用户名: 密码: 验证码:
煤粉富氧燃烧特性与污染物排放特性的中试研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力生产中以煤炭为主的化石燃料的燃烧排放了大量的二氧化碳,温室气体的快速增加导致了温室效应和全球变暖,其引发的全球气候变化和环境问题已经给人类带来了越来越大的影响。国际社会对此给予了越来越多的关注,达成了一系列以《京都议定书》为代表的国际间碳减排合作协议,并加速了燃煤电厂碳减排技术的发展。在众多针对燃煤电厂烟气中CO_2的收集和储存的技术中,使用氧气与循环烟气混合后替代空气参与燃烧的煤粉燃烧技术(也被称为富氧燃烧或O_2/CO_2循环燃烧),是当前在技术和经济上最能被工业界所接受的一项碳减排燃烧技术。
     与煤粉在空气下的燃烧相比,煤的O_2/CO_2循环燃烧技术由于没有N2的参与,炉膛尾部烟气中CO_2浓度能够达到90%以上,便于进行捕集和回收,且烟气容积的大量减少降低了热损失和处理成本。已有研究表明,煤粉在O_2/CO_2气氛下燃烧的燃烧特性与污染物排放特性均不同于传统空气下的燃烧,如火焰温度降低、稳定性变差等。通过采用新型的燃烧器及合理的配风技术,能够使火焰温度和炉膛传热特性与空气下燃烧时接近,并且在污染物的脱除方面有很大的减排潜力。在本文研究之前国内对这项技术的中型和大型试验研究尚无,对于该项技术在试验运行参数、O_2/CO_2燃烧器开发、燃烧特性和污染物生成机理等方面的研究还非常缺乏。
     本文采用热天平(TGA)与红外烟气分析仪联用,对三种煤及其煤焦进行了不同O_2浓度下的O_2/N2和O_2/CO_2气氛下的燃烧实验,并对燃烧产生的烟气进行了红外实时监测分析,对比了两种气氛下煤的燃烧反应特性,得到了处在化学动力学控制区域范围内动力学参数,并采用多种计算方法相结合找出了最概然机理函数。通过对比烟气浓度随温度的变化规律,分析了高浓度CO_2对煤的反应速率的影响以及污染物生成规律的影响。
     设计并搭建了以竖直燃烧炉为主体的国内首台中试规模O_2/CO_2循环燃烧综合试验台,对煤在空气下和O_2/CO_2气氛下的燃烧进行了多工况试验,对比分析了煤粉在不同O_2浓度及不同烟气循环方式下的燃烧特性和温度场。寻找最佳烟气循环率及其它运行参数,以使空气下和O_2/CO_2循环燃烧条件下的炉内温度场和传热状况相近,且炉膛出口烟气中CO_2达到回收标准。根据O_2/CO_2循环燃烧的特点,采用数值模拟和试验研究相结合的方法,对O_2/CO_2旋流燃烧器的设计方法进行了探索。对改进后的燃烧器进行了冷态空气动力场试验,确定了气流扩展角及回流区大小。在中试台架上进行的热态试验用来研究燃烧器在空气下和O_2/CO_2循环燃烧条件下的燃烧特性及污染物排放特性。研究表明,改进后O_2/CO_2旋流燃烧器具有良好的可调性,氧-煤混合度和燃烧性能有明显的提高。这些研究对今后O_2/CO_2燃烧器的研究和设计有非常强的指导意义。
     利用CFD软件对整个炉膛全尺度建模,选取了合适的湍流流动、燃烧与传热的数学模型对煤粉在空气和O_2/CO_2气氛下的燃烧进行了计算,并对模拟结果与实测数据进行了对比分析,数据吻合度良好,说明模拟能够反映真实的燃烧过程。并在FLUENT软件上对变更烟气循环参数后的燃烧过程进行了探讨,对实际运行给出了建议和指导。另外,FLUENT软件在燃烧器设计过程中,在确定燃烧器的关键参数如旋流强度和叶片安装角度上起到了重要的作用。
     对中试台架上煤在空气下和O_2/CO_2循环燃烧条件下燃烧时炉内污染物生成规律进行了理论分析和试验研究,研究了NOx和SO_2的浓度分布及排放规律,探索了在O_2/CO_2循环燃烧条件下进行炉内喷钙实现对NOx和SO_2进行联合脱除的方法。并使用FLUENT和CHEMKIN对O_2浓度不同的O_2/N2和O_2/CO_2气氛下的燃烧进行了模拟计算和机理分析,研究了用CO_2置换N2后NOx和SO_2的生成机理的变化规律,考察了温度、氧气浓度、气氛、循环方式等因素对污染物排放的影响。试验和模拟的结果吻合度良好,O_2/CO_2循环燃烧条件下污染物的排放量与空气下相比大大降低。另外,改进后的燃烧器的污染物脱除率有明显的提高,改进效果显著。
Electric power production from coal-based fossil fuel combustion results in theemission of greenhouse gases which are dominant contributed by CO_2. The rapidincreasing amount of greenhouse gases exerts profound influence on the globalenvironment, and global warming and climate changes it caused become progressivelyworse. Public awareness and legislation lead to a series of international cooperativeagreements on reduction of greenhouse gas emissions which are represented by Kyotoprotocol and the Intergovernmental Panel on Climate change. It also accelerates thedevelopment of the technologies on Carbon capture and storage (CCS). Compared withother current possibilities, however, oxy-fuel combustion is the most reliable andeconomical choice which was characterized by coal burned in pure oxygen and recycledflue gas (O_2/RFG) instead of air.
