用户名: 密码: 验证码:
航天电磁继电器贮存可靠性退化试验与评价方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天电磁继电器是国防武器系统中实现信号传递、负载切换、电路保护与控制、系统隔离等功能的关键机电元件。为了满足武器装备日益提高的战备需求,已有武器型号对航天电磁继电器提出了24年贮存期的指标要求。而目前对于航天电磁继电器这类高可靠长寿命机电元件的贮存可靠性关注较少,相关研究面临试验及检测水平不高、性能参数变化规律不明、失效模式与失效机理不清、评估与预测手段不足等一系列问题。因此,如何评估航天电磁继电器的贮存可靠性已成为亟待解决的重要问题。
     本文以“长期贮存,一次使用”的国防武器装备为应用背景,以型号产品中使用较为广泛的某航天电磁继电器为研究对象,提出一种基于性能退化的贮存可靠性试验及评价方法,通过对贮存退化试验过程特性参数变化情况分析与失效机理研究,对航天电磁继电器的贮存可靠性建模、贮存可靠性评估和相关退化参数的预测方法进行深入研究,可为武器装备系统的定寿与延寿提供技术支撑。
     首先,为了解决航天电磁继电器贮存可靠性退化数据的高精度、全自动获取问题,本文设计并实现了航天电磁继电器贮存退化试验系统。采用FPGA和ARM单片机为硬件核心架构,通过集散控制的方式建立多通道、高速的信号采集分析系统,可最多同步监测40支继电器触点压降、线圈电流,并设计了时间参数的软件算法。采用VC++面向对象的编程方法,设计实现继电器贮存退化试验的参数设置、退化参数的趋势显示、分析等功能的上位机软件系统。该测试分析系统时间参数的检测分辨率为1μs,触点接触电阻的测试分辨率为0.01mΩ。为航天电磁继电器贮存可靠性研究提供可靠退化数据与有效实验平台。
     然后,针对传统基于现场贮存的可靠性试验方法难以满足长寿命产品的贮存可靠性评价要求问题,本文对航天电磁继电器的贮存退化试验条件、试验方法、试验过程进行了探索性研究。采用图分析法及数理统计方法对试验获得的的继电器接触电阻及时间参数数据进行了分析,得到贮存条件下继电器各性能参数随时间的变化规律,在此基础上,将接触电阻与吸合时间确定为贮存退化的敏感参数。
     其次,从航天电磁继电器的功能、结构及贮存环境应力出发,从其传导特性的角度对继电器的贮存失效机理进行了分析,建立了退化物理模型及可靠性统计模型。采用SEM试验及EDX分析方法,定期对继电器触点进行微观形貌及化学成分变化分析,为继电器贮存失效机理分析提供依据。采用结合Larson-Miller经验公式建立了基于应力松弛的继电器吸合时间贮存退化模型。根据扩散理论,通过三维Fick方程建立了航天电磁继电器的触点贮存等效动力学模型,该模型将接触电阻的增长与环境温度、接触压降、接触压力等诸多因素进行了考虑和有效关联,为接触电阻的快速评估提供了理论指导。
     最后,针对现有的贮存可靠性评估方法多为静态、事后分析且默认产品符合某指定的分布类型并基于经验公式估算产品可靠性的问题,结合Holm电接触理论,在继电器触点贮存失效机理的研究基础上,建立了综合考虑接触电阻增长随机性与确定性的电磁继电器贮存可靠性评估模型。研究了评估模型的参数评估方法,并对航天电磁继电器的贮存可靠度进行了评估。综合人工神经网络非线性适应能力强,灰色系统理论弱化数据序列波动性的特点,建立了航天继电器贮存退化参数的G-ANN模型,并对接触电阻实测值进行了参数预测,结果表明短时预测精度较高。提出了时间序列分析与一维小波变换方法相结合的预测参数预处理方法,降低预测参数中随机信号对预测精度的影响。通过回归理论估计了贮存退化模型的参数,并通过所建模型对航天电磁继电器常温下的贮存寿命进行了预测。
     本研究为开展航天电磁继电器的贮存可靠性提供了必要的研究基础与研究手段,其关键技术与相关方法也可以推广应用到其它机电元件的贮存可靠性研究中。
Aerospace electromagnetic relay (EMR) is one of the key electromechanicalcomponents used for signal transmission, load switching, circuit protection andcontrol and system isolation. To increase the weapon performance and meet theneed of “long-term storage, one shot”,24years storage life has been proposed insome weapon project. At present, concern for the storage reliability of AerospaceEMR is respectively light although it comes to the highly-dependable and long-lifeelectrical components. And the corresponding research still faces a series ofproblems, such as low level experiment and test detection, unclear law o fperformance parameters changing, ambiguous about failure mode and failuremechanism, and lack of effective evaluating and predicting means. Therefore, howto evaluate the storage reliability of aerospace EMR has become the importantsubject that demanding prompt solution at present.
