiol,1974,72:135-140.
    [162]CHEN H J,WANGg S J.Abscisic acid enhances starch degradation and sugar transport inrice upper leaf sheaths at the post-heading stage[J].Acta Physiologiae Plantarum,2012,34(4):1493-1500.
    [163]谢钖矩.脱落酸(ABA)对小麦幼苗抗寒力的影响[J].石河子农学院学报,1987,(1):33-36.
    [164]王兴.外源激素调控冬小麦抗寒性的研究[D].哈尔滨:东北农业大学,2010.
    [165]卫新中,胡志远,潘丽烤,等.脱落酸对咖啡幼苗抗冷性的影响[J].厦门大学学报自然科学版,1991,30(5):523-528.
    [166]郏金梅.脱落酸对甜菜幼苗杭冻性的影响[J].冲国甜菜,1991(1):12-20.
    [167]LEE B M,LEE D C,NOH K A,et al.Study on the low temperature stress of rice seedlings asaffected by abscisic acid[J].Research Reports of the Rural Development Administration,Rice,1991,33:3,87-90.
    [168]郭凤领,卢育华,李宝光.外源ABA对番茄苗期和开花期抗冷特性的影响[J].山东农业大学学报(自然科学版),2000,31(4):357-362.
    [169]李亚男,陈大清,胡培丽. ABA和6-BA对不同温度条件下芝麻幼苗某些生理指标的影响[J].长江大学学报(自科版),2005,2(8):67-71.
    [170]MANABU N,ANZU M,KEITA A,et al.Rapid degradation of starch in chloroplasts andconcomitant accumulation of soluble sugars associated with ABA-induced freezing tolerancein the moss Physcomitrella patens[J].Journal of Plant Physiology,2005,162:169-180.
    [171]汤日圣,唐现洪,钟雨,等.生物源脱落酸(ABA)提高茄苗抗旱能力的效果及机理[J].江苏农业学报,2006,22(1):10-13.
    [172]刘德兵,魏军亚,崔百明,等.脱落酸对香蕉幼苗抗寒性的影响[J].热带作物学报,2007,28(2):1-4.
    [173]贾庆虎.ABA对黄瓜幼苗抗冷性的影响[D].济南:山东农业大学,2007.
    [174]FAN Z M,LI P H,SHAO H W,et al.Effects of exogenous abscisic acid (ABA) on cucumberseedling leaf carbohydrate metabolism under low temperature[J].Plant Growth Regul,2008,56:233–244.
    [175]魏安智,杨途熙,张睿,等.外源ABA对仁用杏花期抗寒力及相关生理指标的影响[J].西北农林科技大学学报(自然科学版),2008,36(5):79-85.
    [176]刘立军,陈为峰,张志华,等.叶面喷施脱落酸对高羊茅抗寒性的影响[J].中国草地学报,2010,32(6):94-99.
    [177]蒲高斌,张凯,张陆阳,等.外源ABA对西瓜幼苗抗冷性和某些生理指标的影响[J].西北农业学报,2011,20(1):133-136.
    [178]张琳,赵晓嫚,任君,等.外源ABA对低温胁迫下青花菜植株生长及若干生理特性的影响[J].福建农业学报,2012,27(3):267-271.
    [179]AGNIESZKA B Z,ELZBIETA Z,KATARZYNA C,et al.The effect of dehydration with orwithout abscisic acid pretreatment on buds regeneration from Polypodium vulgare L.rhizomes[J].Acta Physiologiae Plantarum,2007,29(1):47-56.
    [180]贾庆虎.ABA对黄瓜幼苗抗冷性的影响[D].济南:山东农业大学,2007.
    [181]董永华,史吉评,李广敏,等.ABA和6-BA对水分胁迫下玉米幼苗碳素同化关键酶的影响[J].植物营养与肥料学报,1997,3(2):182-188.
    [182]TROUVERIE J,THEVENOT C,ROCHER J P,et al.The role of abscisic acid in t heresponse of a specific vacuolar invertase to water stress in the adult maize leaf[J].J Ex pBot,2003,54(390):2177-2186.
    [183]姜华,高晓玲,万佳.脱落酸对水稻愈伤组织糖类代谢及相关酶活性的影响[J].中国水稻科学,2006,20(4):406-410.
    [184]TAJI T,OHSUMIh C,IUCHIL S,et al.Important roles of drought-and cold-inducible genesfor galactinol synthase in stress tolerance in Arabidopsis thaliana[J].PlantJ,2002,29:417-426.
