用户名: 密码: 验证码:
软体柔性管状器官的生物摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消化道是人体主要的消化吸收器官,随着环境污染加剧、工业生产的加快、饮食结构的改变,食道癌、肠道肿瘤等消化道疾病发病率逐年增加。消化内镜检查是消化道疾病诊断、治疗的重要手段,内插式内镜需要借助外力推入人体内病人承受巨大痛苦甚至造成咽喉擦伤、食道黏膜层撕裂、肠胃穿孔等并发症。胶囊式内镜吞服后靠蠕动进入人体内,但存在电量供应不足、无法定位、运动不能控制、体内停滞等问题。主动式微机器人在顺滑消化道内自主行走必须要有足够大的摩擦力,才能为其运动提供驱动力。因此,开展消化道的生物摩擦学研究,为解决消化道组织擦伤、胶囊滞留、微机器人运动方式控制以及内镜结构优化设计具有重要的理论研究意义和学术价值。
     本文以家兔消化道为研究对象,通过表征其内表面微结构、蠕动时内表面形貌变化、力学性能、肠黏液润滑性和流变性,采用边界润滑理论探索摩擦力变化机理。将肠蠕动简化为正弦波,采用薄壳理论、边界润滑理论和五元粘弹性模型建立摩擦力预测模型。采用Matlab模拟出在肠蠕动条件下,肠道粘弹性变形、肠黏液、内镜尺寸、材料与摩擦力的关系,为无损诊断内镜的设计奠定实验基础推动医用微机器人的研制。
     摩擦学中表面形貌是影响其摩擦性能的重要因素,本文采用环境扫描电镜对家兔整个消化道内表面的微结构进行观察,结果表明食道、胃、小肠、大肠内表面结构差异很大。食道内表面沿环向分布着不连续的脊状结构,小肠内表面分布着皱襞、绒毛和微绒毛,并且不同肠段绒毛的形状和稀疏程度均不同,胃内表面分布着皱襞和胃小凹,大肠与小肠不同没有绒毛。
     摩擦学中除了表面形貌外,表面的物理、化学和力学性能对摩擦性能影响也很大。本文采用微摩擦仪和流变仪对肠黏液的流变性、润滑性进行测试,结果表明肠黏液为非牛顿流体具有剪切稀化性,随着剪切率增大粘度降低并趋于一常数,变为牛顿流体。分析认为是肠黏液中的蛋白大分子受到破坏造成的;PDMS塑料薄膜在干摩擦、去离子水、肠黏液条件下摩擦,肠黏液使摩擦系数降低到10-2数量级肠黏液具有良好的润滑性,分析认为肠黏液中的磷脂层具有疏水性覆盖在弹性凝胶层上,可降低吸附力起到滑移减阻的作用。采用微电子拉伸仪对食道、气管、小肠、大肠进行了轴向和环向拉伸,结果表明食道、气管、小肠、大肠的力学性能不同,并且都是各向异性材料,环向伸长比大于轴向伸长比,提出了消化道黏膜层的微结构是影响其力学性能的重要因素。
     设计了一种新的测试方法能排除粘弹性变形的影响,测试肠道表面形貌的变化与摩擦性能的变化规律。该测试方法制造了五个直径不同的半圆柱体,依次比被测5个样品直径增大0%,20%,40%,60%,80%,将肠道内表面朝外套在半圆柱体上,使5个肠段环向应变率依次为0%,10%,20%,30%,40%,然后测不同应变条件下摩擦系数的变化,结果表明:当环向应变率小于10%,随着速度和载荷的增大摩擦系数上下波动较小基本不变;当环向应变率大于10%,随着速度和载荷的增大摩擦系数上下波动较大,增幅明显。提出了摩擦系数变化的机理:当肠道环向应变率小于10%,润滑形式为混合润滑;环向应变率大于10%,润滑形式转化为边界润滑。
     建立了肠道产生粘弹性变形和不产生粘弹性变形时的两种摩擦力预测模型,并采用Matlab进行了数值模拟。第一种模型利用薄壳理论和肠道粘弹性变形模型建立肠道蠕动的动力学模型,将蠕动波简化为正弦波,利用五元粘弹性模型和基本摩擦定律推导出摩擦力计算表达式。第二种模型考虑了内镜微型化后,不受肠道粘弹性变形影响仅由内表面形貌和物理化学性质决定,采用边界润滑理论和分形理论推导出了摩擦力计算表达式。仿真结果表明:有蠕动比没有蠕动时胶囊产生的摩擦力大;摩擦力随着胶囊内镜半径、长度、速度增大而增大;半径比长度产生的摩擦力增量大;前进端与驱动端接触角产生的摩擦力增量相当,相同的接触角前进端比驱动端产生的摩擦力大,重力产生的摩擦力可以忽略不计。
The digestive tract is the main digestion and absorption organ of human body. With the exacerbating of the severe pollution of the environment, speeding up of the industrial production, changing of the dietetic structure, digestive tract diseases such as esophageal cancer, intestinal cancer incidence increased year by year. Digestive endoscopic checking is an important means of the digestive tract disease diagnosis and treatment, interpolation endoscopic pushed into the patients'body with the aid of outside force may cause great pain to patients and even cause postoperative complications such as throat bruises, perforation of the esophageal mucosa tear and gastrointestinal perforation. Capsule endoscopy, after swallowing, moves into the body by creeping, and it exists some other problems such as shortage of power supply, unable to locate, motion out of control, and stagnation in the body. Active decay robot, if wanting to walk smoothly in the digestive tract, must have enough frictions so as to provide driving force for its movement. So, the biological tribology research on the digestive tract, in order to solve the digestive tract tissue bruise, capsule retention, endoscopic micro robot motion control and structure optimization design has very important theoretical research significance and academic value.