     Current available research findings show that CO_2concentration of exhaust gasesis over90%during the process of coal oxy-fuel combustion, so it is possible to utilizeand treat it without separation. Furthermore,the expense of pollutant disposal andthermal loss decrease because of the relatively small amount of flue gas volume.However, the flame temperature is lower and its stability is poorer while compared withthe combustion process in air atmosphere. The pollutant emission characteristic isdifferent too. But the flame temperature and furnace heat-transfer characteristic isenhanced effectively by adopting advanced burners or by adjusting air distribution. Ithas great potential on simultaneous removal of multi-pollutant. However, few studiesfocuses on these aspects such as the mechanism of coal oxy-fuel combustion andpollutant formation characteristics, operation parameters, O_2/CO_2burner designing, etc.Especially, the research that experimental investigation on pilot-scale or full-scale testfacility still seems insufficient in depth and scope before this paper.
     Thermogravimetric-Infrared Interconnection method (TG-FTIR) was employed inthe online measurement of combustion process of three kinds of coal and its char inO_2/N2and O_2/CO_2atmosphere with different proportion of O_2, particularly inmeasurement of CO concentration. Reaction kinetic parameters of the coals were obtained by analyzing the reaction curves and the combustion products under O_2/N2andO_2/CO_2atmosphere, and the corresponding most probability mechanism function wasacquired by using two different simulation calculation methods too. The influence ofhigh concentration CO_2on the reaction rates of the coals and the formation of pollutantswas researched by analyzing the composition of flue gas.
     The first domestic pilot-scale oxy-fuel combustion test facility was designed andbuilt in this work. The facility was characterized by a0.3MW vertical combustor. Aseries of combustion experiments have been carried out in this system in air, O_2/CO_2and O_2/RFG atmosphere. The combustion characteristics and temperature fields werecomparative analyzed at different oxygen concentration and different flue gasecirculation ratio. Optimum operation parameters were determined to obtain the similarflame temperature and heat transfer under air and O_2/RFG atmosphere and to gain aready-to-recovery stream of flue gas. According to the characteristics of O_2/CO_2recycled combustion, a type of O_2/CO_2swirl burner was designed by using numericalsimulation method combined with experimental approach. It got an insight into themethodology of designing O_2/CO_2burner. The cold-state experiment was carried out totest the aerodynamic performance of the burner and adjusted the flow expansion angleand the central recirculation region. The combustion tests under air and O_2/RFGatmosphere were carried out to examine the performance of the burner in respect ofcombustion characteristics and pollutant formation characteristics. Studies showed theimproved swirl burner has the virtue of operational flexibility and better combustionperformances when it was applied to oxy-fuel combustion conditions. It presentedimportant references for future researching and designing of O_2/CO_2burner.
     FLUENT was used to simulate the coal combustion process on the pilot test facility.The appropriate flow, combustion and heat transfer model were chosed to obtain thereasonable results which were compared with measured data. The simulation results hada good agreement with the experimental data. This demonstrates that numericalsimulation could reflect the real combustion process. FLUENT was used to analyze thecombustion process when the operational parameters changed, for example, thecirculation ratio. The analytical results can guide the future operation of the experiments.Moreover, FLUENT was useful on determining the best swirl strength and blade fitting angle in designing process of O_2/CO_2burner.
     Theoretical analysis and experimental studies of the pollutant formationmechanism during coal oxy-fuel combustion process were conducted on the pilot testfacility. The formation and emission mechanism of NOxand SO_2was investigated underair and O_2/CO_2atmosphere. The in-furnace limestone injection technology wasconducted to explore the possibilities of NOxand SO_2co-capture during O_2/CO_2recycled coal combustion process. Numerical simulation was carried out to simulate thecombustion process under air and O_2/CO_2atmosphere by using the commercial softwareFLUENT and CHEMKIN. Simulation results were analyzed to discover the mechanismof pollutant formation and decomposition. A lot of facters (such as temperature, O_2concentration, reaction atmosphere, recycling mode) were taken into account to analyzetheir influences on pollutant emission characteristics. The numerical simulation resultsand experimental results agree well, and the pollutant emission index of oxy-fuelcombustion was significantly lower than AIR condition. In addition, the pollutantremoval rate of the improved burner was marked increased.
引文
[1] Weitzman, M. L. A review of the Stern Review on the economics of climate change.Journal of Economic Literature.2007,45(3):703-724.
    [2] Cox, P. M., Betts, R. A., Jones, C. D., et al. Acceleration of global warming due tocarbon-cycle feedbacks in a coupled climate model. Nature.2000,408(6809):184-187.
    [3] Hansen, J., Johnson, D., Lacis, A., et al. Climate impact of increasing atmosphericcarbon dioxide. Science.1981,213(4511):957-966.
    [4]杨俊,王佳,张宗益.中国省际碳排放差异与碳减排目标实现.环境科学学报.2012,32(8):2016-2023.
    [5] Qi, Y. C., Dong, Y. S. Emission of Greenhouse Gases from Energy Field andMitigation Countermeasures in China. Scientia Geographica Sinica.2004,24(5):528-534.
    [6]米国芳,赵涛.中国火电企业碳排放测算及预测分析. Resources Science.2012,34(10):1825-1831.
    [7] David, J., Herzog, H. The cost of carbon capture. in: Fifth International Conferenceon Greenhouse Gas Control Technologies. Cairns, Australia:2000.13-16.
    [8] Herzog, H. J., Drake, E. M. Long Term Advanced Carbon Dioxide Capture Options.Cheltenham, U.K.: IEA Greenhouse Gas R&D Programme,1993.275-318
    [9] IEA, World Energy Outlook2004, Technical Report PH4/55, International EnergyAgency: Paris, France,2004.
    [10] Abelson, P. H. Clean coal technology. Science.1990,250(4986):1317.
    [11] Batkhuyag, S., Davaakhuu, S. Clean coal technology. in: Third International Forumon Strategic Technologies. Novosibirsk-Tomsk, Russia: IEEE,2008.507-510.