     This dissertation with the background of “long-term storage, one shot” weaponequipment system and a type of widely used aerospace EMR as research object. Anew method for testing storage reliability is proposed by performance parametersdegradation. Based on the research of failure mechanism and the analysis ofparameters changing in storage degradation testing, the modeling storage reliability,storage reliability assessing method, and degradation parameters predictionmethods of aerospace EMR are extensively investigated. These studies will providethe support and reference for determining and extending the life of missile weaponsystem.
     First of all, in this dissertation: firstly, the test and analysis system for storagedegradation test is designed which uses FPGA and ARM SCM architecture assystem’s hardware core. Signal acquisition and analysis system of high speedmult i-channel is built by distributing control method. This test system provides thepossibility of measure synchronously up to40relays’ contact resistances ècontactvoltage drop and coil current. Software algorithms of relay time parameters aredesigned and implemented. The upper computer software is developed to carry outfunctions that test parameters setting, trends showing and data querying ofdegradation parameters by VC++object orient programming. The time parametersdetective resolution can achieve1s and the measurement resolution of contactresistance is no more than0.01m.This test and analysis system provides theresource of degradation data and effective testing platform for studying storage reliabilit y.
     Secondly, the traditional reliability testing methods based on field storagecan’t satisfy the needs in storage reliability evaluation of long-life products. Thisdissertation did the exploratory research on the storage degradation test method andtest process for aerospace EMR. The experimental data of contact resistance andtime parameter are analyzed by the methods of mathematical statistics and diagramanalysis. And the variat ion law of performance parameters changing with time isobtained, which provides the bases for determining degradation sensit iveparameters.
     Thirdly, based on the structure and function of aerospace EMR, the storagefailure mechanism is investigated by conductive properties themselves. Themicroscopic morphology and changes in chemical elements for relay contactsurface was analyzed by SEM and EDX regularly, which provide references for therelay storage failure mechanism of relay. The relay closing time storagedegradation model is established based on stress relaxation, and applied theLarson-Miller empiric formula. According to the diffusion theory, storage equivalentkinetic model of relay is built by three-dimensional Fick equation. This modelconnects resistance increasing of aerospace EMR with temperature, contact voltagedrop, contact stress and some other factors effectively. And, these studies providethe new ideas and references for rapid assessment of relay contact resistance.
     Finally, the exist ing storage reliabilit y assessment methods are mostly staticand post-mortem. They acquiesce in a fact that product distribution subject to aspecified distribution and estimate the product reliabilit y based on empiricalformula. Based on Holm electrical contact theory and contact storage failuremechanism, the storage reliabilit y assessment model of aerospace EMR isestablished which synthesizes the stochastic and deterministic of contact resistanceincrement. Meanwhile, the parameters estimation method of assessment model isstudied, and storage reliabilit y of aerospace EMR is assessed. Artificial neuralnetwork has strong nonlinear adaptive capacity and Grey system theory weakensdata sequence fluctuation. The G-ANN combination prediction model of relaydegradation parameters has been built up by combining above characteristics. Thisapproach forecasts the contact resistance degradation of aerospace relays in thestorage test, and the results show that this method has higher precision ofprediction. Prediction parameters preprocessing method is proposed whichcombines time series analysis with one-dimensional wavelet transform method. This reduces the random signal's influence on the prediction precision in predictionparameters. Parameters of the storage degradation model are estimated throughregression theory. And the storage life of Aerospace EMR under normal stress ispredicted.
     The research results in this dissertation provide the necessary theoreticalmethod and basis for studying storage reliability of the aerospace EMR. Its keytechniques and methods could be also applied to other electromechanicalcomponents storage reliability studies.
引文
[1]Sagawa H., Nakanishi Y., R. Sato. Development of a Next Generation Relay for Telecommunication Use[C]. The38th Annual National Relay Conference,1990:21-28.