     Taking rabbit digestive tract as the research object, this paper explores the friction mechanism by adopting the boundary lubrication theory through the characterization of surface topography change within its surface microstructure and creep, rheology, mechanical performance, intestinal mucous lubricity. The paper Simplifies the bowel movements to sine wave and uses the thin shell theory, the boundary lubrication theory and five-elements viscoelastic model to establish the friction force prediction model. The paper uses Matlab to simulate the relationship between intestinal viscoelastic deformation, endoscopic intestinal mucous, size, material and the friction under the condition of intestinal peristalsis, which will lay a solid experimental foundation for the non-destructive diagnosis so as to promote the development of medical micro robots.
     Tribology in surface morphology is one of the important factors affecting the friction performance, this paper uses the environmental scanning electron microscope to observe the entire inner surface of the digestive tract of rabbit microstructure, the results show that surface structure between esophagus, stomach, small intestine and large intestine is greatly different. Inner surface of esophagus distributes with discontinuous ridge structure, Inner surface of small intestine distributes with fold, small intestine villi and microvilli, and different shapes of the intestine villi with different sparse degree, stomach surface distribute with fold and gastric pit, large intestine different from small intestine has no villi.
     In addition to surface morphology, in the tribology, the impact of the physical, chemical and mechanical properties on friction is very big also. This article uses the micro friction tester and rheometer to test the rheological properties of intestinal mucous, lubricity, and the results show that intestinal mucous for non-newtonian fluid with shear thinning, along with the increasing of the shear rate, viscosity tends to a constant and becomes into a Newtonian fluid. Analyst say that it was caused by the damage of the protein molecules in intestinal mucous; PDMS plastic film rubs under the condition of dry friction, deionized water, and intestinal mucous, then intestinal mucous will reduce friction coefficient to10-2orders of magnitude, and intestinal mucous has good lubricity. It was showed that the phospholipids layer covering on the elastic gel in intestinal mucous has the dewatering property, and can decrease the adsorption force to have the effect of sliding friction reduction.
     By adopting micro-electronic stretcher to the esophagus, trachea, small intestine, large intestine, axial and radial tensile, the paper get the results that the mechanical properties of the esophagus, trachea, small intestine, large intestine are different and possess the anisotropic material, and radial elongation ratio is greater than the axial elongation ratio, then it is proposed that the digestive tract mucosa of microstructure is one of the important factors affecting its mechanical performance.
     We design a new test method which can eliminate the effects of viscoelastic deformation and test the intestinal changes of surface morphology and the change law of friction performance. This test method produces five different semi-cylinders with different diameter which are0%,20%,40%,60%,80%, larger than the diameter of5samples to be tested. To put the inner surface of the intestinal surface on the semi-cylinder and make five bowel radial strain rate was0%,10%,20%,30%,40%, and then test the change of the friction coefficient under different conditions of strain measurement, we got the results that, when the radial strain rate is less than10%, with the increase of speed and load fluctuating smaller, friction coefficient basically remain unchanged; When the radial strain rate is more than10%, coefficient of friction, with the increase of speed and load fluctuation volatile, increases significantly. The paper puts forward the mechanism of the friction coefficient change:when the intestinal radial strain rate is less than10%, lubrication form is liquid lubrication; when the radial strain rate is more than10%, lubrication form becomes into thin film lubrication.
     The paper established two kinds of friction prediction models of the deformation of intestinal producing viscoelasticity and the deformation of intestinal producing no viscoelasticity respectively, and carried on the numerical simulation by using Matlab. The first model uses the thin shell theory and intestinal dynamic model of viscoelastic deformation model to establish the dynamic model of the intestinal peristalsis, and simplifies the peristaltic wave to sine wave, and uses five-elements viscoelastic model and the basic law of friction friction to deduct the calculation expressions. The second model, after endoscopic miniaturization, has taken into account that no effect by the intestinal viscoelastic deformation is only determined by the surface morphology and the chemical and physical properties, and deduced the friction calculation expression by using boundary lubrication theory and fractal theory. The simulation results show that there are more frictions when squirming than those when not squirming; the friction increases with the capsule endoscopy radius, length, speed; radius produces bigger incremental friction force than length; contact angles of the forward end and drive end produce the same amount of friction; forward end produces more frictions than drive end with the same contact angle, friction gravity produced by gravity is negligible.
引文
[1]刘斌.组织学与胚胎学[M].北京:北京大学医学出版社,2005:16-28.
    [2]高英茂.组织学与胚胎学[M].北京:高等教育出版社,2004:50-57.
    [3]邹仲之.组织学与胚胎学[M].北京:人民卫生出版社,2004:34-45.
    [4]成令忠,钟翠平,蔡文琴.现代组织学[M].上海:上海科学技术文献出版社,2003:25-42.
    [5]成令忠,王一飞,钟翠平.组织胚胎学[M].上海:上海科学技术文献出版社,2003:35-46.
    [6]石玉秀.组织学与胚胎学[M].北京:高等教育出版社,2007:143-154.
    [7]World Health Organization. IARC Launches the Definitive Cancer Statistics Resource GLOBOCAN 2008.International Agency for Research on Cancer; 1 June 2010.