    [12] IEA, Impact of Impurities on CO2Capture, Transport and Storage Technical ReportPH4/32, Greenhouse Gas R&D Programme:2004.
    [13] IEA, Towards Zero Emission Coal-fired Power Plants, Technical Report CCC/101,Clean Coal Centre: Queensland, Australia,2005.
    [14]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究.中国电力.1997,30(6):59-62.
    [15] Wall, T. F. Combustion processes for carbon capture. in: Proceedings of theCombustion Institute. Heidelberg, Germany: Elsevier Ltd, vol.31I,2007.31-47.
    [16] Wolsky, A. M., Daniels, E. J., Jody, B. J. Recovering CO2From Large andMedium-Size Stationary Combustors. Journal of the Air&Waste ManagementAssociation.1991,41(4):449-454.
    [17]刘彦丰,阎维平.控制和减缓电力生产过程中CO2排放的技术.华北电力大学学报.2000,27(2):36-41.
    [18]周泽兴.火电厂排放CO2的分离回收和固定技术的研究开发现状.环境科学进展.1993,1(1):56-72.
    [19] Herzog, H., Golomb, D., Zemba, S. Feasibility, modeling and economics ofsequestering power plant CO2emissions in the deep ocean. Environmental Progress.1991,10(1):64-74.
    [20] Meisen, A., Shuai, X. Research and development issues in CO2capture. EnergyConversion and Management.1997,38(s):37-42.
    [21]毛玉如,张永刚,张国胜等.火电厂CO2的排放控制和分离回收技术研究.锅炉制造.2003,(1):20-22.
    [22] IEA, Improvements in power generation with post-combustion capture of CO2,Technical Report PH4/33, International Energy Agency: Cheltenham, UK,2004.
    [23] IPCC. IPCC special report on carbon dioxide capture and storage. in: CambridgeUniversity Press. Cambridge, UK: vol.2,2005.
    [24] Roberts, C. A., Gibbins, J., Panesar, R., et al. Potential for improvement in powergeneration with post-combustion capture of CO2. in:7th International Conference onGreenhouse Gas Control Technologies. Vancouver, Canada: vol.7,2005.5-9.
    [25] Rubin, E. S., Rao, A. B., Chen, C. Comparative assessments of fossil fuel powerplants with CO2capture and storage. in: Seventh International Conference onGreenhouse Control Technologies. Vancouver, Canada:2004.1551-1559.
    [26]许志刚,陈代钊,曾荣树. CO2的地质埋存与资源化利用进展.地球科学进展.2007,22(7):698-707.
    [27] Herzog, H. An introduction to CO2separation and capture technologies. in: EnergyLaboratory Working Paper. Cambridge, MA: Massachusetts Institute of Technology,1999.1-8.
    [28]李小春,小出仁,大隅多加志.二氧化碳地中隔离技术及其岩石力学问题.岩石力学与工程学报.2003,22(6):989-994.
    [29]徐俊,张军营,潘霞等.二氧化碳储存技术的研究现状.煤炭转化.2005,28(3):80-86.
    [30] Xiaoehun, L., Hitoshi, K., Takashi, O.二氧化碳地中隔离技术及其岩石力学问题.岩石力学与工程学报.2003,22(6):989-994.
    [31] White, D. C. M., Strazisar, B. R., Granite, E. J., et al. Separation and capture of CO2from large stationary sources and sequestration in geological formations—coalbedsand deep saline aquifers. Journal of the Air&Waste Management Association.2003,53(6):645-715.
    [32] Gozalpour, F., Ren, S. R., Tohidi, B. CO2EOR and storage in oil reservoir. Oil&gasscience and technology.2005,60(3):537-546.
    [33] Heddle, G., Herzog, H., Klett, M., The economics of CO2storage, MassachusettsInstitute of Technology, Laboratory for Energy and the Environment: Cambridge,MA.,2003.
    [34]潘霞,张军营,徐俊等.二氧化碳矿物化隔离研究进展.煤炭转化.2006,29(4):78-83.
    [35] Lackner, K. S., Butt, D. P., Wendt, C. H. Progress on binding CO2in mineralsubstrates. Energy Conversion and Management.1997,38(S):259-264.
    [36] Zevenhoven, R., Kohlmann, J. CO2sequestration by magnesium silicate mineralcarbonation in Finland. in: Proceedings Congress R'02Recovery RecyclingReintegration. Geneva, Switzerland:2002.12-15.
    [37] O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., et al. CO2storage in solid form: astudy of direct mineral carbonation. in: Proceedings of the5th InternationalConference on Greenhouse Gas Control Technologies. Cairns, Australia:2000.322-327.
    [38]徐敏,刘国祥,胡征宇.耐受极高浓度CO2藻类的研究及其在固碳领域的应用.中国科学院研究生院学报.2005,22(5):529-535.
    [39] Wilcox, J. Carbon Capture. New York, USA: Springer Publishing,2012.231-243
    [40] Ben-Amotz, A. Biofuel and CO2capture by algae. in: Algae Biomass Summit. SanFrancisco, USA:2007.
    [41] Nsakala, N., Marion, J., Bozzuto, C., et al. Engineering feasibility of CO2capture onan existing US coal-fired power plant. in: National Conference on CarbonSequestration. Washington, DC, USA:2001.15-17.
    [42] Singh, D., Croiset, E., Douglas, P. L., et al. Techno-economic study of CO2capturefrom an existing coal-fired power plant: MEA scrubbing vs. O2/CO2recyclecombustion. Energy Conversion and Management.2003,44(19):3073-3091.
