用户名: 密码: 验证码:
桩基础水平响应计算方法及其抗液化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础在当前日益发展的土木工程基础设施建设中得到了广泛的应用,而桩基础不仅仅承担着竖向荷载,同时也会承担水平向荷载,特别在地震过程中,桩头所支撑的上部结构会产生很大的惯性力,使得钢筋混凝土桩很容易进入非线性状态,从而产生破坏,因此,如何合理地建立水平加载条件下考虑钢筋混凝土桩的材料非线性的静力分析方法是桩基础抗震设计中重要的研究课题,对于软土地区的水平加载桩,桩与其后侧粘土的分离对桩基础的水平承载性能有很大影响,如何在计算中考虑这一影响尚待研究,同时,对于软土地区的桩基础会涉及到地基改良问题,如何确定经济有效的改良深度也是个研究课题,另外,目前对于群桩基础的水平承载力设计方法还不够完善,需要做进一步研究,同时,在地震过程中,饱和砂土场地会产生砂土液化现象,而目前对于液化场地上群桩基础抗液化性能的研究甚少,也是需要进一步开展的工作。本文围绕着桩基础做了以下研究工作:
     (1)针对现有的应变楔形体模型存在的缺点,如楔形体前破坏面不连续、应力应变路径的公式比较复杂且参数不易选取、不适用于超固结粘土的计算等,本文提出了修正的应变楔形体模型以用于桩基础的水平响应的计算,编制了SWPILE有限元程序,并通过已有文献中大量的砂土、粘土以及层状土中水平加载桩试验,验证了该修正模型的可行性,并讨论了应变楔形体模型中的收敛问题、楔形体中应变和楔形体高度变化规律以及参数的敏感性等,最后,利用该修正的应变楔形体模型研究了p-y曲线的影响因素;
     (2)基于修正的应变楔形体模型,研究了双层地基(密砂土和软粘土)中桩基的水平响应,并研究了土的成层效应对桩基水平响应的影响规律,包括密砂土中的软粘土夹层和软粘土中密砂土夹层,在此基础上,分析了密砂土场地和软粘土场地中地表土层最大影响深度及其与计算出的楔形体高度的关系;
     (3)在修正的应变楔形体模型中,采用纤维单元实现了水平加载条件下考虑钢筋混凝土桩的材料非线性的计算,并根据已有文献中的水平加载桩试验资料和计算结果,验证了该计算方法的可行性。利用该方法研究了钢筋混凝土桩截面刚度在水平荷载作用下的变化规律以及桩的材料非线性对桩的挠度以及最大弯矩的影响;采用了单元应力磨平的方法把纤维单元高斯点的应力恢复到截面网格节点上,并绘制了截面的应力云图,从而了解了中性轴在不同荷载下的变化以及混凝土开裂的发展情况;
     (4)在修正的应变楔形体模型中引入了p-y乘子的概念来考虑群桩效应,并综合了应变楔形体模型和Mokwa等效单桩法的优点,提出了改进的等效单桩法,通过已有文献中的水平加载单桩与群桩实验,验证了该方法的有效性,并基于该方法,研究了p-y乘子对不同位置(排)桩工况中计算出的p-y曲线的影响,并分析了不同深度处以及不同位置(排)桩工况中计算出的粘土和砂土的极限地基反力,还研究了水平荷载和场地深度对群桩效应的影响以及不同桩头条件对单桩和群桩基础水平响应的影响;
     (5)初步研究了液化场地桩基础水平响应计算方法。基于完整的震后房屋损坏调查资料,应用完全耦合的动力有限元方法再现了由砂土液化引起的房屋破坏情况,利用修正的Pastor-Zienkiewicz Mark-Ⅲ模型来模拟砂土在地震荷载作用下的液化特性,用三轴试验结果和标准贯入数据来确定该模型参数,根据一组竖向分布的加速度传感器记录,采用SHAKE91程序确定了地震动输入,并把有限元计算出的地表水平位移与已有文献中经验公式计算出的结果以及震害调查的结果进行了比较,从而验证了有限元计算结果的合理性,随后,通过一系列的工况分析了边坡对房屋震害的影响,并对比研究了群桩、水泥土、排水系统的抗液化性能,为液化场地上群桩基础设计提供了计算方法和参考依据。
Pile foundations have been widely used in engineering with the growing construction of civil infrastructures. Piles are commonly used to transfer vertical (axial) forces, arising primarily from gravity (e.g., the weight of superstructures). However, it is not only the axial force that the piles carry; often the piles are subjected to lateral (horizontal) forces and moments. Especially during the earthquake, large lateral forces and overturning moments are imposed on the piled foundations by the inertia of superstructures. As a result, the plasticity can easily occur for reinforced concrete piles as the tensile strength of concrete is quite low. This can lead to bearing failure and cause heavy casualties and severe economic losses. Thus, it is of great demand in seismic design of pile foundation that quasi-static computation method for response of laterally loaded reinforced concrete piles should be established. In addition, the effect of gap formation between the pile and the clay on the response of laterally loaded piles and the mechanism of the gap formation need to be studied and the computation method for the design of laterally loaded pile group also needs to be improved. Finally, liquefaction is a common phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking and piles are usually used to mitigate the adverse effect of liquefaction, however, little research has be conducted on the liquefaction-mitigation performance of piled foundations. Thus in this thesis, some works related to these issues are conducted and shown as follows:
     (1) Due to the limitations in the current strain wedge model, a modified strain wedge model is proposed to analyze laterally loaded piles by using finite element software SWPILE compiled in Fortran. A number of full scale pile tests in sand, clay, and layered soils are used to verify the applicability of the proposed method. In addition, some discussions are made on convergence of the proposed modified strain wedge model, the strain wedge depth and the soil strain in the strain wedge for a variation in the lateral load, the sensitivity of some input parameters, the hyperbolic and bilinear stress-strain relationships, and so on. Finally, the influential factors of p-y curves are studied based on the proposed method.
     (2) On the basis of the modified strain wedge model, layering effects of soils on the response of laterally loaded piles are investigated by comparing pile behaviors in uniform sand and clay soils with those both in double-layer soils and in triple-layer soils (i.e.. sand layer in clay deposit and clay layer in sand deposit). Then, the most influential height of both sand soils and clay soils at the ground surface is studied based on a number of case studies. Finally, the relation between the most influential height and the stain wedge height is investigated.