    [2]Kawata D., Shiromizu M., Yoshida S. Development Work on the Electronic Switching System in Japan[J]. IEEE Transactions on Communication Technology,1969,17(5):505-512.
    [3]姚致清,李金伴,张喜玲.继电器与继电保护装置实用技术手册[M].化学工业出版社,2008:1-9.
    [4]朱永庆,吴世湘.军用继电器的发展态势[J].电子科学技术评论,2005,(1):55-5.
    [5]Joseph V. R., Yu I. T. Reliability Improvement Experiments with Degradation Data[J]. IEEE Transactions on Reliability,2006,55(1):149-15.
    [6]邓爱民,陈循,张春华等.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552.
    [7]冯静.基于紧缩阂值加速退化试验的长寿命产品可靠性评估[J].电子学报,2011,39(6):1253-1256.
    [8]Liao H., Elasyed A. Optimization of System Reliability Robustness using Accelerated Degradation Testing[C]. Annual Reliability and Maintainability Symposium,2005,48-54.
    [9]李永红,徐明MIL-HDBK-217可靠性预计方法存在的问题及其替代方法浅析[J].航空标准化与质量,2005,(4):40-43.
    [10]Pecht M., Dasgupta A. Physics-of-failure:An Approach to Reliable Product Development[C]. IEEE Integrated Reliability Workshop,1995:1-4.
    [11]陆俭国,骆燕燕,李文华等.航天继电器贮存寿命试验及失效分析[J].电工技术学报,2009,24(2):54-59.
    [12]Nelson W. Accelerated Testing:Statistical Models, Test Plans and Data Analysis[M], New York:John Wiley and Sons,1990.
    [13]Lu C. J., Meeker W. Q. Using Degradation Measures to Estimatea Time-to-a filure Distribution[J]. Techno metrics,1993,35(2):161-174.
    [14]Chao M.T. Degradation Analysis and Related Topics:Some Thoughts and a Review[J]. Proceeding of National Sci.Council ROC(A). Physical Science and Enginerring,1999,23(5):555-566.
    [15]Meeker W. Q., Hamada M. Statistical Tools for the Rapid Development and Evaluation of High-Reliability Products[J]. IEEE Transactions on Reliability,1995,44(2):187-198.
    [16]Meeker W. Q., Escobar L. A. Statistical Methods of Reliabiliyt Data[M]. John Wiley and Sons,1998.
    [17]Freitas M. A., de Toledo M., Colosimo E. A. Using Gradation Data to Assess Reliability:a Case Studay on Train Wheel Degradation[J]. Quality and Reliability Engineering International,2008,25(5):207-629.
    [18]Suzuki K., Maki K., Yokogawa S. An Anslysis of Degradation Data of a Carbon Film and Properties of the Estimators[J]. Satistical Sciences and Data Analysis,1993:501-511.
    [19]Gopikrishnan A. Reliability Inefrence Based on Degradation and Time to Failure Data:Some Models, Mehtods and Efficiency Comparisons[D], PhD Thesis, The Universiyt of Michigan,2004.
    [20]田笑,孙悦,黄姣英,高成.一种基于退化数据的元器件可靠性定量检验方法研究[J].现代电子技术,2012,35(13):168-172.
    [21]Wilsons P., Taylor D. Reliability Assessment from Fatigue Micro-crack Data[J]. IEEE Transactions on Reliability,1997,46(2):165-171.
    [22]Yuan X.X., Pandey M.D. A Nonlinear Mixed-Effects Model for Degradation Data Obtained from In-Service Inspections[J]. Reliability Engineering and System Safety,2009,94(2):509-519.
    [23]Meeker W. Q., Escobar L. A. Accelerated Degradation Tests:Modeling and Analysis[J]. Techno metrics,1998,40(2):88-99.
    [24]汪亚顺,张春华,陈循,莫永强.仿真基混合效应模型加速退化试验方案优化设计研究[J].机械工程学报,2009,45(12):108-114.
    [25]Yang K., Xue J. Continuous State Reliability Analysis[C]. IEEE Reliability and Maintainability Symposium,1996:251-257.
    [26]Jayaram J. S., Girish T. Relibaility Prediction through Degradation Data Modeling Using Quasi-likelihood Approach[C]. IEEE Reliability and Maintainability Symposium,2005,193-199.
    [27]Huang W., DuaneL. An Alternative Degradation Relibaility Modeling Approach using Mxaimun Likelihood Estimation[J]. IEEE Transactions on Reliability,2005,54(2):310-317.