    [185]KOBASHI K,GEMMA H,IWAHORI S.Sugar accumulation in peach fruit as affected byabscisic acid (ABA) treatment in relation to some sugar metabolizing enzymes[J].J Jpn SocHortic Sci,1999,68:465-470.
    [186]BLOCHL A,GRENIER M G,SOURDIOUX M,et al.Induction of raffinose oligosaccharidebiosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L.)[J].Plant Sci,2005,168:1075-1082.
    [187]LACOMBE B,PILOT G,MICHARD E,et al.A shaker-like K+channel with weakrectification is expressed in both source and sink phloem tissues of Arabidopsis[J].PlantCell,2000,12:837–851.
    [188]HAJELA R K,HORVATH D P,GILOUR S J,et al.Molecular cloning and expression of cor(Cold-Regulated) genes in Arabidopsis thaliana[J].Plant Physiology,1990,93(3):1246-1252.
    [189]龙海涛,李玲,万小荣.ABA诱导基因及其与逆境胁迫的关系(综述)[J].亚热带植物科学,2004,33(4):74-77.
    [190]李卓夫,付连双,王晓楠,等.高寒地区冬小麦抗寒育种研究进展[J].东北农业大学学报,2010,41(8):141-147.
    [191]MONROY A F,DRYANOVA A,MALETTE B,et al.Regulatory gene candidates and geneexpression analysis of cold acclimation in winter and spring wheat[J].Plant Mol Biol,2007,64(4):409-423.
    [192]王兴,于晶,杨阳,等.低温条件下不同抗寒性冬小麦内源激素含量变化[J].麦类作物学报,2009,29(5):827-831.
    [193]于晶,张林,苍晶,等.外源ABA对寒地冬小麦东农冬麦1号幼苗生长及抗冷性的影响[J].麦类作物学报,2008,28(5):883-887.
    [194]许贺,宋扬,范博,等.外源ABA对冬小麦叶片抗寒相关蛋白的影响[J].麦类作物学报,2012,32(4):666-670.
    [195]范博.低温胁迫下ABA诱导冬小麦抗氧化防护系统的研究[D].哈尔滨:东北农业大学,2012.
    [196]于晶,张林,苍晶,等.不同抗寒性冬小麦分蘖节低温诱导蛋白比较研究[J].应用生态学报,2009,20(5):1092-1098.
    [197]王晓楠,付连双,李卓夫,等.低温下东农冬麦1号地下茎处差异蛋白的研究[J].麦类作物学报,2009,29(3):484-490.
    [198]牟永潮,崔红,于晶,等.低温胁迫下东农冬麦1号分蘖节SSH文库的构建及文库中3个基因的表达模式[J].作物学报,2011,37(5):918-923.
    [199]卢宝伟.东农冬麦1号越冬期间的microRNA高通量测序及生物信息学分析[D].哈尔滨:东北农业大学,2012.
    [200]DOUGLAS C D,TSUNG M K,FREDERICK C F.Enzymes of sucrose and hexosemetabolism in developing kernels of two inbreds of maize[J].PlantPhysiol,1988,86:1013-1019.
    [201]RUFTY T W,HUBER S C.Changes in starch formation and activities of sucrose phosphatesynthase and cytoplasmic fructose-1,6-bisphosphatase in response to source-sinkalteration[J].Plant Physio1,1983,72:474-480.
    [202]SCHAFFER A A,FOGELMAN E.Sucrose metabolism and accumulation in developingfruitofcucumis[J].Phyto chemistry,1987,26:1883-1887.
    [203]RANWAL P A,IWANAMI S S,MASUDA H.Acid and neutral invertases in the mesocarp ofdeveloping muskmelon(Cucumis melo L. cv prince) fruit[J].PlantPhysiology,1991,96:881-886.
    [204]RENNER R K,SCHULER,SONNEWALD U.Soluble acid invertase determines thehexose-to-sucrose ratio in cold-stored potato tubers[J].Planta,1996,198:246-252.
    [205]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003:127-129.
    [206]ELEAZAR M B,DOUGLAS D R.Purification and characterization of a glucokinase fromyoung tomato (Lycopersicon esculentum L. Mill.) fruit[J].Planta,1998,205:567-573.
    [207]LING K H,PAEKAU V,MARCUS F,et al.Phosphofructokinase from skeletal muscles-in:wood,W.A.(ed):Methods in enzymology[M].New York:Academic press1996,9:425-426.
    [208]MUSTROPH A,ALBRECHT G.Tolerance of crop plants to oxygen deficiencystress:Fermentative activity and photosynthetic capacity of entire seedlings under hypoxiaand anoxia[J].Physiologia plantarum,2003,117:508-520.