    [43] Wall, T., Gupta, R., Buhre, B., et al. Oxy-fuel (O2/CO2, O2/RFG) technology forsequestration-ready CO2and emission compliance. in: The30th InternationalTechnical Conference on Coal Utilization&Fuel Systems, Coal Technology:yesterday-today-tomorrow. Clearwater, Florida, USA:2005.523-534.
    [44] Shah, M. M., Tonawanda, N. Y. Oxy-Fuel Combustion For CO2Capture From PCBoilers. in: Procceding of the31st International Conferenrence on Coal Utilizationand Fuel Systems. Clearwater, Florida, USA:2006.
    [45] Wilkinson, M. B., Boden, J. C., Panesar, R. S., et al. CO2capture via oxyfuel firing:optimisation of a retrofit design concept for a refinery power station boiler. in:Proceedings of First National Conference on Carbon Sequestration. Washington DC,USA: vol.5,2001.15-17.
    [46] Tan, Y., Douglas, M. A., Thambimuthu, K. V. CO2capture using oxygen enhancedcombustion strategies for natural gas power plants. Fuel.2002,81(8):1007-1016.
    [47] Yaverbaum, L. Fluidized bed combustion of coal and waste materials. Noyes DataCorporation.1977,78:338.
    [48] Seepana, S., Jayanti, S. Steam-moderated oxy-fuel combustion. Energy Conversionand Management.2010,51(10):1981-1988.
    [49] Hong, J., Chaudhry, G., Brisson, J. G., et al. Analysis of oxy-fuel combustion powercycle utilizing a pressurized coal combustor. Energy.2009,34(9):1332-1340.
    [50] Anderson, R. E., MacAdam, S., Viteri, F., et al. Adapting gas turbines to zeroemission oxy-fuel power plants. in: Proceedings of ASME Turbo Expo2008: Powerfor Land, Sea and Air. Berlin, Germany:2008. GT2008-51377.
    [51] Andersson, K., Johnsson, F. Process evaluation of an865MW lignite fired O2/CO2power plant. Energy Conversion and Management.2006,47(18):3487-3498.
    [52] Okawa, M., Kimura, N., Kiga, T., et al. Trial design for a CO2recovery power plantby burning pulverized coal in O2/CO2. Energy Conversion and Management.1997,38(S):123-127.
    [53] Toftegaard, M. B., Brix, J., Jensen, P. A., et al. Oxy-fuel combustion of solid fuels.Progress in Energy and Combustion Science.2010,36(5):581-625.
    [54] IEA, Oxy combustion processes for CO2capture from power plant, Technical ReportGL527RZ, International Energy Agency: Paris, France,2005.
    [55] Nakayama, S., Noguchi, Y., Kiga, T., et al. Pulverized coal combustion in O2/CO2mixtures on a power plant for CO2recovery. Energy Conversion and Management.1992,33(5):379-386.
    [56] Sangras, R., Chatel-Pelage, F., Pranda, P., et al. Oxy combustion process inpulverized coal-fired boilers: a promising technology for CO2capture. in:Proceedings of the31st International technical Conference on Coal Utilization andFuel Systems;. Gaithersburg, MD, USA:2006.
    [57] Birkestad, H. Separation and compression of CO2in an O2/CO2-fired power plant:
    [Master Degree thesis]. Chalmers University of Technology,2002.
    [58] Akai, M., Kagajo, T., Inoue, M. Performance evaluation of fossil power plant withCO2recovery and sequestering system. Energy Conversion and Management.1995,36(6):801-804.
    [59] Abraham, B. M., Asbury, J. G., Lynch, E. P., et al. Coal oxygen process provides CO2for enhanced oil recovery. Oil and Gas Journal.1982,80(11):68-75.
    [60] Horn, F. L., Steinberg, M. Control of carbon dioxide emissions from a power plant(and use in enhanced oil recovery). Fuel.1982,61(5):415-422.
    [61] Steinberg, M. History of CO2greenhouse gas mitigation technologies. EnergyConversion and Management.1992,33(5):311-315.
    [62] Abele, A. R., Kindt, G. S., Clark, W. D., et al., An experimental program to test thefeasibility of obtaining normal performance from combustors using oxygen andrecycled gas instead of air, Technical Report ANL/CNSVTM-204, Argonne NationalLab., IL, USA; Energy and Environmental Research Corp., Irvine, CA, USA:1987.
    [63] Wang, C. S., Berry, G. F., Chang, K. C., et al. Combustion of pulverized coal usingwaste carbon dioxide and oxygen. Combustion and Flame.1988,72(3):301-310.
    [64] Payne, R., Chen, S. L., Wolsky, A. M., et al. CO2recovery via coal combustion inmixtures of oxygen and recycled flue gas. Combustion science and technology.1989,67(1-3):1-16.
    [65] Herzog, H. J., Drake, E. M. Carbon dioxide recovery and disposal from large energysystems. Annual review of energy and the environment.1996,21(1):145-166.
    [66] Kiga, T., Takano, S., Kimura, N., et al. Characteristics of pulverized-coal combustionin the system of oxygen/recycled flue gas combustion. Energy Conversion andManagement.1997,38(S):129-134.
    [67] Kimura, N., Omata, K., Kiga, T., et al. The characteristics of pulverized coalcombustion in O2/CO2mixtures for CO2recovery. Energy Conversion andManagement.1995,36(6):805-808.
    [68] Nozaki, T., Takano, S., Kiga, T., et al. Analysis of the flame formed during oxidationof pulverized coal by an O2/CO2mixture. Energy.1997,22(2):199-205.
    [69] Okazaki, K., Ando, T. NOxreduction mechanism in coal combustion with recycledCO2. Energy.1997,22(2):207-215.
    [70] Douglas, M. A., Chui, E., Tan, Y., et al. Oxy-fuel combustion at the CANMETvertical combustor research facility. in: Proceedings of the first National Conferenceon Carbon Sequestration. Washington, D.C., USA:2001.