     (3) Computation method for analyzing nonlinear behavior of laterally loaded concrete piles is proposed using fiber element. The versatility of the proposed method is demonstrated by a number of full scale pile tests. The effects of material nonlinearity of pile on flexural rigidity, load-deflection curves, and load-maximum moment curves are adequately studied. In addition, the stresses on gauss points are recovered to nodes of the grid of pile section and then depicted in order to study the neutral axis of the pile cross-section and the development of plastic-state area on the pile cross-section with the variation in the lateral load.
     (4) Simplified computation method for the response of laterally loaded pile group is proposed by the combination of the concept of p-y multiplier proposed by Brown et al.(1988) and group-equivalent pile procedure proposed by Mokwa (1999). The proposed method is verified by a number of full scale pile-group tests. In addition, the effect of p-y multiplier on the calculated p-y curves, the effect of the boundary conditions of pile head on the lateral response of piled foundations and the effect of lateral load and soil depth on the group effect are investigated.
     (5) A preliminary research is conducted on lateral response of piled foundations at liquefied site. In addition, a fully coupled dynamic effective-stress finite element procedure UWLC is used to reproduce the damage of the two houses due to dune liquefaction. A modified Pastor-Zienkiewicz III model was used to describe the liquefaction behaviors of the younger sand dune layer. The parameters of the model were quantified by the laboratory tests on undisturbed samples and the Standard Penetration Test data. The input motions for the numerical analyses were calculated by SHAKE91using the seismic motions recorded by the vertical array at the service hall of Kashiwazaki-Kariwa Nuclear Power Plant. First, the lateral displacements of the ground surface calculated by UWLC were compared with those calculated by the method of Zhang et al.(2004) to verify the reliability of the UWLC results. Second, the effects of the sand dune slope on the damage to two houses were investigated. Finally, the effectiveness of each countermeasure used for house B and the combinations of two countermeasures was studied. The research highlights the liquefaction-mitigation performance of pile-group foundation.
引文
[1]Huang J. Development of modified p-y curves for Winkler Analysis to characterize the lateral load behavior of a single pile embedded in improved soft clay [D]. Iowa State University,2011.
    [2]Basu D, Salgado R, Prezzi M. Analysis of laterally loaded piles in multilayered soil deposits[R]. Joint Transportation Research Program,2008.
    [3]Fakher A, Fatahi B, Hokmabadi A. Full scale lateral behaviour of monopiles in granular marine soils[J]. 2012,29:198-210.
    [4]王青桥,韦晓,王君杰.桥梁桩基震害特点及其破坏机理[J].震灾防御技术,2009,4(2):167-173.
    [5]Seed R, Dickenson S, Riemer M, et al. Preliminary Report on the Principal Geotechnical Aspects of the October 17,1989 Loma Prieta Earthquake[R] Rpt. No. UCB/EERC-90/05, Earthquake Eng. Research Ctr., Univ. of California,1990.
    [6]Tuladhar R, Maki T, Mutsuyoshi H. Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil[J]. Earthquake Engineering & Structural Dynamics,2008,37(1):43-59.
    [7]YANG K, Liang R. Numerical Solution for Laterally Loaded Piles in a Two-Layer Soil Profile[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1436-1443.
    [8]Basu D, Salgado R. Elastic analysis of laterally loaded pile in multi-layered soil[J]. Geomechanics and Geoengineering:An International Journal,2007,2(3):183-196.
    [9]Avaei A, Ghotbi A R, Aryafar M. Investigation of Pile-Soil Interaction Subjected to Lateral Loads in Layered Soils[J]. American J. of Engineering and Applied Sciences,2008,1(1):76-81.
    [10]Zhang L, Zhao M, Zou X. Behavior of Laterally Loaded Piles in Multi-Layered Soils[J] Int. J. Geomech., ASCE (Accepted, May.22,2013).
    [11]Davisson M T. Lateral load capacity of piles[R]. Highway Research Record No.333,1970, p.104-112.
    [12]Poulos G, Davis H. Pile Foundation Analysis and Design[M]. John Wiley & sons, Inc., New York, NY, 1980.
    [13]NAVFAC. Foundations and earth retaining structures design manual, Dept. of Navy, DM 7.2, Alexandria, Va,1982.
    [14]Brown D A, Morrison C, Reese L C. Lateral load behavior of pile load in sand[J]. Journal of Geotechnical Engineering, ASCE,1988,114(11):1261-1276.
    [15]Mokwa R L. Investigation of the resistance of pile caps to lateral spreading[D]. PhD thesis, Dept. of Civil Engineering, Virginia Polytechnic Institute and State Univ., Blacksburg, Va.1999.
    [16]Ashour M, Norris G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(5):420-428.
    [17]Ishihara K, Koga Y. Case studies of liquefaction in the 1964 Niigata earthquake[J]. Soils and Foundations 1981; 21(3):35-52.
    [18]Tokimatsu K, Kojima H, Kuwayama S, Abe A, Midorikawa S. Liquefaction-induced damage to buildings in 1990 Luzon earthquake[J]. Journal of Geotechnical Engineering, ASCE,1994; 120(2): 290-307.
    [19]Sitar N. Geotechnical reconnaissance of the effects of the January 17,1995, Hyogoken-Nanbu earthquake, Japan, in:Sitar N (Ed.), Earthquake Engineering Research Center, University of California, Berkeley, CA, Rep. No. UCB/EERC-95/01,1995:27-69.
    [20]Research Group on Damage of Mid Niigata earthquake. The Mid Niigata Prefecture earthquake in 2004: Relation of earthquake damage with geomorphic and geologic setting[M]. Niigata branch of the Association for the Geological Collaboration in Japan,2005. (in Japanese)
    [21]Research Group for Hazard of Niigataken Chuetsu-oki Earthquake. The Niigataken Chuetsu-oki Earthquake in 2007[M]. The Association for the Geological Collaboration in Japan,2008. (in Japanese)
    [22]Yamada S, Orense R, Cubrinovski M. Earthquake news:Geotechnical damage due to the 2011 Christchurch, New Zealand[J]. International Society of Soil Mechanics and Geotechnical Engineering Bulletin,2011; 5(2):27-45.