    [209]BRAY E A.Abscisic acid regulation of gene expression during water-deficit stress in the eraof the Arabidopsis genome.Plant Cell Environ,2002,25:153-161.
    [210]HASEGAWA P M,BRESSAN R A,ZHU J k,et al.Plant cellular and molecular responses tohigh salinity.Annu Rev Plant Physiol Plant Mol Biol,2000,51:463–499.
    [211]KAHN T L,FENDER S E,BRAYAND E A,et al.Characterization of expression drought andabscisic acid-regulated tomato genes in the drought-resistant species Lycopersiconpennellii.Plant Physiol.1993,103:597-605.
    [212]MENG F Z,HU L P,WANG S H,et al.Effects of exogenous abscisic acid (ABA) on cucumberseedling leaf carbohydrate metabolism under low temperature.Plant GrowthRegul.2008,56:233–244.
    [213]汤佩松.高等植物呼吸代谢途径的调节控制和代谢与生理功能间的相互制约[J].植物学报,1979,21:93-106.
    [214]郑彩霞,高荣孚.ABA与内源抑制物对洋白蜡种子离体胚萌发时呼吸作用的影响[J].北京林业大学学报,1992,14(3):33-38.
    [215]李红卫,尹秀华,冯双庆,等.外源ABA和乙烯利对冬枣果实采后呼吸强度、乙烯生成量及品质变化的影响[J].中国食品学报,2004,4(2):74-79.
    [216]VIRGINIA W,MARY C,IAN S.Effects of abscisic acid on growth, RNA metabolism,andrespiration in germinating bean axes[J].Plant Physiology,1975,56:570-574.
    [217]LI M J,GUO X L,GUAN J F,et al.Effects of ABA on endogenous ABA and CaM Contents ofLeave and roots of wheat seedlings under osmotic stress[J].Plant PhysiologyCommunications,2002,38:20-21.
    [218]TIAN S L,LI L.Effect of exogenous ABA on ABA content in leaf of wheat[J].Jouarnal ofAnhui Agri.Sci2007,35:2876-2878.
    [219]UNO Y,FURIHATA T,ABE H,et al.Arabidopsis basic leucine zipper transcription factorsinvolved in an abscisic acid-dependent signal transduction pathway under drought andhigh-salinity conditions[J].P Natl A Sci,2000,97:11632-11637.
    [220]XIONG L,SCHUMAKER K S,ZHU J K.Cell signaling during cold,drought,and saltstress[J].Plant Cell,2002,14:165-183.
    [221]YAMAGUCHI S K,SHINOZAKI K.Organization of cis-acting regulatory elements inosmotic-and cold-stress-responsive promoters[J].Trends Plant Sci,2005,10:88–94.
    [222]KOBAYASHI F,TAKUM S,NAKATA M,et al.Comparative study of the expression of theCor/Lea gene family in two wheat cultivars with the contrasting levels of freezingtolerance[J].Physiol.Plant,2004,120:585–594.
    [223]ISHIBASHI M,KOBAYASHI F,NAKAMURA J,et al.Variation of freezing tolerance,Cor/Leagene expression and vernalization requirement in Japanese common wheat[J].PlantBreeding,2007,126:464–469.
    [224]MAHDI R,GANG P X,MOHAMMAD R N,et al.A MYB gene from wheat (Triticum aestivumL.) is up-regulated during salt and drought stresses and differentially regulated betweensalt-tolerant and sensitive genotypes[J].Plant Cell Rep,2010,29:835-844.
    [225]MOHAMED B,JEAN D,BARBARA B,et al. The CBF gene family in hexaploid wheat and itsrelationship to the phylogenetic complexity of cereal CBFs[J].Mol GenetGenomics,2007,277:533-554.
    [226]KOBAYASHI F,MAETA E,TERASHIMA A,et al.Development of abiotic stress tolerance viabZIP-type transcrip-tion factor LIP19in common wheat[J].J Exp Bot,2008,59:891-905.
    [227]KOBAYASHI F,MAETA E,TERASHIMA A,et al. Positive role of a wheat HvABI5orthologin abiotic stress response of seedlings[J].Physiol Plantarum,2008b,134:74-86.
    [228]THOMASHOW M F.Plant cold acclimation: freezing tolerance genes and regulatorymechanisms[J].Annu.Rev.Plant Mol.Biol,1999,50:571–599.
    [229]YAMAGUCHI S K,SHINOZAKI K.Organization of cis-acting regulatory elements inosmotic-and cold-stress-responsive promoters[J].Trends Plant Sci,2005,10:88-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700