    [28]Zuo M. J., Jiang R., Yam R. C. M. Approaches for Relibaility Modeling of Continuous-state Devices[J].IEEE Transactions on Reliability,1999,48(1):9-18.
    [29]Lawless J., Crowder M. Covariates and Radom Effects in a Gamma Process Model with Application to Degradation and Failure[J]. Lifetime Data Analysis.2004,10(3):213-227.
    [30]张英波,贾云献,冯添乐,邱国栋.基于Gamma退化过程的直升机主减速器行星架剩余寿命预测模型[J].振动与冲击,2012,31(14):47-51.
    [31]刘学敏,厉海涛,张威,周经伦,周忠宝.金属化膜电容器Gamma过程性能退化建模的自助法[J].高电压技术,2011,37(1):198-202.
    [32]赵建印,孙权,周经纶,贺少勃,魏晓峰.基于加速退化数据的金属化膜脉冲电容器可靠性分析[J].强激光与粒子束,2006,18(11):1495-1498.
    [33]冯静,周经纶,孙权.基于高储能密度电容器退化数据的可靠性估计[J].强激光与粒子束,2006,18(8):1239-1244.
    [34]Liao H., Elsayed E. A. Reliability Inference for Field Conditions from Accelerated Degradation Testing[J]. Naval Research Logistics,2006,53(6):579-587.
    [35]冯静,周经纶.基于Wiener过程的载人飞船热控泵系统寿命预测[J].中国空间技术科学,2008,28(4):53-58.
    [36]Wang X. Wiener Process With Radom Effects for Degradation Data[J]. Journal of Multivariate Analysis,2008,101(2):340-351.
    [37]彭宝华,周经伦,潘正强Wiener过程性能退化产品可靠性评估的Bayes方法[J].系统工程理论与实践,2010,3(3):543-549
    [38]王小林,郭波,程志君.融合多源信息的维纳过程性能退化产品的可靠性评估[J].电子学报,2012,40(5):977-982.
    [39]厉海涛,金光,周经伦,周忠宝,吴春华.动量轮维纳过程退化建模与寿命预测[J].航空动力学报,2011,26(3):622-627.
    [40]潘正强,周经伦,孙权.基于Wiener过程的步进应力加速退化建模[J].系 统工程与电子技术.2011,33(4):963-968.
    [41]张宝真,曾天翔.概率物理方法-可靠性研究的新技术[J].可靠性工程,2002,9(3):143-144.
    [42]W. Q. Meeker, L. A. Escobar. Statistical Methods for Reliability Data [M]. New York:John Wiley and Sons,1998.
    [43]C. S. Place, J. E. Strutt, K. Allsopp, P. E. Irving, C. Trille. Reliability Prediction of Helicopter Transmission System using Stress-Strength Interference with Underlying Damage Accumulation[J]. Quality and Reliability Engineering International,1999,15(2):69-78.
    [44]J. D. Church, B. Harris. The Estimation of Reliability from Stress-Strength Relationships[J]. Techno metrics,1970,12(1):49-54.
    [45]Lu J.C, Pantual S. G. A Repeated-Measurements Model for Over-Stressed Degradation Data[R]. Department of Statistic North Carolina State University,1989.
    [46]Meeker W. Q., Luvalle M. J. An Accelerated Life Test Model Based on Reliability Kinetics [J]. Techno metrics,1995,37(2):133-146.
    [47]陈文华.航天电连接器可靠性试验和分析的研究[D].浙江大学博士学位论文,1997.
    [48]钱萍.航天电连接器综合应力加速寿命试验与统计分析的研究[D].浙江大学博士学位论文,2010.
    [49]高亮.航天电连接器空间环境可靠性试验与评估的研究[D].浙江大学博士学位论文,2012.
    [50]V.N.Nair. Discussion of "Estimation of Reliability in Field-Performance Studies"[J]. Techno metrics,1988,30(4):379-383.
    [51]马小兵,王晋忠,赵宇.基于伪寿命分布的退化数据可靠性评估方法[J].系统工程与电子技术,2011,33(1):228-232.
    [52]Jayaram J, Girish T. Reliability Prediction through Degradation Data Modeling Using a Quasi-likelihood Approach[C]. RAMS,2005:193-199.
    [53]Wang X. A Pseudo-likelihood Estimation Mrthod for Nonhomogeous Gamma Process Model with Radom Effects[J]. Statistica Sinica,2008,18:1153-1163.