    [23]National Institute for Land and Infrastructure Management (NILIM), Building Research Institute (BRI). Summary of the field survey and research on "The 2011 off the Pacific coast of Tohoku Earthquake" (the Great East Japan Earthquake)[R],2011.
    [24]黄雨,于淼,Bhattacharya S.2011年日本东北地区太平洋近海地震地基液化灾害综述[J].岩土工程学报,2013,35(5):834-840.
    [25]Biot M A. Bending of an infinite beam on an elastic foundation[J]. Zeitschrift fiir Angewandte Maihematik und Mechanik,1922,2(3):165-184.
    [26]Hetenyi M, Hetbenyi M I. Beams on elastic foundation:theory with applications in the fields of civil and mechanical engineering[M]. University of Michigan Press,1946.
    [27]Terzaghi K. Evalution of Coefficients of Subgrade Reaction[J]. Geotechnique,1955,5(4):297-326.
    [28]Francis A J. Analysis of pile groups with flexural resistance[J]. Journal of Soil Mechanics and Foundations Division,1964,90(Proc. Paper 3887).
    [29]Broms B B. Lateral resistance of piles in cohesive soils[J]. Journal of the Soil Mechanics and foundation Division. ASCE,1964,90(2):123-156.
    [30]Borms B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and foundation Division. ASCE,1964,90(3):576-587.
    [31]Matlock H, Reese L C. Generalized solutions for laterally loaded piles[J]. Transactions of the American Society of Civil Engineers,1962,127(1):1220-1247.
    [32]Reese L C, Matlock H. Non-dimensional solutions for laterally-loaded piles with soil modulus assumed proportional to depth[M]. Association of Drilled Shaft Contractors,1956.
    [33]郭乾坤.大直径桩的水平承载特性分析[D].广州大学,2011.
    [34]JGJ 94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.
    [35]交通部第二公路勘察设计院.公路设计手册(路基)[M].北京:人民交通出版社,1996.
    [36]JTS 167-4-2012港口工程桩基础规范[S].中华人民共和国交通运输部,2012.
    [37]吴恒立.计算推力桩的综合刚度原理和双参数法[M].第二版.北京:人民交通出版社,2000.
    [38]Hsiung Y M. Theoretical elastic-plastic solution for laterally loaded piles[J]. Journal of Geotechnical and Geoenvironmetal Engineering, ASCE,2003,129(5):475-480.
    [39]Hsiung Y M, Chen S S, CHOU Y C. Analytical solution for piles supporting combined lateral loads[J]. Journal of Geotechnical and Geoenvironmetal Engineering, ASCE,2006,132(10):1315-1324.
    [40]Guo W D. On limiting force profile, slip depth and response of lateral piles[J]. Computers and Geotechnics,2006,33(1):47-67.
    [41]Guo W D. Nonlinear response of laterally loaded piles and pile groups[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(7):879-914.
    [42]张磊,龚晓南,俞建霖.水平荷载单桩计算的非线性地基反力法研究[J].岩土工程学报,2011,33(2):309-314.
    [43]Matlock H. Correlations for design of laterally loaded piles in soft clay[C]//Proceedings of 2nd annual offshore technology conference, Houston, Texas,1970,1:577-594.
    [44]American Petroleum Institute, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms[S].2000
    [45]Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand[C]//Proceedings of 6th offshore technology conference, Houston, TX,1974,2:473-483.
    [46]王腾,孙宝江.软粘土中水平荷载模型桩的试验研究[J].中国石油大学学报(自然科学版),2007,31(1):76-79.
    [47]王惠初,武冬青,田平.黏土中横向静载桩p-y线的一种新的统一法[J].河海大学学报,1991,19(1):9-17.
    [48]Reese L C, Cox, W R, Koop F D. Field testing and analysis of laterally loaded piles in stiff clay[C] //Proceedings of 7th offshore technology conference, Houston, TX,1975,2:672-690.
    [49]Reese L C, Welch R C. Lateral loading of deep foundations in stiff clay[J]. Journal of the Geotechnical Engineering Division, ASCE,1975,101(7):633-649.
    [50]Reese L C, Van Impe W F. Single piles and pile groups under lateral loading[M]. Taylor & Francis Group plc, London, UK,2001.
    [51]章连洋,陈竹昌.计算黏性土p-y曲线的方法[J].海洋工程,1992,10(4):50-58.
    [52]朱斌,杨永垚,余振刚,等.海洋高桩基础水平单调及循环加载现场试验[J].岩土工程学报,2012,34(6):1028-1037.
    [53]朱斌,朱瑞燕,罗军,等.海洋高桩基础水平大变位性状模型试验研究[J].岩土工程学报,2010,32(4):521-530.
    [54]凌道盛,任涛,王云岗.砂土地基斜桩水平承载特性p-y曲线法[J].岩土力学,2013,34(1):155-163.
    [55]Ling LF. Back analysis of lateral load test on piles. Report No.460, University of Auckland, Auckland, New Zealand,1988.
    [56]Carter DP. A non-linear soil model for predicting lateral pile response. Rep. No.359, Civil Engineering Dept., Univ. of Auckland, New Zealand,1984.
    [57]Juirnarongrit T, Ashford S A. Effect of pile diameter on the modulus of subgrade reaction[M]. Department of Structural Engineering, University of California, San Diego,2005.
    [58]S(?)rensen S P H, Ibsen L B, Augustesen A H. Effects of diameter on initial stiffness of p-y curves for large-diameter piles in sand[J]. Numerical Methods in Geotechnical Engineering-Benz & Nordal (eds), Taylor & Francis Group, London,2010:907-912.
    [59]Wiemann J, Lesny K, Richwien W. Evaluation of the pile diameter effects on soil-pile stiffness[C]//Proceedings of the 7th German Wind Energy Conference (DEWEK), Wilhelmshaven. 2004.
    [60]Ashford S A, Juirnarongrit T. Evaluation of pile diameter effect on initial modulus of subgrade reaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003,129(3):234-242.