    [71] Croiset, E., Thambimuthu, K., Palmer, A. Coal combustion in O2/CO2mixturescompared with air. The Canadian Journal of Chemical Engineering.2000,78(2):402-407.
    [72] Croiset, E., Thambimuthu, K. V. NOxand SO2emissions from O2/CO2recycle coalcombustion. Fuel.2001,80(14):2117-2121.
    [73] Hirma, T., Hosoda, H., Azuma, N. Drastic Reduction of NOxand N2O emissionsfrom BFBC of coal by means of CO2/O2combustion: effects of fuel gas recycle andcoal type. in: International Symposium of Engineering Foundation FLUIDIZATIONIX:1998.
    [74] Andries, J., Becht, J. G. M., Hoppesteyn, P. D. J. Pressurized fluidized bedcombustion and gasification of coal using flue gas recirculation and oxygen injection.Energy conversion and management.1997,38(S):117-122.
    [75] ya Nsakala, N., Liljedahl, G. N. Greenhouse gas emissions control by oxygen firingin circulating fluidized bed boilers. in: the Second Annual National Conference onCarbon Sequestration. Alexandria, VA, USA: Alstom Power Inc.,2003.
    [76] Buhre, B. J. P., Elliott, L. K., Sheng, C. D., et al. Oxy-fuel combustion technology forcoal-fired power generation. Progress in energy and combustion science.2005,31(4):283-307.
    [77] Chen, L., Yong, S. Z., Ghoniem, A. F. Oxy-fuel combustion of pulverized coal:Characterization, fundamentals, stabilization and CFD modeling. Progress in Energyand Combustion Science.2012,38(2):156-214.
    [78] Wall, T., Liu, Y., Spero, C., et al. An overview on oxyfuel coal combustion—state ofthe art research and technology development. Chemical Engineering Research andDesign.2009,87:1003-1016.
    [79] Str mberg, L., Lindgren, G., Anheden, M., et al. Vattenfall's30MWth Oxyfuel PilotPlant Project. Vattenfall Utveckling AB.2006:1-8.
    [80] Anheden, M., Burchhardt, U., Ecke, H., et al. Overview of operational experienceand results from test activities in Vattenfall's30MWthoxyfuel pilot plant inSchwarze Pumpe. Energy Procedia.2011,4:941-950.
    [81] Str mberg., L., Lindgren, G., Jacoby, J., et al. Update on Vattenfall's30MWthoxyfuel pilot plant in Schwarze Pumpe. Energy Procedia.2009,1(1):581-589.
    [82] Aimard, N., Lescanne, M., Mouronval, G. C., et al. The CO2pilot at Lacq: Anintegrated oxycombustion CO2capture and geological storage project in the SouthWest of France. in: International Petroleum Technology Conference2007.Richardson, TX, USA: Society of Petroleum Engineers,2007.1717-1724.
    [83] Aimnard, N. Oxy-Combustion and CO2Storage Pilot Plant Project at Lacq. in:International Oxy-Combustion Network. Windsor, CT, USA:2007.
    [84]黄斌,刘练波,许世森等.燃煤电站CO2捕集与处理技术的现状与发展.电力设备.2008,9(5):3-6.
    [85] Spero, C. Overview of Australian-Japanese Callide A Oxy Fuel DemonstrationProject. in: Oxyfuel Combustion Research Network. Cottbus, Germany: IEAGreenhouse Gas Programme,2005.
    [86] Santos, S. O. Oxy-Coal Combustion Technology. in:2nd APP Oxyfuel WorkingGroup Capacity Building Course. Beijing, China:2010.
    [87] Wall, T., Stanger, R., Santos, S. Demonstrations of coal-fired oxy-fuel technology forcarbon capture and storage and issues with commercial deployment. InternationalJournal of Greenhouse Gas Control.2011,5(S):5-15.
    [88] Coelho, L., Azevedo, J. L. T., Carvalho, M. G. Numerical study of boiler retrofittingto use recirculated flue gases with O2injection. in: Greenhouse Gas ControlTechnologies-6th International Conference. Kyoto, Japan: Elsevier Ltd,2012.
    [89] Zheng, L., Clements, B., Runstedtler, A. A generic simulation method for the lowerand upper furnace of coal-fired utility boiler using both air firing and oxy-fuelcombustion with CO2recirculation. in:27th International Technical Conference onCoal Utilization and Fuel Systems. Clearwater, Florida, USA:2002.
    [90] Zheng, L., Clements, B., Douglas, M. Simulation of an oxy-fuel retrofit to a typical400MWe utility boiler for CO2capture. in:26th International Technical ConferenceCoal Utilization and Fuel Systems. Clearwater, Florida, USA:2001.
    [91] Woycenko, D. M., van de Kamp, W. L., Roberts, P. A., Combustion of pulverisedcoal in a mixture of oxygen and recycled flue gas, Technical Report IFRF DocF98/Y/4, International Flame Research Foundation:1994.
    [92] Andersson, K., Johnsson, F. Flame and radiation characteristics of gas-fired O2/CO2combustion. Fuel.2007,86(5):656-668.
    [93] Andersson, K., Johansson, R., Hj rtstam, S., et al. Radiation intensity of lignite-firedoxy-fuel flames. Experimental thermal and fluid science.2008,33(1):67-76.
    [94] Tan, Y., Croiset, E., Douglas, M. A., et al. Combustion characteristics of coal in amixture of oxygen and recycled flue gas. Fuel.2006,85(4):507-512.
    [95] Hj rtstam, S., Andersson, K., Johnsson, F., et al. Combustion characteristics oflignite-fired oxy-fuel flames. Fuel.2009,88(11):2216-2224.