    [54]Bagdonavicius V, Nikulin M.S. Estimation in Degradation Models with Explanatory Variabiles[J]. Lifetime Data Analysis,2001,7(1):85-103.
    [55]S. T. Tseng, C. Y. Peng. Stochastic Diffusion Modeling of Degradation Data[J]. Journal of Data Science,2007,5(3):315-333.
    [56]Pinheiro J. C., Bates D.M. Approximations to the Log-likelihood Function in the Nonlineat Mixed-Effects Model[J]. Journal of Computational and Graphical Statistics,1995,4(1):12-35.
    [57]Lindstrom M. J., Bates D. M. Nonlinear Mixed Effects Model for Repeated Measures Data[J]. Biometrics,1990,46(3):673-687.
    [58]Crk V. Reliability Assessment from Degradation Data[C]. Reliability and Maintainablity,2000:155-161.
    [59]Gebraeel N. Z., Lawley M. A., Li R. Residual-life Distributions from Component Segradation Signals:A Bayesian Approach[J]. HE Transactions,2005,37(6):543-557.
    [60]余琼.航天继电器可靠性评价及寿命试验方法的研究[D].哈尔滨工业大学博士学位论文,2011.
    [61]李良春,杨金梅.重视军械装备包装进一步提高军械装备的贮存可靠性[J].包装工程,1995,16(1):26-30.
    [62]侯希久.国外导弹贮存可靠性技术概述[J].质量与可靠性,1997(4):44-46.
    [63]李正,宋保维,毛绍勇.装备贮存可靠性研究工作探讨[J].弹箭与指导学报,2005,25(10):336-378.
    [64]朱冰宇,战学民,张兴有.国外导弹贮存试验技术概述[J].飞航导弹,2009(10):23-25.
    [65]谭源源.装备贮存寿命整机加速试验技术研究[D].国防科技大学博士学位论文,2010:4-7.
    [66]Trapp R D, Farmer W D, Graber R R. An Approach for Assessing Missile System Dormant Re liability [R]. AD-A107519,1981.
    [67]Bazovsky I. Reliability Theory and Practice[M]. New York:Prentice Hall, Inc., Englewood Cliffs,1961.
    [68]LC-78-1. Missile Materiel Reliability Prediction Handbook-Part Count Prediction[R]. Raytheon Company,1978.
    [69]LC-78-2. Missile Storage Reliability Analysis Summary Report[R]. Raytheon Company,1978.
    [70]LC-76-1. Device Storage Reliability Analysis Report[R]. Raytheon Company,1976.
    [71]LC-76-2. Storage Reliability Summary Report[R]. Raytheon Company,1976.
    [72]Bennet S J. LRSLA Minutemaniii Stage Material Characterization Program and Results[R]. America:AIAA76-718,1976.
    [73]王铮.固体火箭发动机使用寿命的预估与延寿[J].固体火箭技术,1999,22(1):23-29.
    [74]李海波,张正平,黄波等.导弹贮存试验技术与贮存可靠性评估方法研究[J].质量与可靠性,2006(6):20-23.
    [75]RADC-TR-85-91. Impact of Nonoperating Periods on Equipment Reliability [R]. Rome Air Development Center,1985.
    [76]EERD-3. Nonelectronic Parts Reliability Data[R]. Reliability Analysis Center of Rome Air Development Center,1986.
    [77]NONOP-1. Nonoperating Reliability Databook[R]. Reliability Analysis Center of Rome Air Development Center,1987.
    [78]Robert M. S., Jullus M. Etzl A. W. Purnell. Reliability Maintainability Testability Design for Dormancy[R].Rome Air Development Center,1988.
    [79]Howard W. T., Davis D. G. Military Specifications and Standards Blueprint for Change:Some Cautions[R]. Army RD&A Magazine,1995.
    [80]Fowler A, Me Cluskey P, Rogers K. Long Term Storage Reliability for Plastic Encapsulated Microcircuits[J]. Proceedings of Advanced Technology, Acquisition, Qualification, and Reliability,1995:269-278.
    [81]Dugger M. T., Tanner D. M., Jeremy A. Walraven. Acceleration of Dormant Storage Effects to Address the Reliability of Silicon Surface Micromachined MEMS[R]. Sandia Report2006-3362,2006.
    [82]Layton L. H. Chemical Structural Aging Studies on an HTPB Propellant[R]. AD-A010731,1975.