    [8]李旻.胶囊式微机电系统的现状与发展趋势[J].现代制造工程,2010(1):150-153.
    [9]胡海燕.半自主式结肠内镜机器人系统研究[D].哈尔滨:哈尔滨工业大学,2011:1-10.
    [10]N-K Baek,I-H Sung and D-E Kim. Frictional resistance characteristics of a capsule inside the intestine for microendoscope design[J]. Proceedings of the I MECH Part H Journal of Engineering in Medicine,2004,218 (3),193-201.
    [11]Xiaona Wang, Max Q-H Meng,Yawen Chan. Physiological factors of the small intestine in design of active capsule endoscopy[J]. In Proceedings of the 2005 IEEE Engineering in medicine and biology 27th annual conference,2005.
    [12]Xiaona Wang, Max Q-H Meng. Study of frictional properties of the small intestine for design of active capsule endoscope[J]. In Proceedings of the 1st IEEE/RAS-EMBS International Conference on biomedical robotics and biomechatronics,2006.
    [13]X Wang, Max Q-H Meng. An experimental study of resistant properties of the small intestine for an active capsule endoscope[J].Proc.Inst.Mech.Eng.H,2010,224 (1),107-118.
    [14]J-S Kim, I-H Sung, Y-T Kim, et al. Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application[J].Tribology Letters,2006,22 (2),143-149.
    [15]J-S Kim, I-H Sung, Y-T Kim, et al. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine[J]. Proceedings of the I MECH Part H Journal of Engineering in Medicine,2007,221,837-845.
    [16]Sang Hyo Woo,Tae Wan Kim,Jin Ho Cho.Stopping mechanism for capsule endoscope using electrical stimulus[J].Med Biol Eng Comput,2010,48:97-102.
    [17]Sang Hyo Woo, Tae Wan Kim, Zia Mohy-Ud-Din, et al. Small intestinal model for electrically propelled capsule endoscopy[J].BioMedical Engineering,2011,108 (10):2-20.
    [18]K.Yoshinaka,K.Takashima,T.Okazaki, et al. Experimental study to control the insertion resistance of internal medical instrument using magnetic field oscillation[J].Tribology International,2007,40,339-344.
    [19]Y-T Kim, D-E Kim. Biotribological investigation of muti-tube foot for application in medical micro-robot, Proceedings of the ASME/STLE International Joint Tribology Conference,2007.
    [20]Sung-Hoon Lee,Young-Tae Kim, Sung-Wook Yang, et al. An optimal micropatterned end-effecter for enhancing frictional force on large intestinal surface[J]].Applied Materials & Interfaces,2010,2 (5),1308-1316.
    [21]Elisa Buselli,Virginia Pensabene,Piero Castrataro, et al. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy[J].Measurement Science and Technology,2010,21,105-802.
    [22]刘建青,黄平.基于OV6920体内无线窥视胶囊设计与实验研究[J]机械设计与制造,2010,6:33-35.
    [23]Kundong Wang,Guozheng Yan,Guanying Ma,and Dongdong Ye.An earth-like robotic endoscope system for human intestine:design,analysis,and experiment[J].Annals of Biomedical Engineering,2009,37 (1),210-221.
    [24]胡海燕.半自主式结肠内镜机器人系统研究[D].哈尔滨:哈尔滨工业大学,2011.
    [25]ZhangYong Shun,Wang Dian Long,Ruan Xiao Yanjiang Shen Yuan,Lu Jie.Control strategy for multiple capsule robots in intestine[J].Science China,2011,54 (11),3098-3108.
    [26]ZhangY,Jiang S,Zhang X,et al. Dynamic characteristics of an intestine capsule robot with variable diameter[J].Chin Sci Bull,2010,55:1813-1821.
    [27]ZhangY,Jiang S,Zhang X,et al.A variable diameter capsule robot based on multiple wedge effects,IEEE/ASME Trans Mechatron,2011,16:241-254.
    [28]张永顺,姜生元,张学文,于宏海,王殿龙,郭东明.肠道内可变直径胶囊机器人的动 态特性[J].中国科学,2009,54(16):2408-2415.
    [29]张永顺,于宏海,阮晓燕,王楠,郭东明.新型肠道胶囊式微型机器人的运动特性[J].机械工程学报,2009,45(8):18-23.
    [30]Zhang, C., Su, G., Tan, R., Li, H.:Experimental investigation of the intestine's friction characteristic based on "internal forcestatic friction" capsubot. In:IASTED International Conference on Biomedical Engineering, Biomed 2011,2011,pp.117-123.
    [31]Renjia Tan,Hao Liu,Gang Su, et al.Experimental investigation of the small intestine's viscoelasticity for the motion of capsule robot. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation,2011.
    [32]Cheng Zhang. Hao Liu, Renjia Tan, Hongyi Li. Modeling of Velocity-dependent Frictional Resistance of a Capsule Robot Inside an Intestine[J]. Tribol Lett,2012,47:295-301.
    [33]Tan, R., Liu, H., Su, G., Zhang, C., Li, H., Wang, Y.:Experimental investigation of the small intestine's viscoelasticity for the motion of capsule robot. In:IEEE International Conference on Mechatronics and Automation, ICMA 2011,2011,pp.249-253
    [34]Munoz-Navas, M. Capsule endoscopy. World J. Gastroenterol[J].2009,15(13),1584-1586
    [35]Saruta, M., Papadakis, K.A.,Capsule endoscopy in the evaluation and management of inflammatory bowel disease:a future perspective[J].Expert Rev. Mol. Diagn,2009,9(1), 31-36
    [36]Carey, E.J., Leighton, J.A., Heigh, R.I., Shiff, A.D., Sharma,V.K., Post, J.K., Fleischer, D.E., A single-center experience of 260 consecutive patients undergoing capsule endoscopy for obscure gastrointestinal bleeding[J].Am. J. Gastroenterol.2007,102(1),89-95.