    [96] Smart, J. P., O'nions, P., Riley, G. S. Radiation and convective heat transfer, andburnout in oxy-coal combustion. Fuel.2010,89(9):2468-2476.
    [97] Turns, S. R. An introduction to combustion: concepts and applications.(2nd Edition).New York, USA: McGraw-Hill, Inc.,2000.291-297
    [98] Cen, K. F., Yao, Q., Cao, X. Y., et al. Theory and Application of Combustion, Flow,Heat Transfer, Gasification of Coal Slurry. Zhejiang University Press.1997,2:120-127.
    [99] Anthony, D. B., Howard, J. B. Coal devolatilization and hydrogastification. AIChEJournal.2004,22(4):625-656.
    [100] Li, Q., Zhao, C., Chen, X., et al. Comparison of pulverized coal combustion in airand in O2/CO2mixtures by thermo-gravimetric analysis. Journal of Analytical andApplied Pyrolysis.2009,85(1):521-528.
    [101] Rathnam, R. K., Elliott, L. K., Wall, T. F., et al. Differences in reactivity ofpulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel ProcessingTechnology.2009,90(6):797-802.
    [102] Al-Makhadmeh, L., Maier, J., Scheffknecht, G. Coal pyrolysis and char combustionunder oxy-fuel conditions. in:34th International Technical Conference on CoalUtilization&Fuel Systems. Clearwater, Florida, USA:2009.112-123.
    [103] Borrego, A. G., Alvarez, D. Comparison of chars obtained under oxy-fuel andconventional pulverized coal combustion atmospheres. Energy&Fuels.2007,21(6):3171-3179.
    [104] Brix, J., Jensen, P. A., Jensen, A. D. Coal devolatilization and char conversion undersuspension fired conditions in O2/N2and O2/CO2atmospheres. Fuel.2010,89(11):3373-3380.
    [105] Faúndez, J., Arenillas, A., Rubiera, F., et al. Ignition behaviour of different rank coalsin an entrained flow reactor. Fuel.2005,84(17):2172-2177.
    [106] Chen, Y., Mori, S., Pan, W. P. Studying the mechanisms of ignition of coal particlesby TG-DTA. Thermochimica acta.1996,275(1):149-158.
    [107] Yossefi, D., Ashcroft, S. J., Hacohen, J., et al. Combustion of methane and ethanewith CO2replacing N2as a diluent. Modelling of combined effects of detailedchemical kinetics and thermal properties on the early stages of combustion. Fuel.1995,74(7):1061-1071.
    [108] Santoro, L., Vaccaro, S., Aldi, A., et al. Fly ashes reactivity in relation to coalcombustion under flue gas recycling conditions. Thermochimica acta.1997,296(1):67-74.
    [109] Shaddix, C. R., Molina, A. Particle imaging of ignition and devolatilization ofpulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute.2009,32(2):2091-2098.
    [110] Bejarano, P. A., Levendis, Y. A. Single-coal-particle combustion in O2/N2andO2/CO2environments. Combustion and flame.2008,153(1):270-287.
    [111] Stivers, C., Levendis, Y. A. Ignition of Single Coal Particles in O2/N2/CO2Atmospheres. in: Proceedings of the35th Coal Utilization and Fuel SystemsInternational Conference. Florida, USA:2010.
    [112] Qiao, Y., Zhang, L., Binner, E., et al. An investigation of the causes of the differencein coal particle ignition temperature between combustion in air and in O2/CO2. Fuel.2010,89(11):3381-3387.
    [113] Harris, D. J., Smith, I. W. Intrinsic reactivity of petroleum coke and brown coal charto carbon dioxide, steam and oxygen. Proceedings of the Combustion Institute.1991,23:1185-1190.
    [114] Smoot, L. D., Smith, P. J. Coal combustion and gasification. New York, USA:Plenum Press,1985.
    [115] Stanmore, B. R., Visona, S. P. The contribution of char burnout from gasification byH2O and CO2during pulverized-coal flame combustion. Combustion and flame.1998,113(1):274-276.
    [116] Kajitani, S., Hara, S., Matsuda, H. Gasification rate analysis of coal char with apressurized drop tube furnace. Fuel.2002,81(5):539-546.
    [117] Shaddix, C. R., Molina, A. Influence of CO2on coal char combustion kinetics inoxy-fuel applications. Proceedings of the Combustion Institute.2007,31:1905–1912.
    [118] Shaddix, C. R., Molina, A. Effect of O2and High CO2concentrations on PC charburning rates during oxy-fuel combustion. in: Proceedings of the33rd InternationalTechnical Conference on Coal Utilization&Fuel Systems, The Clearwater CoalConference. Clearwater, Florida, USA:2008.1-5.
    [119] Murphy, J. J., Shaddix, C. R. Combustion kinetics of coal chars in oxygen-enrichedenvironments. Combustion and Flame.2006,144(4):710-729.
    [120] Várhegyi, G., Szabó, P., Jakab, E., et al. Mathematical modeling of char reactivity inAr-O2and CO2-O2mixtures. Energy&fuels.1996,10(6):1208-1214.
    [121] Várhegyi, G., Till, F. Comparison of temperature-programmed char combustion inCO2-O2and Ar-O2mixtures at elevated pressure. Energy&fuels.1999,13(2):539-540.
    [122] Shaddix, C. R., Murphy, J. J. Coal char combustion reactivity in oxy-fuelapplications. in: American Flame Research Committee International Symposium.Livermore, CA, USA:2003.
    [123] Liu, H., Luo, C., Kato, S., et al. Kinetics of CO2/Char gasification at elevatedtemperatures: Part I: Experimental results. Fuel Processing Technology.2006,87(9):775-781.
    [124] Liu, H. Combustion of coal chars in O2/CO2and O2/N2mixtures: A comparativestudy with non-isothermal thermogravimetric analyzer (TGA) tests. Energy&Fuels.2009,23(9):4278-4285.