    [61]Wu D, Broms B B, Choa V. Design of laterally loaded piles in cohesive soils using p-y curves[J]. Soils and Foundations,1998,38(2):17-26.
    [62]富坤,黄茂松.水平荷载作用下桩的变形非线性简化分析[J].地下空间与工程学报,2009,5(A02):1722-1726.
    [63]Kim Y, Jeong S, Lee S. Wedge failure analysis of soil resistance on laterally loaded piles in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2010,137(7):678-694.
    [64]王国粹,杨敏.砂土中水平受荷桩非线性分析[J].岩土力学,2011,32(S2):261-267.
    [65]王国粹,杨敏.黏土中水平受荷桩基计算方法[J].同济大学学报(自然科学版),2012,40(3):373-378.
    [66]Kim B T, Kim N K, Lee W J, et al. Experimental load-transfer curves of laterally loaded piles in Nak-Dong River sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004, 130(4):416-425.
    [67]Liang R Y, Shatnawi E S, Nusairat J. Hyperbolic p-y criterion for cohesive soils[J]. Jordan Journal of Civil Engineering,2007, 1(1):38-58.
    [68]何光春.粘土中横向受荷群桩性状的试验研究[J].重庆交通学院学报.1989,8:79-88.
    [69]杨克己,李启新,王福元.水平力作用下群桩性状的研究[J].岩土工程学报.1990,03:42-52.
    [70]谢耀峰.水平荷载下群桩p-y曲线的试验研究.土工基础.1996,10:27-34.
    [71]McVay M, Casper R, Shang T. Lateral response of threerow groups in loose to dense sands at 3D and 5D pile spacing[J]. Journal of Geotechnical Engineering, ASCE,1995,121(5):436-441.
    [72]McVay M., Zhang L, Molnit T, Lai P. Centrifuge testing of large laterally loaded pile groups in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(10):1016-1026.
    [73]Rollins K M, Peterson K T. Weaver T J. Lateral load behavior of full-scale pile group in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(6):468-478.
    [74]Rollins K M, Johnson S R, Petersen K. T, et al. Static and dynamic lateral load behavior of pile groups based on full-scale testing[C]//Proceedings of 3rd International Conference on Offshore and Polar Engineering. Cupertino, CA:Int. Society for Offshore and Polar Engineering,2003.
    [75]Rollins K M, Lane J D, Gerber T M. Measured and computed lateral response of a pile group in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(1):103-114.
    [76]Abdrabbo F M., Gaaver K E. Simplified analysis of laterally loaded pile groups[J]. Alexandria Engineering Journal,2012,51:121-127.
    [77]Huang A B, Hsueh C K, O'Neill M W, et al. Effects of construction on laterally loaded pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(5):385-397.
    [78]Brown D A, O'Neill M W, McVay M, et al. Static and dynamic lateral loading of pile groups[R]. Rep. 461, National Cooperative Highway Research Program, Washington, DC.2001.
    [79]Illyas T, Leung C F, Chow Y K, et al. Centrifuge model study of laterally loaded pile groups in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(3):274-283.
    [80]朱勇.多向水平荷载作用下的群桩效应研究[D].哈尔滨工业大学,2011.
    [81]Juirnarongrit T, Ashford S A. Soil-pile response to blast-induced lateral spreading. Ⅱ:analysis and assessment of the p-y Method[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2006,132(2):163-172.
    [82]Wang S T, Reese L C. COM624P:Laterally loaded pile analysis for the microcomputer, Version 2.0[R]. Report FHWA-SA-91-048,1993.
    [83]Reese L C, Wang S T, Arrellaga J A, Hendrix J. A program for the analysis of piles and rilled shafts under lateral loads[R]. Computer Program LPILE PLUS, ENSOFT Inc.,1997.
    [84]Robinette M D, Duncan J M. PileGroup 2.0:A Spreadsheet for Laterally Loaded Pile Groups with Partial Pile Head Fixity[R]. Report of a Study Performed by the Virginia Tech Center for Geotechnical Practice and Research,2004.
    [85]Norris G. Theoretically based BEF laterally loaded pile analysis[C]//Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Paris, France,1986:361-386.
    [86]Ashour M, Norris G, Pilling P. Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(4):303-315.
    [87]Ashour M, Pilling P, Norris G. Lateral behavior of pile groups in layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(6):580-592.
    [88]Ashour M, Ardalan H. Analysis of pile stabilized slopes based on soil-pile interaction[J]. Computers and Geotechnics,2012,39:85-97.
    [89]Ashour M, Ardalan H. p-y curve and lateral response of piles in fully liquefied sands[J]. Canadian Geotechnical Journal,2012,49(6):633-650.
    [90]Hajialilue-Bonab M, Sojoudi Y, Puppala A J. Study of strain wedge parameters for laterally loaded piles[J]. International Journal of Geomechanics, ASCE,2011,13(2):143-152.
    [91]吴锋,时蓓玲.基于NL法的水平受荷桩非线性有限元分析[J].水运工程,2007.12:9-12.
    [92]叶万灵,时蓓玲.桩的水平承载力实用非线性计算方法-NL法[J].岩土力学,2000,21(2):97-101.
    [93]Poulos H G. Behavior of laterally loaded piles:Ⅰ-single piles[J]. Journal of the Soil Mechanics and foundations Division, ASCE,1971,97(5):711-731.
    [94]Poulos H G. Behavior of laterally loaded piles:Ⅱ-pile groups[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1971,97(5):733-751.
    [95]He L, Elgamal A, Yang Z. A three-dimensional finite element study to obtain p-y curves for sand[C]// Proceedings of 17th ASCE Engineering Mechanics Conference, University of Delavare, Newark, DE, 2004.
    [96]Yang Z, Jeremic B. Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(14): 1385-1406.
    [97]Chik Z H, Abbas J M, Taha M R, et al. Lateral behavior of single pile in cohesionless soil subjected to both vertical and horizontal loads[J]. European Journal of Scientific Research,2009,29(2):194-205.
    [98]Conte E, Troncone A, Vena M. Nonlinear three-dimensional analysis of reinforced concrete piles subjected to horizontal loading[J]. Computers and Geotechnics,2013,49:123-133.