    [83]周堃,罗天元,张伦武.弹箭贮存寿命预测预报技术综述[J].装备环境工程,2005,2(2):6-11.
    [84]郭芳筠,甘茂治.装备贮存可靠性研究的发展概况和趋势[J].军械工程学院学报,1992,4(2):81-88.
    [85]GJB1305-91.固体战略导弹贮存试验规程[S].1991.
    [86]李久祥,刘春和.导弹贮存可靠性设计应用技术[M].北京:海潮出版社,2001.
    [87]刘春和,陆祖建,袁玉华.导弹贮存可靠性评估[J].数学的实践与认识,2001,31(4):416-420.
    [88]GJB736.13-91.火工品试验方法-加速寿命试验恒定温度应力试验法[S].1991.
    [89]GJB736.8-90.火工品试验方法-71℃试验法[S].1990.
    [90]GJB92-1-86.热老化法测定硫化橡胶贮存寿命的标准[S].1986.
    [91]GB11211-89.硫化橡胶与金属粘合强度的测定拉伸法[S].1989.
    [92]QJ2328-92.复合固体推进剂贮存老化试验方法[S].1992.
    [93]郑波,葛广平.基于步进应力加速寿命试验的引信贮存寿命评估[J].北京理工大学学报,2003,23(5):545-547.
    [94]李晓阳,姜同敏,黄涛等.微波电子产品贮存状态的SSADT评估方法[J].北京航空航天大学学报,2008,34(10):1135-1138.
    [95]李文华,陆俭国,刘宏勋等.继电器贮存寿命加速试验装置的研究[J].继电器,2006,34(20):70-72.
    [96]骆燕燕,陆俭国,李文华等.密封式电磁继电器贮存加速寿命试验方法研究[J].兵工学报,2007,28(8):997-1001.
    [97]吴鸿兵,林震.某电容器加速贮存寿命试验设计研究[J].环境适应性和可靠性,2007,25(5):17-21.
    [981张瑞霞,徐立生,高兆丰.半导体器件的贮存寿命[J].封装测试与设备,2007,32(3):252-254.
    [99]黄云,恩云飞,杨丹.混合电路贮存可靠性及评价方法[J].微电子学,2007,37(2):173-176.
    [100]李久祥.整机加速贮存寿命试验研究[J].质量与可靠性,2004,(4):14-17.
    [101]Lu J. G., Jin F. Q. Reliability Design on Electromagnetic System of Relay[C]. Proceedings of36th Relay Conference,1988:1-4.
    [102]翟国富,梁慧敏,王嗥等.基于正交试验设计的极化磁系统参数优化设计方法的研究[J].中国电机工程学报,2003,23(10):157-163.
    [103]翟国富,王其亚.电磁继电器动态特性快速算法及其在优化中的应用[J].中国电机工程学报,2010,30(33):106-110.
    [104]王稚惠,梁慧敏.密封继电器的故障树分析[J].低压电器,2007,(9):9-12.
    [105]雷祖圣.军用继电器的质量与可靠性[J].宇航材料工艺,1995,(2):54-55.
    [106]隋文英JRC-490M型密封电磁继电器可靠性失效分析[J].机电元件,1998,18(1):49-53.
    [107]C. Wang, Z. Xu, S. Zheng. Reliability Analysis of Protective Relays in Fault Information Processing System in China[C]. Power Engineering Society General Meeting,2006:18-22.
    [108]李奎,陆俭国,张冠生.继电器触头接触可靠性预测方法的研究[J].电工技术学报,1999,14(2):55-59.
    [109]H. M. Liang, J. B. Lin, G. F. Zhai. Method for Identification of Nonlinear Parameters and Its Application to Data Analysis for Aerospace Relay Reliability [J]. IEICE Transactions on Electronics,2006, E89C(8):1173-1176.
    [110]翟国富,陈兴文,张青森,王嗥,王立忠,刘筱州.电磁继电器时间参数综合测试分析系统的研究[J].低压电器,2003(02):48-52.
    [111]W. J. Fontana. Elecromagnetic Relay Reliability Predictions by Designed Life Experiments and Weibull Analysis [J]. IEEE Transactions on Parts, Materials and Packaging,1965,1(1):309-319.
    [112]王志兵,邵咏松.可靠性强化试验在某继电器失效机理分析中的应用[J].航空兵器,2006,(4):54-57.
    [113]Lu J. G., Li Z. G. and Wang J. Q. The Device of Research on Relay Contact Reliability[C]. Proceedings of the36th IEEE Holm Conference on Electrical Contacts,1990:102-109.