    [125] Saastamoinen, J. J., Aho, M. J., Hernberg, R., et al. Pressurized pulverized fuelcombustion in different concentrations of oxygen and carbon dioxide. Energy&fuels.1996,10(1):121-133.
    [126] Shaddix, C. R., Hecht, E. S., Geier, M., et al. Effect of gasification reactions onoxy-fuel combustion of pulverized coal char. in: Proceedings of the35thInternational Technical Conference on Clean Coal&Fuel Systems. Clearwater,Florida, USA:2010.
    [127] Makino, A. An approximate explicit expression for the combustion rate of a smallcarbon particle. Combustion and flame.1992,90(2):143-154.
    [128] Mann, A. P., Kent, J. H. A computational study of heterogeneous char reactions in afull-scale furnace. Combustion and flame.1994,99(1):147-156.
    [129] Khare, S. P., Wall, T. F., Gupta, R. P., et al. Retrofitting of air-fired pf plant tooxy-fuel and associated oxygen levels through the burners and oxygen productionrequirements. in: The proceedings of the30th International Technical Conference onCoal Utilization and Fuel System. Clearwater, Florida, USA: Coal TechnologyAssociation,2005.651-662.
    [130] Normann, F., Andersson, K., Leckner, B., et al. Emission control of nitrogen oxidesin the oxy-fuel process. Progress in Energy and Combustion Science.2009,35(5):385-397.
    [131] Hu, Y., Naito, S., Kobayashi, N., et al. CO2, NOxand SO2emissions from thecombustion of coal with high oxygen concentration gases. Fuel.2000,79(15):1925-1932.
    [132] Liu, H., Zailani, R., Gibbs, B. M. Comparisons of pulverized coal combustion in airand in mixtures of O2/CO2. Fuel.2005,84(7):833-840.
    [133] Hu, Y. Q., Kobayashi, N., Hasatani, M. The reduction of recycled-NOxin coalcombustion with O2/recycled flue gas under low recycling ratio. Fuel.2001,80(13):1851-1855.
    [134] Rehfeldt, S., Kuhr, C., Ehmann, M., et al. Basic experiments and CFD calculations ofair and oxyfuel firing of lignite and bituminous coals in0.5and1MW scalecombustion test facilities. in: Proceedings of the34th International TechnicalConference on Clean Coal and Fuel Systems. Clearwater, Florida, USA:2009.
    [135] Zheng, L., Furimsky, E. Assessment of coal combustion in O2+CO2by equilibriumcalculations. Fuel Processing Technology.2003,81(1):23-34.
    [136] Liu, H., Katagiri, S., Kaneko, U., et al. Sulfation behavior of limestone under highCO2concentration in O2/CO2coal combustion. Fuel.2000,79(8):945-953.
    [137] Chen, C., Zhao, C. Mechanism of Highly Efficient In-Furnace Desulfurization byLimestone under O2/CO2Coal Combustion Atmosphere. Industrial&EngineeringChemistry Research.2006,45:5078-5085.
    [138] Chui, E. H., Majeski, A. J., Douglas, M. A., et al. Numerical investigation ofoxy-coal combustion to evaluate burner and combustor design concepts. Energy.2004,29(9):1285-1296.
    [139] Zhang, J., Kelly, K. E., Eddings, E. G., et al. Ignition in40kW co-axial turbulentdiffusion oxy-coal jet flames. Proceedings of the Combustion Institute.2011,33(2):3375-3382.
    [140] Khare, S. P., Wall, T. F., Farida, A. Z., et al. Factors influencing the ignition of flamesfrom air-fired swirl pf burners retrofitted to oxy-fuel. Fuel.2008,87(7):1042-1049.
    [141] Tigges, K. D., Klauke, F., Bergins, C., et al. Conversion of existing coal-fired powerplants to oxyfuel combustion: Case study with experimental results andCFD-simulations. Energy Procedia.2009,1(1):549-556.
    [142] Beér, J. M., Chigier, N. A. Combustion aerodynamics. London: Applied SciencePublishers,1972.
    [143] Heil, P., Toporov, D., Stadler, H., et al. Development of an oxycoal swirl burneroperating at low O2concentrations. Fuel.2009,88(7):1269-1274.
    [144] Chui, E. H., Douglas, M. A., Tan, Y. Modeling of oxy-fuel combustion for a westernCanadian sub-bituminous coal. Fuel.2003,82(10):1201-1210.
    [145] Fry, A., Adams, B., Shan, J. Oxy-burner retrofit principles for existing coal-firedutility boilers. in: The35th international technical conference on clean coal&fuelsystems. Clearwater, Florida, USA:2010.
    [146] Tigges, K. D., Klauke, F., Bergins, C., et al. Oxyfuel Combustion Retrofits forExisting Power Stations. in: The33rd international technical conference on coalutilization&fuel systems. Clearwater, Florida, USA:2008.
    [147] Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature.1964,201:68-69.
    [148] Tanaka, H. The Kinetic Analysis of Inorganic Solid-state Reactions. Netsu Sokutei.1992,19(1):32-39.
    [149] Belichmeier, J. A., Cammenga, H. K., Schneider, P. B., et al. A simple method fordetermining activation energies of organic reactions from DSC curves1.Thermochimica acta.1998,310(1-2):147-151.
    [150] Brown, M. E. Introduction to thermal analysis: techniques and applications.(2ndedition). Dodrecht, Netherlands: Kluwer,2001.
    [151] Niu, S. L., Lu, C. M., Han, K. H., et al. Thermogravimetric analysis of combustioncharacteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere.Journal of thermal analysis and calorimetry.2009,98(1):267-274.