    [99]李学宁,刘惠珊,周根寿,等.液化层减震机理研究[J].地震工程与工程振动,1992,12(3):84-91.
    [100]石兆吉,张延军.土层液化对地面运动特性的影响[J].地震工程与工程振动,1994,14(4):14-23.
    [101]陈文化,门福录.景立平,等.有建筑物存在的饱和砂土地基液化振动台模拟试验研究[J].地震工 程与工程振动,1998,18(4):54-60.
    [102]楼梦麟,王文剑,朱彤,等.土-结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程振动,2000,20(4):30-36.
    [103]陈跃庆,吕西林,侯建国,等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报:工学版,2003,36(1):59-63.
    [104]孟上九,刘汉龙,袁晓铭,等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,24(11):1978-1985.
    [105]Yuan X M, Sun R, Meng S J. Effect of asymmetry and irregularity of seismic waves on earthquake-induced differential settlement of buildings on natural subsoil[J]. International Journal of Soil Dynamics and Earthquake Engineering,2003,23(2):107-114.
    [106]凌贤长,王东升,王志强,等.液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J].土木工程学报,2004,37(11):67-72.
    [107]凌贤长,郭明珠,王东升,等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学,2006,27(1):7-10.
    [108]唐亮,凌贤长,徐鹏举,等.可液化场地高承台群桩-土-桥梁结构地震相互作用振动台试验[J].中国公路学报,2010,23(4):51-57.
    [109]唐亮.液化场地桩-土动力相互作用p-y曲线模型研究[D].哈尔滨:哈尔滨工业大学,2010
    [110]冯士伦,王建华,郭金童.液化土层中桩基抗震性能振动台试验研究[J].土木工程学报,2005,38(7):92-95.
    [111]李培振,程磊,吕西林,等.可液化土-高层结构地震相互作用振动台试验[J].同济大学学报(自然科学版),2010,38(4):467-474.
    [112]苏栋,李相菘.砂土自由场地震响应的离心机试验研究[J].地震工程与工程振动,2006,26(2):166-170.
    [113]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,2006,28(4):423-427.
    [114]孙锐,袁晓铭,王永志,等.NEES系统中振动离心机最新进展及国内振动离心机发展设想[J].世界地震工程,2010,26(1):31-39.
    [115]刘晶波,刘祥庆,王宗纲,等.砂土地基自由场离心机振动台模型试验[J].清华大学学报:自然科学版,2009,5(9):1463-1466.
    [116]Wilson D W. Soil-pile-superstructure interaction in liquefying sand and soft clay[D]. University of California, Davis,1998.
    [117]Wilson D W, Boulanger R W, Kutter B L. Observed seismic lateral resistance of liquefying sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(10):898-906.
    [118]Ohtsuki A, Fukutake K, Sato M. Analytical and centrifuge studies of pile groups in liquefiable soil before and after site remediation[J]. Earthquake engineering & structural dynamics,1998,27(1):1-14.
    [119]Park Y H, Kim S R, Kim S H, et al. Liquefaction of embankments on sandy soil and the optimum counter-measure against the liquefaction[C]//Proceedings of 2th World conference on earthquake engineering, Paper No.1470,2000.
    [120]Ashford S A, Rollins K M. TILT:The Treasure Island liquefaction test[R]. Rep. No. SSRP-2001/17, Dept. of Structural Engineering, Univ. of California, San Diego, CA,2002.
    [121]Rollins K M, Gerber T M, Lane J D, et al. Lateral resistance of a full-scale pile group in liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(1):115-125.
    [122]Dungca J R, Kuwano J, Takahashi A, et al. Shaking table tests on the lateral response of a pile buried in liquefied sand[J]. Soil Dynamics and Earthquake Engineering,2006,26(2):287-295.
    [123]Boulanger R W, Kutter B L, Brandenberg S J, et al. Pile foundations in liquefied and laterally spreading ground during earthquakes:centrifuge experiments & analyses[R]. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, California,2003.
    [124]Sato M, Ogasawara M, Tazoh T. Reproduction of lateral ground displacements and lateral-flow earth pressures acting on a pile foundations using centrifuge modelling[C]//Proceedings of the 4th international conference on recent advances in geotechnical earthquake engineering and soil dynamics and symposium in honour of Professor WD Liam Finn. San Diego, California.2001.
    [125]Tazoh T, Sato M, Jang J, et al. Centrifuge Tests on Pile Foundation-Structure Systems Affected by Liquefaction-Induced Soil Flow after Quay Wall Failure[J]. Doboku Gakkai Ronbunshuu A/JSCE Journal of Structural and Earthquake Engineering,2010,66(1):133-147.
    [126]Ashford S A, Juirnarongrit T, Sugano T, et al. Soil-pile response to blast-induced lateral spreading. I: field test[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(2): 152-162.
    [127]Motamed R, Towhata I. Shaking table model tests on pile groups behind quay walls subjected to lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2009,136(3): 477-489.
    [128]Brandenberg S J, Zhao M, Kashighandi P. Analysis of three bridges that exhibited various performance levels in liquefied and laterally spreading ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2012,139(7):1035-1048.
    [129]Hamada M. Case studies of liquefaction and lifeline performance during past earthquakes, Vol.1; Japanese case studies[R]. National Center for Earthquake Engineering Research,1992.
    [130]Berrill J B, Christensen S A, Keenan R P, et al. Case study of lateral spreading forces on a piled foundation[J]. Geotechnique,2001,51(6):501-518.
    [131]Chu D B, Stewart J P, Youd T L, et al. Liquefaction-induced lateral spreading in near-fault regions during the 1999 Chi-Chi, Taiwan earthquake[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(12):1549-1565.
    [132]Dash S R, Govindaraju L, Bhattacharya S. A case study of damages of the Kandla Port and Customs Office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake [J]. Soil Dynamics and Earthquake Engineering,2009,29(2):333-346.
    [133]Isobe K, Ohtsuka S, Hirade T, Hayashi K, Sugimura S. Seismic damage of residential area by 2007 Niigataken Chuetsu-oki Earthquake (Part4 Kariwa village). In:Proceedings of the 20th Japan National Conference on Geotechnical Engineering,2008, p.1749-50 (in Japanese).