    [37]Wang, K., Wang, Z., Zhou, Y., Yan, G.:Squirm robot with full bellow skin for colonoscopy[J]. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, 2010,pp.53-57.
    [38]Quaglia, C., Buselli, E., Webster, R.J., Valdastri, P., Menciassi,A., Dario, P.,An endoscopic capsule robot:a meso-scale engineering case study [J]. Micromech. Microeng,2009,19(10), 11
    [39]Yang, W.A., Hu, C., Meng, M.Q.H., Dai, H.D., Chen, D.M.,A new 6D magnetic localization technique for wireless capsule endoscope based on a rectangle magnet[J]. Chin. Electron, 2010,19(2),360-364.
    [40]Gao, M., Hu, C., Chen, Z., Zhang, H., Liu, S., Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope. IEEE Trans. Biomed. Eng. 2010,57(12),2891-2902.
    [41]Wang, X., Meng, Q.H., Chen, X.:A locomotion mechanism with external magnetic guidance for active capsule endoscope. In:Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,2010,pp.4375-4378.
    [42]Kim, B., Park, S., Park, J.O., IEEE:Microrobots for a capsule endoscope. In:IEEE ASME International Conference on Advanced Intelligent Mechatronics,2009,pp.729-734.
    [43]Hoeg, H.D., Slatkin, A.B., Burdick, J.W., Grundfest, W.S.:Biomechanical modeling of the
    small intestine as required for the design and operation of a robotic endoscope. In:Proceedings
    of IEEE International Conference on Robotics and Automation,2000,pp.1599-1606
    [44]Li, J., Huang, P., Luo, H.D., Experimental study on friction of micro machines sliding in animal intestines [J]. Lubr. Eng.2006,175(3),119-122.
    [45]Li, H., Katsuhisa, F., Chernousko, F.L.:Motion generation of the capsubot using internal force and static friction. In:45th IEEE Conference on Decision and Control,2006,pp. 6575-6580.
    [46]Wang, K.D., Yan, GZ.:Research on measurement and modeling of the gastro intestine's frictional characteristics[J].Meas. Sci. Technol.2009,20(1),015803.1-015803.6
    [47]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005.
    [48]陈新.分形理论及其在机械工程中的应用[J].机械科学与技术,2000,19(5):692-695.
    [49]王慧,曾令可.分形理论及其在材料科学中的应用.材料开发与应用,2000,15(5):39
    [50]冯元桢 连续介质力学初级教程[M].清华大学出版社.148-149.
    [51]Fung Y C.Biomeehanies:Motion. Flow. Stress, and Growth.New York:SPringer—Verlag, 1990,676-680.
    [52]Han HC, Fung YC. Residual strains in porcine and canine trachea[M]. J Biomechanics,1991,24:307-315.
    [53]Han H C, Fung Y C.Residual strains in Porcine and canine traehea.J of Biomeehanies, 1991,24:307-315.
    [54]吴江红,程西云,韦云隆,等.猪十二指肠和空肠生物力学性能特性[J].重庆大学学报(自然科学版),2001,24(2):9.
    [55]樊艳华,窦艳玲.在体鼠小肠应力-应变实验研究[J].医用生物力学,2002,17(3):141-146.
    [56]施斌,朱木梁, 谢渭芬, 张忠兵.食道零应力状态的生理及病理意义[J].生物医学工程学杂志,2002,19(2):320-323.
    [57]赵静波,窦艳玲.正常大鼠小肠残余应变与小肠各层组织结构的相关关系[J].中国生物医学工程学报,2003,22(1):60-64.
    [58]周丁华,赵玮等.人体肠道生物力学特性的研究[J].生物医学工程学杂志,2006,23(5):1017-1019
    [59]Y.C.Fung,Biomechanics-Mechanical Properties of Living Tissues.Berlin, Germany:Springer-Verlag,1993.
    [60]王伯初,杨一平,新见英幸.心室颤时脑微动脉血管的应力实验[J].重庆大学学报,1994,17(5):143-146.
    [61]江红星,王以进,张育成.小动脉三维力学性质的实验研究[J].医学生物力学,1995,14
    (4):214-219.
    [62]伍时桂,李晓阳,乔爱科,等.弯管血管壁本构方程的理论研究[J].北京工业大学学报,1998,24(2):12-20.
    [63]廖东华,韩海潮,赵黎,等.自体静脉移植血管的应力应变关系及其相关组织形态学研究[J].中国生物医学工程学报,2000,19(3):261-266.
    [64]黄耀添,侯黎升,颉强,等.兔股动、静脉轴向张力-应变关系的实验研究[J].医学生物力学,2000,15(4):237-241.
    [65]李晓阳,曾衍钧.动脉壁三维含残余应力因素的本构方程[J].中国生物医学工程学报,2002,21(1):28-33.
    [66]颉强,杨柳,赵黎,黄耀添,胡蕴玉,李珏.人体血管在离体情况下的纵向应力-应变规律[J].中国组织工程研究与临床康复,2007,11(31):6318-6320.