    [114]M. Agrasar, J. R. Hernandez, F. Uriondo. Optimized Relay Testing Systems Computer Applications in Power[J], IEEE,1997,10(4):55-59.
    [115]J. Y. Zhao, J. G. Lu, H. T. Wang. Study on Reliability Test Method of Over-load Relay[C]. The52th IEEE Holm Conference on Electrical Contacts,2006:58-62.
    [116]尚爱聪.军用密封继电器非工作状态贮存可靠性研究[C].第八届全国可靠性物理学术讨论会,1999:263-170.
    [117]李文华,张翠哲,高继辉.继电器贮存寿命加速试验系统的软件设计[J].低压电器,2006,(12):45-47.
    [118]骆燕燕,陆俭国,李文华等.密封式继电器贮存加速寿命试验方法研究[J]. 兵工学报,2007,28(8):997-1001.
    [119]骆燕燕,王兴贵,陆俭国等.继电器贮存寿命预测理论与试验方案的研究[J].低压电器,2005,(9):49-54.
    [1201王立伟.继电器贮存加速寿命试验数据处理方法的研究[D].河北工业大学硕士学位论文,2005.
    [121]李凌,徐伟.密封式继电器加速寿命试验最优方案设计与分析[J].低压电器,2010,(4):13-16.
    [122]李凌,徐伟.基于MCMC方法的继电器加速寿命试验分析[J].低压电器,2010,(2):13-16.
    [123]李凌,徐伟.密封式继电器步进应力加速寿命试验的分析方法[J].低压电器,2010,(1):5-7.
    [124]臧春艳,何俊佳,李劲.密封继电器接触电阻与表面膜研究[J].中国电机工程学报,2008,28(31):125-130.
    [125]Sun Bo, Feng Qiang, Zhao Xuemei, Ren Yi, Zeng Shengkui. Accelerated Storage Degradation Test and Life Extension Assessment Method for Hermetically Sealed Electromagnetic Relay[C].2011International Conference on Quality Reliability Risk Maintenance and Safety Engineering,2011:336-341.
    [126]Bo Wan, Guicui Fu, Nan Li, Youhu Zhao, Li Wang. Storage Life Prediction of Electromagnetic Relay Based on PoF Analysis[C].2013Annual Reliability and Maintainability Symposium,2013:875-880.
    [127]Hammerschmidt M, Alexander R, Rieder W. The Effects of Material Transfer in Relays Diagnosed by Force and/or Voltage Measurement [J]. IEEE Trans. on Components and Packaging Technologies,2004,27(1):12-18.
    [128]李久祥.装备贮存延寿技术[M].北京:宇航出版社,2007.
    [129]陶春虎,刘高远,恩云飞等.军工产品失效分析技术手册[M].北京:国防工业出版社,2009.
    [130]佘玉芳.机电元件技术手册-设计、制造、使用、维护[M].北京:电子工业出版社,1992.
    [131]茆诗松.统计手册[M].北京:科学出版社,2003.
    [132]王静龙,梁小筠.非参数统计分析[M].北京:高等教育出版社,2006.
    [133]何国伟.可靠性试验技术[M].北京:国防工业出版社,1995.
    [134]Holm, R. Electrical Contacts[M]. New York:Springer,1979.
    [135]章继高,李家樾.电接触理论与设计技术[M].北京:机械工业出版社,1984.
    [136]郭凤仪,陈中华.电接触理论及其应用技术[M].北京:中国电力出版社,2008.
    [137]张菊华,孔宪宝.低频电连接器失效模式的分析[J].机电元件,1989,9:36-43
    [138]戴树森.可靠性试验及其统计分析(上-下册)[M].北京:国防工业出版社,1983.
    [139]J. W. Mcpherson, Reliability Physics and Engineering[M]. New York: Springer,2010.
    [140]盐见弘.失效物理基础[M].北京:科学出版社,1982.
    [141]程礼椿.电接触理论及应用[M].北京:机械工业出版社,1988.
    [142]Bury Karl. Statistical Models in Applied Science[M]. NewYork:John Wiley and Sons,1975.
    [143]陈文华,李红石,连文志等.航天电连接器综合应力加速寿命试验与统计分析[J].浙江大学学报(工学版),2006,40(2):348-351.
    [144]杨广斌.应力松弛的统计特性及其外推[J].机电元件,1990(10):14-16.