    [134]Tasiopoulou P, Gerolymos N, Tazoh T, et al. Pile-group response to large soil displacements and liquefaction:centrifuge experiments versus a physically simplified analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2012,139(2):223-233.
    [135]Japan Road Association (JRA). (1996). Specification for highway bridges, Japan Road Association, Tokyo. (in Japanese)
    [136]Dobry R, Abdoun T. Recent studies on seismic centrifuge modeling of liquefaction and its effect on deep foundations[C]//Proceedings of 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Volume 2,2001.
    [137]Dobry R, Abdoun T, O'Rourke T D, et al. Single piles in lateral spreads:Field bending moment evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(10):879-889.
    [138]Hamada M. Performances of foundations against liquefaction-induced permanent ground displacements[C]//Proceedings of the 12th world conference on earthquake engineering. Auckland, New Zealand, paper.2000:1754-1761.
    [139]Yasuda S, Abo H, Yoshida N, et al. Analyses of liquefaction-induced deformation of grounds and structures by a simple method[C]//Proceedings of 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,2001.
    [140]Tokimatsu K, Nomura S. Effects of ground deformation on pile stresses during soil liquefaction. Journal of Structure and Construction Engineering, AIJ,1991,426:107-112 (in Japanese).
    [141]Architectural Institute of Japan. Recommendations for designing of building foundations[S]. Japan, 2001. (in Japanese)
    [142]Tokimatsu K, Suzuki H, Sato M. Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation[J]. Soil Dynamics and Earthquake Engineering,2005,25(7):753-762.
    [143]Phanikanth V S, Srinivas K, Choudhury D, et al. Behaviour of single piles in liquefied soils during earthquake[J]. BARC NEWSLETTER,2011,321:33-42.
    [144]Liu L, Dobry R. Effect of liquefaction on lateral response of piles by centrifuge model tests[C]//Workshop on New Approaches to Liquefaction Analysis.1999 (FHWA-RD-99-165).
    [145]Wilson D W, Boulanger R W, Kutter B L. Lateral resistance of piles in liquefying soil[C]. Proceeding of Analysis, Design, Construction and Testing of Deep Foundations, J. M. Rosset, ed., Geotechnical Special Publication No.88, ASCE, Reston, Va.,1999:165-179.
    [146]Ishihara K, Cubrinovski M. Problems associated with liquefaction and lateral spreading during earthquakes[C]//Geotechnical Earthquake Engineering and Soil Dynamics Ⅲ. ASCE,1998:301-312.
    [147]Cubrinovski M, Ishihara K. Simplified method for analysis of piles undergoing lateral spreading in liquefied soils[J]. Soils and foundations,2004,44(5):119-133.
    [148]Cubrinovski M, Ishihara K, Poulos H. Pseudo static analysis of piles subjected to lateral spreading. Special Issue, New Zealand Society for Earthquake Engineering,2009,42(1):28-38.
    [149]Tokimatsu K. Performance of pile foundations in laterally spreading soils[C]. Proceeding of 2nd International Conference of Earthquake Geotechnical Engineering, P. S. Secoe Pinto, ed., Vol.3, Balkema, Rotterdam, Netherlands,1999:957-964.
    [150]Brandenberg S J, Boulanger R W, Kutter B L, et al. Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(9):1055-1066.
    [151]李雨润,袁晓铭,梁艳.桩-液化土相互作用p-y曲线修正计算方法研究[J].岩土工程学报,2009, 31(4):595-599.
    [152]Wang S T, Reese L C. Design of pile foundations in liquefied soils[C]//Proceeding of Geotechnical Earthquake Engineering and Soil Dynamics Ⅲ, P. Dakoulas, M. Yegian, and R. Holtz, eds., ASCE, Reston,VA,1998,2:1331-1343.
    [153]王睿,张建民,张嘎.液化地基侧向流动引起的桩基础破坏分析[J].岩土力学,2011,32(S1):501-506.
    [154]Brandenberg S J, Boulanger R W, Kutter B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005,131(11):1378-1391.
    [155]Franke K W, Rollins K M. Simplified Hybrid p-y spring model for liquefied soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2012,139(4):564-576.
    [156]Dash S R, Bhattacharya S, Blakeborough A, et al. p-y Curve to model lateral response of pile foundations in liquefied soils[J]. The 14th World Conference on Earthquake Engineering, Beijing, China,2008.
    [157]Liyanapathirana D S, Poulos H G. Pseudo-static approach for seismic analysis of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(12),1480-1487.
    [158]Liyanapathirana D S, Poulos H G. Seismic lateral response of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(12):1466-1479.
    [159]唐亮,凌贤长,苏雷,等.可液化场地桥梁桩基改进m值法研究[J].西北地震学报,2011,33(B08):81-84.
    [160]Chang B J, Hutchinson T C. Experimental Evaluation of p-y Curves Considering Development of Liquefaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2012,139(4): 577-586.
    [161]Ashour M., Norris G. Liquefaction and undrained response evaluation of sands from drained formulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(8): 649-658.
    [162]Ashour M., Norris G., Nguyen T. Assessment of the undrained response of sands under limited and complete liquefaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2009, 135(11):1772-1776.
    [163]孙锐,袁晓铭.液化土层地震动特征分析[J].岩土工程学报,2004,26(5):684-690.
    [164]石兆吉,张延军,孙锐.土层液化对房屋遭受的地震荷载的影响[J].世界地震工程,1995,(3):10-16.
    [165]Itasca Consulting Group Inc.. Fast Lagrange Analysis Continua in 3 dimensions, version 3.0, user's manual[R]. USA:Itasca Consulting Group Inc.,2005.
    [166]Finn W D L, Fujita N. Piles in liquefiable soils:seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering,2002,22(9):731-742.
    [167]童立元,王斌,刘义怀.地震地基液化大变形对桥梁桩基危害性三维数值分析[J].交通运输工程学报,2007,7(3):91-94.
    [168]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社.