    [67]武晓玲,陈卫军,迟路湘,鲁向辉.兔颈动脉粥样硬化发展过程中血管壁重塑及生物力学特性的变化[J].中国动脉硬化杂志,2007,15(4):281-285.
    [68]张付,周睿卿,陈晓刚,廖志钢.大鼠死后胸主动脉生物力学特征变化规律的研究[J]. 生物医学工程学杂志,2008,25(4):849-851.
    [69]吕超霞,李文春,张兴华,王配军,黄铁柱.门静脉高压症猪肺血管的生物力学特性[J].中国临床解剖学杂志,2008,26(1):95-98.
    [70]柳兆荣,王忆勤等.正常大鼠气管的张开角与残余应变[J].中国科学,2001,31(6):557-560.
    [71]柳兆荣,滕忠照等.大鼠气管的环向残余应变及其非均匀分布[J].中国生物医学工程学报,2003,22(2):149-152.
    [72]王忆勤、李福凤、郭丽等.哮喘模型大鼠气管的张开角及残余应变[J].中国生物医学工程学报,2006,25(1):88-91.
    [73]邓卫军,史宏灿,裴昶,徐洪等.成年离体猪气管生物力学特性的实验研究[J].医用生物力学,2008,23(5):389-393.
    [74]哥尔琴文塞尔.弹性薄壳理论[M].上海:上海科学技术出版社,1963.
    [75]吴云鹏.体液的流变特性[M].北京:科学出版社,1987.
    [76]吴江红,程西云,韦云隆等.狗小肠黏液流变性能研究[J].重庆大学学报(自然科学版),2000,23(2):10-12.
    [77]周丁华,黎介寿等.人体消化道黏液流变学性能的研究[J].生物医学工程学杂志,2004,21(1):72-73.
    [78]周银生,吴江红,朱永清等.人体胃液的流变学性能研究[J].润滑与密封,2000,3:37
    [79]H.Yoshida,Y. Morita,K.Ikeuchi, et al. Biological lubrication of hydrated surface layer in small intestine[J]. Tribological Research and Design for Engineering Systems,2003,425-427.
    [80]王昌祥,郑昌琼等.生物摩擦磨损润滑剂的润滑特性[J].润滑与密封,1998,5:15-17.
    [81]黄孝龙,朱华等,生理盐水对猪股骨生物摩擦学行为的影响[J].润滑与密封,2008,33(10):8-10.
    [82]黄孝龙,葛世荣等,血浆润滑条件下猪股骨的生物摩擦学行为研究[J].润滑与密封,2008,33(12):18-20.
    [83]文宗耀、童家明等.血液粘度与电阻率关系的微观流变特性[J].中国生物医学工程学报,1994,13(4):345-348.
    [84]Kucharzik T, Lugering N, Rautenberg Ket al.Role of M cells in intestinal barrier function[J]. Ann N Y Acad Sci,2000,915(2):171-183.
    [85]Mizuno M, Okayama N, Kasugai Ket al.Acid stimulates E-cadherin surface expression on gastric epithelial cells to stabilize barrier functions via influx of calcicum[J].Eur J Gastroenterol Hepatol,2001,13(2):127-136.
    [86]Karczewski J, Groot J. Molecular physiology and pathophysio-logy of tight junction:Tight junction regulation by intrace-llular messengers.differences in response within and between ep-ithelia[J].Am J Physiol Gastrointest Liver Physiol,2000,279(5):G660-G665.
    [87]Nusrat A, Parkos CA, Verkade Pet al.Tight junctions are membrane microdomins[J].J Cell Sci,2000,113(Pt 10):1771-1781.
    [88]Johnson CD, Kudsk KA. Nutrition and intestinal mucosal im-munity[J].Clin Nutr,1999,18(6):337-344.
    [89]Baumgart DC, Dignass AU:Intestinal barrier function[J].CurrOpin Clin Nutr Metab Care,2002,5(6):685-694.
    [90]Lencer WI. Microbes and microbial toxins:paradigms for micro-bia-1 mucosal toxins[J].Am J Physiol Gastrointest Liver Physiol,2001,280(6):G781-G786.
    [91]McNamara BP, Koutsouris A, O'Connell CBet al. Translocat-ed EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function[J].Clin Invest,2001,107(5):621-629.
    [92]Hecht G. Enteropathogenic Escherichia coli:physiological alter-lations from an extracellular position[J].Am J Physiol Gastroin-test Liver Physiol,2001,281(1):G1-G7.
    [93]Hudaut S, Guignot J, Servin AL. Escherichia coli strains colonizing the gastrointestinal tract protect germfree mice againstSalmonella typhimurium infection[J].Gut,2001,49(1):47-55.
    [94]Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? [J].Surgery,2002,131(3):241-244.
    [95]Nusrat A,Parkos CA, Verkade P, et al. Tight junctions are membrane microdomins[J].Cell Sci,2000,113(Pt10):1771-1781.
    [96]Lamm ME, Phillips-Quagliata JM. Origin and homing of intestinal IgA antibody-secreting cells [J].Exp Med,2002,195(2):F5-8.
    [97]Golby SJ.Spencer J.Where do IgA plasmma cell in the gut come from? [J].Gut,2002,51(2):150-151.
    [98]Wittig BM,Zeitz M.The gut as an organ of immunology[J].Int J Colorectal Dis,2003,18(3):181-187.