    [145]William Loewenthal. Measurement and Use of Stress Relaxation Data for Copper Alloys in Bending. IEEE Electronics Components Conference,1988:208-219.
    [146]王其亚.航天电磁继电器动态特性及其优化方法的研究[D].哈尔滨工业大学博士学位论文,2011.
    [147]梁慧敏,张玉成,翟国富.电磁继电器静态吸反力特性测试方法的探讨[J].低压电器,2003(5):50-51.
    [148]周学,石金峰,翟国富.电磁继电器静态吸反力特性的测试与分析[J].机电元件,2005(25):6-8.
    [149]Larson F. R., Miller J. A Time Temperature Relationship for Rupture and Creep Stresses[J]. Transactions of the ASME,1952:765.
    [150]Takano E, Mano K. The Failure Mode and Lifetime of Static Contacts [J]. IEEE Trans. on Component Packaging and Manufacturing1968,4(2):51-55.
    [151]Malucci R D. Dynamic Model of Stationary Contacts Based on Random Variations of Surface Features[J]. IEEE Trans. on Components, Hybrids, and Manufacturing Technology,1992,15(3):339-347
    [152]程晓农,戴起勋,邵红红.材料固态相变与扩散[M].北京:化学工业出版社,2006.
    [153]Takano E, Mano K. Theoretical Lifetime of Static Contacts[J]. IEEE Trans.on Parts, Materials and Packaging,1967,3(4):184-185.
    [154]Crank J. The Mathematics of Diffusion[M]. London:Oxford U. Press,1970.
    [155]Van Bueren H G. Imperfections in Crystals[M]. North-Holland:Amsterdam,1961.
    [156]Galvele J R. A Stress Corrosion Cracking Mechanism Based on Surface Mobility[J]. Corrosion Science,1987,27(1):1-33.
    [157]Nomick S, Burton J J. Diffusion in Solids-Recent Developments[M]. New York:Academic,1975.
    [158]R.S.Timsit. A possible Degeneration Mechanism in Stationary Electrical Contacts [J]. IEEE Trans. on Components Hybrids and Manufacturing Technology,1990,13(1):68-68.
    [159]Bryant M D, Jin M. Time-wise Increases in Contact Resistance Due to Surface Roughness and Corrosion[J]. IEEE Trans. on Components Hybrids and Manufacturing Technology,1991,14(1):79-89.
    [160]Braunovic M. A Model for Life Time Evaluation of Close Electrical Contacts[C].51th IEEE Holm Conference on Electrical Contacts,2005:217-223.
    [161]Braunovic M., Konchits V. V., Myshkin N. K电接触理论应用与技术[M].许良军等译.北京:机械工业出版社,2010.
    [162]Johnson K. L接触力学[M].徐秉业等译.北京:高等教育出版社,1992.
    [163]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.
    [164]沃诺克,本哈姆.固体力学和材料强度[M].江秉琛等译.北京:人民教育出版社,1982.
    [165]Bates D M, Watts D G.非线性回归分析及其应用[M].北京:中国统计出版社,1997.
    [166]王松桂,陈敏,陈立萍.线性统计模型[M].北京:高等教育出版社,1999.
    [167]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [168]Qin Zheng, Gu J. Sensor Fault Detection and Identification Based on Gray Model for Autonomous Underwater Vehicle[J]. Mediterranean Journal of Measurement and Control,2009,5(2):71-77.
    [169]Siuh-Jer Huang, Chien-Lo Huang. Control of an Inverted Pendulum Using Grey Prediction Model[J]. IEEE Trans. on Industry Applications,2000,36(2):452-467.
    [170]Erdal Kayacan, Baris Ulutas, Okyay Kaynak. Grey System Theory-based Models in Time Series Prediction[J]. Expert Systems with Application,2010,(37):1784-1789.
    [171]Simon Haykin. Neural Networks:A Comprehensive Foundation[M]. Second Edition. Prentice Hall,1999.
    [172]Yoo S. J., Choi Y. H., Park J. B.. Generalized Predictive Control Based on Self-Recurrent Wavelet Neural Network for Stable Path Tracking of Mobile Robots:Adaptive Learning Rates Approach[J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2006,53(6):1381-1394.
    [173]Dodier R. H., Henze G. P. Statistical Analysis of Neural Network as Applied to Building Energy Prediction[J]. Journal of Solar Energy Engineering,2004,126(1):592-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700