    [169]Petalas A, Galavi V. PLAXIS liquefaction model UBC3D-PLM,2013. http://kb.plaxis.nl/sites/kb.plaxis.nl/files/kb-downloads/UBC3D-PLM%20(REPORT).Jan2013.pdf
    [170]Boit M A. Theory of propagation of elastic waves in a fluid saturated porous solid, Part I:Low frequency range[J]. Journal of the Acoustical Society of America,1956; 28(2):168-178.
    [171]Zienkiewicz O C, Chan A H C, Pastor M, et al. Computational geomechanics with special reference to earthquake engineering[M]. Wiley, New York,1999.
    [172]Cai F, Hagiwara T, Imamura S, et al.2D Fully coupled liquefaction analysis of sand ground under tank[C]//Proceedings of the 1 lth Japan Earthquake Engineering Symposium,2002:819-824.(in Japanese)
    [173]Takahashi C, Cai F, Ugai K. Examination of the design method of pile foundation during liquefaction using dynamic effective stress analysis[C]//The Japanese Geotechnical Society,2004. (in Japanese)
    [174]Takahashi C, Cai F, Ugai K. Effect of dynamic analysis methods on response of piles in liquefiable sandy grounds[C]//Proceeding of the First International Conference on Construction IT, Beijing, CHINA,2004.
    [175]Alyami M, Rouaini M, Wilkinson S M. Numerical analysis of deformation behavior of quay walls under earthquake loading [J].Soil Dynamics and Earthquake Engineering,2009,29(3):525-536.
    [176]Lu C W, Oka F, Zhang F. Analysis of soil-pile-structure interaction in a two-layer ground during earthquakes considering liquefaction[J]. International Journal for Numerical and analytical methods in Geomechanics,2008,32(8):863-895.
    [177]邹德高,孔宪京Geotechnical dynamic nonlinear analysis-GEODYNA使用说明[R].大连:大连理工大学.
    [178]Elgamal A, He L, Lu J, et al. Liquefaction-induced lateral load on piles[C]//Proceedings of 4th International Conference on Earthquake Engineering,2006.
    [179]Boulanger R W, Wilson D W, Kutter B L, et al. Nonlinear FEM analyses of soil-pile interaction in liquefying sand[J]. Proceedings, Geotechnical Engineering for Transportation Projects, Geotechnical Special Publication,2004 (126):470-478.
    [180]王崧,周坚鑫,王来等译有限元方法编程(第三版)[M].电子工业出版社,2003.
    [181]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1970,96(5):1629-1653.
    [182]Randolph M F, Houlsby G T. The limiting pressure on a circular pile loaded laterally in cohesive soil[J], Geotechnique,1984,34(4):613-623.
    [183]Briaud J L, Smith T, Mayer B. Laterally loaded piles and the pressuremeter:Comparison of existing methods. Laterally loaded deep foundation:Analysis and performance[R], STP835, ASTM, West Conshohocken, PA,1984:97-111.
    [184]De Kuiter J, Beringen F L. Pile foundations for large North Sea structures[J]. Marine Georesources and Geotechnology,1979,3:267-314.
    [185]Skempton AW. The pore-pressure coefficients A and B[J]. Geotechnique 1954,4:143-147.
    [186]Wu T-H. Soil mechanics[M]. Allyn and Bacon,1976.
    [187]Kenney T C. Discussion[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1959,85:67-79.
    [188]Ladd C C. Stability evaluation during staged construction[J]. Journal of Geotechnical Engineering, ASCE,1991,117(4):540-615.
    [189]Unified Soil Classification System http://en.wikipedia.org/wiki/Unified Soil Classification System
    [190]Rogatkina Z E. Effect of anisotropy of clay soils on their physicomechanical properties[J]. Soil Mechanics and Foundation Engineering,1967,4(1):23-26.
    [191]Abelev A V, Lade P V. Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding[J]. Journal of Engineering Mechanics, ASCE,2003,129(2): 160-166.
    [192]Material Models Manual of PLAXIS[M], Delft, Netherlands,2011.
    [193]Zhang L, Ahmari S. Nonlinear analysis of laterally loaded rigid piles in cohesive soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(2):201-220.
    [194]Gowda P. Laterally loaded pile analysis for layered soil based on the strain wedge model[D]. MS thesis, University of Nevada, Reno,Nev,1991.
    [195]Sully J P, Robertson P K, Campanella R G, et al. An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils[J]. Canadian Geotechnical Journal,1999,36(2):369-381.
    [196]Cai F, Ugai K. An implicit integration algorithm for elastoplasticity of interface element[C]//Proceedings of 8th International Symposium NUMOG VIII, Rome, Italy,2002:279-284.
    [197]Brinkgreve R B L, Engin E, Engin H K. Validation of empirical formulas to derive model parameters for sands[R],2010. http://kb.plaxis.nl/publications/validation-empirical-formulas-derive-model-parameters-sands (Cited on 2012.9.24).
    [198]Zhang G, Robertson P K, Brachman R W I. Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(8):861-871.
    [199]Skempton AW. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation[J]. Geotechnique,1986,36:425-447.
    [200]Bhushan K, Lee L J, Grime D B. Lateral load tests on drilled piers in sand[C]//Drilled Piers and Caissons. ASCE,1981:114-131.
    [201]Zhang L. Nonlinear analysis of laterally loaded rigid piles in cohesionless soil[J]. Computers and Geotechnics,2009,36(5):718-724.
    [202]Ashour M, Norris G. Pile group program for full material modeling and progressive failure[R]. Report No. CA02-0076, State of California Department of Transportation,2008.
    [203]Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:Wiley,1980.
    [204]Mohan D, Shrivastava S P. Nonlinear behavior of single vertical pile under lateral loads[C]// Proceedings of the 3rd Annual Offshore Technology Conference, Houston, Texas.1971,2:677-686.
    [205]Little R L, Briaud J L. Full scale cyclic lateral load tests on six single piles in sand[R]. Final report, Miscellaneous Paper, GL-88-27,1988.
    [206]Coleman R B. Apapa Road Ijora Causeway Reconstruction[R]. Report on Horizontal Load Tests on Piles, Federal Ministry of Works and Housing, Ijora, Lagos, Nigeria,1968.
    [207]Mansur C I, Alizadeh M. Soil and foundation investigation report, rush island plant[R]. Prepared by McLelland Engineers, Inc,1971.