    [99]Brayden DJ,Jepson MA,Baird AW.Keynote review:intestinal Peyer' s patch M cells and oral vaccine targeting [J]. Drug Discov Today,2005,10(17):1145-1157.
    [100]Kucharzik T,Lugering N,Rautenberg K,et al.Role of M cells in intestinal barrier function[J].Ann N Y Acad Sci,2000,915:171-183.
    [101]Man AL, Prieto-Garcia ME, Nicoletti C. Improving M cell mediated transport across mucosal barriers.do certain bacteria hold the keys? [J].Immunology,2004,113(1):15-22.
    [102]Gebert A,Sternmetz I,Fassbender S,et aLAntigen transport into Peyer's patches:increased uptake by constant numbers of M cells[J].Am J Pathol,2004,164(1):65-72.
    [103]Jang MH,Kweon MN,Iwatani K,et al.Intestinal villous M cells:an antigen entry site in the mucosal epithelium[J].Proc Natl Acad Sci USA,2004,101(16):6110-6115.
    [104]Baumgart DC.Dignass AU:Intestinal barrier function[J].Curr Opin Clin Nutr Metab Care,2002,5(6):685-694.
    [105]Juan C,Montejo MD.Enteral nutrition-related gastrointestinal complications in critically ill patients:A multicenter study [J].Critical Care Med,1999,27:652-653.
    [106]Finn PJ,Plank LD,Clark,MA,et al.Progressive celluar dehydration and proteolysis in critically ill patients[J].Lancet,1996,347:654-656.
    [107]Ziegler TR.Glutamine supplementation in cancer patients receiving bone marrowtransplantation and high dose chemotherapy[J]. Nutr,2001,131:2578s-2584s.
    [108]Vine DF.Charman SA,Gibson PR,et al.Effect of dietary fatty acids on the intestinal permeability of marker drug compounds in excised rat jejunum[J].Pharm Pharmacol,2002,54:809-819.
    [109]Rayes N,Seehofer D,Hansen S,et al.Early enteral supply of lactobacillus and fiber versus selective bowel decontamination.a controlled trial inliver transplant recipients[J].Transplantation,2002;74:123-127.
    [110]Shan J,Martin G,Medding JB,et al.Epidermal growth factor improves nutritional outcome in a rat model of short bowel syndrome[J]. Pediatr Surg,2002,37:765-769.
    [120]Liu W,Jiang Z,Wang X,et al.Impact of perioperative treatment of recombinant human growth hormone on cell immune function and intestinal barrier function[J]. World J Surg,2003,27:412-415.
    [121]Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces[J].Physics of Fluids,2009,21:085103.
    [122]Zhao JP, Shi XH, Geng XG, et al. Liquid slip over superhydrophobic surface and its application in drag reduction[J] Journal of Ship Mechanics,2009,13(2):325-330.
    [123]Zhang S W. Investigation of the developing directions of tribology in China at present [C]. Luoyang:Symposium on Tribology and Related Materials in New Millennium,2001
    [124]Zhang S W. Investigation concerning the developing directions of tribology in China [J]. Tribology,2001,21(5):321-323 (in Chinese)
    [125]Zhang Siwei. Current industrial activities of tribology in China [C]. Plenary Lecture to the 5th China International Symposium on Tribology and the 1st International Tribology Symposium of IFToMM,2008, Beijing, China.
    [126]30 Anniversary and "Green Tribology"—Report of a successful Chinese Mission to the United Kingdom (June 7—14,2009) [R]. Tribology Network of Institution of Engineering and Technology (SET),2009.
    [127]Jost H P. Green tribology—a footprint where economics and environment meet [C]. Address to the 4th World Tribology Congress, Kyoto, Japan,2009.
    [128]Martin J M, Bouchet M I De Barros, Sagawa T. Green tribology:lubricant— compliant superhard DLC coatings [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,19.
    [129]Nasonovsky M, Bhushan B (eds). Green Tribology. ThemeIssue of Philosophical Transactions of the Royal Society A [M]. London:Royal Society Publishing,368(1929), 2010.
    [130]Nasonovsky M, Bhushan B. Green tribology:principles, research areas and challenges, in Green Tribilogy. PhilosophicalTransactions of the Royal Society A [M]. London: Royal Society Publishing,2010,368 (1929):4677-4694.
    [131]Nasonovsky M, Bhushan B. Towards the "Green Tribology".Biomimetic surfaces, biodegradable lubrication, and renewable energy [C]. In:Proc. STLE/ASME International Joint Tribology Conference, San Francisco,2010,41157.
    [132]Jost H P. Development of green tribology—An overview [C]. Moscow:Seminar— New Direction in Tribotechnology,2010.
    [133]Zhang S W. Green tribology—a way to propel society sustainable [C]. Wuhan: Symposium on Tribology in Central China andNational Tribology and Surface Protection Conference for Young Tribologists(in Chinese).
    [134]Zhang S W. Green tribology—a way to propel society sustainable [J]. Lubrication Engineering,2008,33 (10):1-3 (in Chinese).
    [135]Zhang S W. Green Tribology—an important field of saving both energy and materials and improving the ecological environment [C]. Hangzhou:National Symposium on Tribology and itsIndustrial Application for Young Tribologists,2010 (in Chinese).
    [136]Si -wei Zhang. Green tribology-the way forward to a sustainable society [C]. Keynote Address, In:Proc International Tribology Congress -ASIATRIB 2010, Perth, West Australia,2010,6.
    [137]方建华,陈波水,董凌.含硼和氮的脂肪酸水基润滑添加剂的制备及其摩擦学性能[J].摩擦学学报,2003,3(23):226-230.