    [208]Kumar S, Alizadeh M, Lalvani L. Lateral load-deflection response of single piles in sand[J]. Electronic Journal of Geotechnical Engineering, Southern Illinois University,2000.
    [209]Reese L C, Sullivan W R. Documentation of computer program COM624, parts I and Ⅱ:analysis of stresses and deflections for laterally loaded piles including generation of p-y curves[R]. Univ. of Texas, Austin, TX,1980.
    [210]Evans L T, Duncan J M. Simplified analysis of laterally loaded piles[R]. Rep. No. UCB/GT/82-04, University of California,Berkeley, Calif.,1982.
    [211]Gill HL. Soil behavior around laterally loaded piles[R]. Naval civil engineering laboratory, Report R-571, Port Hueneme, California; 1968.
    [212]Meyer B J. Analysis of single piles under lateral loading[M]. Thesis, University of Texsa, Austin,1979.
    [213]Price G, Wardle I F. Horizontal load tests on steel piles in London clay[C]//Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm.1981:803-808.
    [214]Ashour M, Norris G, Shamsabadi A. Effect of the non-linear behavior of pile material on the response of laterally loaded piles[C]//Proceedings of 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, Paper 6.10,2001.
    [215]Reuss R, Wang S T, Reese L C. Tests of piles under lateral loading at the Pyramid Building, Memphis, Tennessee[J]. Geotechnical News,1992,10(4):44-49.
    [216]Hsueh C K, Lin S S, Chern S G. Lateral performance of drilled shaft considering nonlinear soil and structure material behavior[J]. Journal of Marine Science and Technology,2004,12(1):62-70.
    [217]Reese L C. Handbook on design of piles and drilled shafts under lateral load[R]. Report No. FHWA-IP-84-11, University of Texas at Austin,1984.
    [218]Reese L C, Wang S T. Analysis of piles under lateral loading with nonlinear flexural rigidity[C]//Proceedings of International Conference on Design and Construction of Deep Foundation, 1994.
    [219]Lin S S. Use of filamented beam elements for bored pile analysis[J]. Journal of Structural Engineering, 1997,123(9):1236-1244.
    [220]Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of structural engineering, ASCE,1988,114(8):1804-1826.
    [221]Chen W-F, Duan L. Bridge Engineering:Seismic Design[M], CRC press,2003.
    [222]O'Neill M W, Huang A-B. Comparative behavior of laterally loaded groups of bored and driven piles in cohesionless soil[C]//Proceedings of The 13th International Offshore and Polar Engineering Conference,Hawaii,USA,2003:25-30.
    [223]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [224]Liang R Y. Pressuremeter to predict the lateral load capacity of drilled shafts on slopes[R]. A research report submitted to the Ohio Department of Transportation and FHWA, June,1997.
    [225]Liang R Y. Instrumentation, monitoring and testing at the CUY-90-15.24 central viaduct project[R]. A research report submitted to the Ohio Department of Transportation and FHWA, June,2000.
    [226]Mokwa R L, Duncan J M. Laterally Loaded Pile Groups and p-y Multipliers[C]//ASCE Geotechnical Special Publication Number 113, Foundations and Ground Improvement,2001:A Geo-Odyssey, Virginia Tech, Blacksburg, VA,2001:728-742.
    [227]Mokwa R L, Duncan J M. Rotational restraint of pile caps during lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003,129(9):829-837.
    [228]Norris G, Siddharthan R, Zafir Z, et al. Liquefaction and residual strength of sands from drained triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(3):220-228.
    [229]Idriss I M, Sun J I. SHAKE91:User's manual[R],1992.
    [230]Inotsume T, Onoue A, Tsuchida K, Ohzawa H, Ugai K, Wakai A, Cai F, Higuchi K, Kuroda S. An example of ground deformation difference induced by the existence or no liquefaction mitigation measures[C]//Proceedings of the 25th Annual Conference of Niigata Civil Engineering Society, 2008:152-155. (in Japanese)
    [231]Yamada S, Towhata I, Ezoe A, Olivahal B, Tanaka R. Liquefaction of the residential land ground due to the 2007 Niigataken Chuetsu-oki Earthquake[C]//Proceedings of the 20th Japan National Conference on Geotechnical Engineering,2008:1775-1776. (in Japanese)
    [232]Geological map of Japan:http://riodb02.ibase.aist.go.jp/db084/maps.html?lang=en (cited 1 Apr.2012).
    [233]Forum 8 Co. Ltd. Finite element fully coupled dynamic effective stress analysis program (UWLC), Electrical Manual[R],2005, http://www.forum8.co.jp.
    [234]Clough R W, Penzien J. Dynamics of structures[M]. McGraw-Hill, Inc., New York,1993.
    [235]Wakai A, Ugai K. A simple constitutive model for the seismic analysis of slopes and its applications[J]. Soils and Foundations 2004,44(4):83-97.
    [236]Japan Road Association. Specifications for highway bridges-part V:Seismic design[S].5th ed. Tokyo, 2004. (in Japanese)
    [237]Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(3):151-190.
    [238]Niigata Prefecture geotechnical consultants association. Niigata Prefecture Ground Map Guide[M], Niigata Prefecture Ground Map Editing Committee (Ed.),2002.
    [239]The Association for Earthquake Disaster Prevention. Recorded strong motion data in the Kashiwazaki-Kariwa Nuclear Power Station (2004.10.23-2008.3.31)[R], Tokyo Electric Power Co., Inc., 2008 (CD-ROM).
    [240]Creager WP, Hinds J, Justin JD. Engineering for Dams. Volume I, J. Wiley & Sons, Inc.,1945, p. 158-78.
    [241]Towhata I. Geotechnical Earthquake Engineering[M], Springer,2008:459-460.
    [242]Hardin BO, Drnevich VP. Shear modulus and damping in soils:Design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98(7):667-692.
    [243]Tokimatsu K, Arai H, Minowa K. Soil nonlinearity and bedrock strong motions estimated from downhole array records at Kashiwazaki-Kariwa Nuclear Power Plant during the 2007 Niigata-ken Chuetsu-oki Earthquake[J]. Journal of Structural and Construction Engineering,2008,73(630): 1273-1280. (in Japanese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700