    [138]蒋海珍.N-油酰基谷氨酸水基润滑添加剂的合成及其摩擦磨损特性研究[J].摩擦学学报,2006,26(1):45-48.
    [139]高永建,张治军,薛群基,等.油酸修饰Ti02纳米微粒水溶液润滑下GCr15钢摩擦磨损性能研究[J]. 摩擦学学报,2000,20(1):22-25.
    [140]Tsuji M, Kubokawa M, Yano R, et al. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave—olyol method and their application to fuel cells [J]. Langmuir,2007,23 (2):387-390.
    [142]Sun Y G, Xia Y N. Mechanistic study on the replacement reaction between silver nanost ructures and chloroauric acid in aqueous medium [J]. Am Chem Soc,2004,126 (12): 3892-3901.
    [143]Bartz W. Saving of energy and resources by the tribological approach [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,34.
    [144]Hayashi K, Fuwa Y. Tribo—technologies for improving fuel efficiency [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,584.
    [145]Merryweather S, Zweifel D. New oil soluble polyalkylene glycols for energy saving lubricant applications [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan, 2009,37.
    [146]Yamamoto K, Umehara K, Kotaka A. Additives for improving the fuel economy of diesel systems [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,28.
    [147]Koyamaishi N, Murakami M, Komiya K, et al. Study of future oil [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,577.
    [148]Matsuyama H, Kawaguchi K, Uemura A, et al. Development of super—low friction torque tapered roller bearing for high efficiency axle differential [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,591.
    [149]Numazaki R, Nakayama S, Inayama T, et al. Contribution for energy saving by novel environmental lubricants containing derivatives from natural resources [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,41.
    [150]Shashidhara Y M, Jayaram. Vegetable oil as a potential cutting fluid-an evolution [J]. Tribology International,2010,43:1073-1081.
    [152]Xiong H Q, Lin X Y, Dai E Q. Preparation and application of environment—friendly chlorine—free extreme—pressure micro—emulsion cutting fluid [J]. Lubrication Engineering,2011,36(1):102-106 (in Chinese).
    [153]Kato N, Lei X, Wen X. A synthetic seismicity model for the Xianshuihe fault, southwestern China:simulation using a rate—ependent friction law [J]. Geophysical J Int,2007,169(1):286-300.
    [154]De Lorenzo S, Loddo M. Effect of frictional heating and thermal and advection on pre— seismic sliding:a numerical simulationusing a rate—, state—and temperature— dependent friction law [J]. J Geodynamics,2010,49(1):1-13.
    [155]Hsu Ya—ju, Rivera L, Wu Yih—Min, et al. Spatial heterogeneity of tectonic stress and friction in the crust:new evidence from earthquake focal mechanisms in Taiwan [J]. Geophysical J Int,2010,182(1):329-334.
    [156]Wood R J K, Bahaj A S, Turnock S R, et al. Tribological design constraints of marine renewable energy systems, in Green Tribilogy. Philosophical Transactions of the Royal Society A [M]. London:Royal Society Publishing,2010,368 (1929):4807-4827.
    [157]Erdemir A, advances in surface engineering for extreme tribological applications [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,158.
    [158]Erdemir A, Eryilmaz O L, Urgen M, et al. Ultra-low friction and wear of designer nanocomposite coatings enabled by the use of a crystal -chemical model [C]. In:Proc the 4th World Tribology Congress, Kyoto, Japan,2009,283.
    [159]狄勤丰,余祖斌,顾春元等.纳米颗粒吸附微管道水流特性的格子Boltzmann方法模拟[J].中国石油大学学报,2009,33(2):104-108.
    [160]柯贵喜,潘光,黄桥高等.水下减阻技术研究综述[J].力学进展,2009,39(5):546-554
    [161]顾春元,狄勤丰,施利毅等.纳米粒子构建表面的超疏水性能实验研究[J].物理学报,2008,57(5):3071-3076.
    [162]吴非,狄勤丰,顾春元等.疏水纳米Si02降低岩心滚动阻力效果的室内实验研究[J].钻采工艺,2008,31(2):102-103.
    [163]徐中,徐宇,王磊等.凹坑形表面在空气介质中的减阻性能研究[J].摩擦学学报,2009,29(6):579-583.
    [164]S.-S. Chang, H.-C. Wu, C. Chen, Impact wear resistance of stellite 6 hardfaced valve seats with laser cladding[J]. Materials and Manufacturing Processes,2008,23 (7),708-713.
    [165]Bharat Bhushan. Introduction to tribology [M]. Beijing:ChinaMachine Press 2007 (in Chinese).
    [166]Zhang S W. Enormous economy potential of tribology application in industry in China On the survey of present status of tribology application in industry [J]. China Surface Engineering,2008,21(2):50-51 (in Chinese)
    [167]Xu B S. Nano surface engineering [M]. Beijing:Chemical Industry Press,2004 (in Chinese).
    [168]Wang X L, Xu B S, Xu Y, et al. Preparation of nano-copper as lubrication oil additive [J]. Journal of Central South University of Technology,2005(10):203-206.
    [169]Yu H L, Xu B S, Xu Y, et al. Design of wear—out—failure repair parts by environment—friendly nanocopper additive [J]. Journal of Central South University of Technology,2005 (10):215-220.
    [170]Liu Q, Xu Y, Shi P J. et al. Analysis of self-repair films on friction surface lubricated with nano -Cu additive[J]. Journal of Central South University of Technology,2005 (10):186-189.
    [171]Wang X L, Xu B S. Xu Y, et al. Study on friction and wear behavior and mechanism of nano—Cu additive in lubrication oils [J]. Tribology,2007,27(3):235-240 (in Chinese).
    [172]Yu H L, Xu B S, Xu Y, et al. Friction and sliding -wear behavior of steel -aluminum tribopair improved by nanocopper additive [J]. Tribology,2006,26 (5):432-438 (in Chinese).
    [173]Li B, Xia Y Q, Wang X B, et al. Investigation of tribological properties of nano-Cu as additives in PEG -400 [J]. Tribology,2005,25 (5):385-389 (in Chinese).
    [174]Zhou Jingfang, Zhang Z J, Wang X B, et al. Investigation of the tribological behavior of oil -soluble Cu nanoparticles as additive in liquid paraffin[J]. Tribology,2000,20(2): 123-126.
    [175]Bin X B, Chen J Z, Cao H, et al Friction and wear behavior of graphene encapsulated copper nanoparticles [J]. Tribology,2008,28 (1):23-27 (in Chinese)
    [176]Dang H X, Zhao Y B, Zhang Z J. Tribological properties of Binanoparticles as additive in liquid paraffin [J]. Tribology,2004,24 (2):185-187 (in Chinese).
    [177]Huang H D, Tu J P, Gan L P, et al. Preparation and tribological properties of graphite nanosheets as additive in liquid paraffin [J]. Tribology,2005,25 (4):312-316 (in Chinese).
    [178]Fu X, Shi H Q, Zhou X D, et al. A Study on friction and wear properties of surface-modified MoS2 micro-spheres in liquid paraffin [J]. Tribology,2007,27 (1):35-40 (in Chinese).
    [179]Huo Y Q, Yan Y T, Liu X X, et al Preparation and tribological properties of monodispersed nano—SiO2 particles as additive in lubricating oil [J]. Tribology,2005, (25) 1:34-38 (in Chinese).
    [180]Xuan Y, Liu Y, Zhao X C. et al. The investigation of the tribological properties of AlOOH and Fe3O4 nanoparticles as additives in liquid paraffin [J]. Tribology,2010, 30(2):209-216(in Chinese).
    [181]Chen W G, Gao Y Z, Zhang H C. Anti—wear mechanism of the serpentine powder as self-repairing additive [J]. Tribology,2008,28 (5):463-468 (in Chinese).
    [182]Yang Y L, WenYH, Zhang R J, et al. Influence of wear time on metal wear self-repair and mechanism analysis [J]. Chinese Journal of Mechanical Engineering,2008,10:178-182 (in Chinese).
    [183]Nasonovsky M, Bhushan B(eds). Green Tribology. ThemeIssue of Philosophical Transactions of the Royal Society A [M]. London:Royal Society Publishing,368(1929), 2010.
    [184]Nasonovsky M, Bhushan B. Green tribology principles, research areas and challenges, in Green Tribilogy. PhilosophicalTransactions of the Royal Society A [M]. London:Royal Society Publishing,2010,368(1929):4677-4694.
    [185]Shashidhara Y M, Jayaram. Vegetable oil as a potential cutting fluid—an evolution [J]. Tribology International,2010,43:1073-1081.
    [186]Xiong H Q, Lin X Y, Dai E Q. Preparation and application of environment—friendly chlorine—free extreme—pressure micro—emulsion cutting fluid [J]. Lubrication Engineering,2011,36(1):102-106(in Chinese).
    [187]Yu H L, Xu Y, Shi P J, et al. Tribological behaviors of surface—coated serpentine ultrafine powders as lubricant additive [J]. Tribology International,2010(43):667-685.
    [188]Wang L B, Feng D P, Liu W M. Tribological properties of a steel—steel pair under the lubrication of lithium grease containing various nano—particulates as additives [J]. Tribology,2005,25(2):107-111(in Chinese).
    [189]Guan wen-chao.Study on Synthesis and Lubricating Performance of Carbon Nanotubes-Poly (ethyl acrylate) Compound Emulsion as Additive in Water-Based Fluid [J]. Tribology,2004,24 (4):299-302(in Chinese).
    [190]Zhao Dechun. Design and study of wireless capsule endoscope on demand[D]. Chongqing: Chongqing Umvenity,2008.
    [191]He Ji guang. The research and design on wireless endoscope location system[D]. Hefei: Hefei umvemity oftechnology,2008.
    [192]KOLEN CO., LTD. Capsule—type image photographing apparatus and endoscopy using the sⅡrle, CN101594815A[P].2009,04:15.
    [193]OLYMPUS MEDICAL SYSTEMS CORP, In—vivo image capture device, CN101340842A [P].2009,08:07.
    [194]Haga Y, Esashi M. Biomedical microsystems for minimally invasivediagnosis and treatment[J]. Proceedings of the IEEE,2004,92(1):98-114.
    [195]Kyong-Jae Lee, Hyun—PhiU Ko, Chong—Yun Kang, et al. A study on the friction and thrust force of the shaft and mobile element in the impact typed piezoelectric ultrasonic linear motor[J]. Journal of Electroceramics,2006,17:2-4.
    [196]Nakamum M, Ohmiya N, Shirai O, et al. Route selection for double-balloon endoscopy, based On capsule transit time, in obscure gastrointestinal bleeding[J]. Gustmenteml,2010, 45:592-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700