    [152] Otero, M., Gómez, X., García, A. I., et al. Non-isothermal thermogravimetricanalysis of the combustion of two different carbonaceous materials. Journal ofThermal Analysis and Calorimetry.2008,93(2):619-626.
    [153] Zhang, L., Huang, Z., Zou, C., et al. Study on changes in pore structure of pulverizedcoal combustion in O2/CO2atmosphere. in: International Pittsburgh Coal Conference2007. Johannesburg, South Africa:2007.
    [154] Huang, X., Jiang, X., Han, X., et al. Combustion characteristics of fine-andmicro-pulverized coal in the mixture of O2/CO2. Energy&Fuels.2008,22(6):3756-3762.
    [155]任宁,张建军.热分析动力学数据处理方法的研究进展.化学进展.2006,18(4):410-416.
    [156]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [157] Bagchi, T. P., Sen, P. K. Combined differential and integral method for analysis ofnon-isothermal kinetic data. Thermochimica Acta.1981,51(2):175-189.
    [158] Hurt, R. H., Mitchell, R. E. Unified high-temperature char combustion kinetics for asuite of coals of various rank. Proceedings of the Combustion Institute.1992,24:1233-1241.
    [159]傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003.
    [160]蔡正千.热分析.北京:高等教育出版社,1993.
    [161] Liliedahl, T., Sj str m, K. Modelling of char-gas reaction kinetics. Fuel.1997,76(1):29-37.
    [162] López-Fonseca, R., Landa, I., Gutierrez-Ortiz, M. A., et al. Non-isothermal analysisof the kinetics of the combustion of carbonaceous materials. Journal of thermalanalysis and calorimetry.2005,80(1):65-69.
    [163] Mianowski, A., Siudyga, T. Influence of sample preparation on thermaldecomposition of wasted polyolefins-oil mixtures. Journal of Thermal Analysis andCalorimetry.2008,92(2):543-552.
    [164] imon, P., Thomas, P. S., Okuliar, J., et al. AN incremental integral isoconverzionalmethod. Journal of thermal analysis and calorimetry.2003,72(3):867-874.
    [165] Koga, N. A review of the mutual dependence of Arrhenius parameters evaluated bythe thermoanalytical study of solid-state reactions: the kinetic compensation effect.Thermochimica acta.1994,244:1-20.
    [166] Carpenter, A. M., Skorupska, N. M., Coal combustion-analysis and testing, TechnicalReport CR/64, IEA Coal Research: London, UK,1993.
    [167]胡荫平,贾鸿祥.新型煤粉燃烧器.西安:西安交通大学出版社,1993.
    [168] Andrew Fry, Davis, K. CFD Modeling of Single Burner Oxycoal CombustionRetrofit Concepts. in:31st Internation Symposium on Combustion. Heidelberg,Germany:2006.176-182.
    [169] Lorenz, G., Ylrich, H. CFD aided Design of an Oxycoal Test Burner with HighRecirculation Rates. in:33rd International Technical Conference on Coal Utilization&Fuel Systems. Clearwater, Florida, USA:2008.145-150.
    [170]刘敬樟.旋流式O2/CO2煤粉燃烧器的试验研究:[硕士论文].华中科技大学,2007.
    [171]何佩鏊,赵仲琥,秦裕琨.煤粉燃烧器设计及运行.北京:机械工业出版社,1987.
    [172]郭娟.一种新型燃烧器的冷态试验与数值模拟研究:[硕士论文].华中科技大学,2006.
    [173]韩占忠,王敬,兰小平. FLUENT:流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [174] de Vahl Davis, G., Mallinson, G. D. An evaluation of upwind and central differenceapproximations by a study of recirculating flow. Computers&Fluids.1976,4(1):29-43.
    [175]王福军.计算流体动力学分析: CFD软件原理与应用.北京:清华大学出版社,2004.
    [176] Launder, B. E., Spalding, D. B. Mathematical models of turbulence. New York, USA:Academic Press,1972.
    [177]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991.
    [178]刘彦丰.煤粉在高浓度CO2下的燃烧与气化:[博士论文].华北电力大学,2001.
    [179] Truelove, J. S., Jamaluddin, A. S. Models for rapid devolatilization of pulverized coal.Combustion and flame.1986,64(3):369-372.
    [180]陈义良.燃烧原理.北京:航空工业出版社,1992.
    [181]钱力庚,樊建人,孙平等.600MW锅炉炉内流动与燃烧过程的数值模拟.动力工程.2001,21(1):1032-1037.
    [182] Bell, J. B., Day, M. S., Grcar, J. F. Numerical simulation of premixed turbulentmethane combustion. Proceedings of the Combustion Institute.2002,29(2):1987-1993.
    [183] Xinglong, C., Lixing, Z., Jian, Z. Numerical simulation of methane-air turbulent jetflame using a new second-order moment model. Acta Mechanica Sinica.2000,16(1):41-47.
    [184]周力行.多相湍流反应流体力学.北京:国防工业出版社,2002.
    [185]郭永红.超细粉再燃低NOx燃烧技术的数值模拟与实验研究:[博士论文].华北电力大学,2006.
    [186]谭灿燊,吴阿峰.700MW锅炉炉内煤粉切圆燃烧过程的数值分析.现代电力.2009,25(5):44-47.
    [187] Yamada, E., Oshima, N. Numerical Simulation of Combustion. Chemical Industry.2005,56(5):367-373.
    [188]赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [189] Lockwood, F. C., Romo-Millares, C. A. Mathematical modelling of fuel-NOemissions from PF burners. Journal of the Institute of Energy.1992,65(464):144-152.
    [190]钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2007.
    [191]黄伟,曾汉才.大型电站燃煤锅炉NOx生成的数值模拟.湖南电力.2001,21(1):1-4.
    [192]郭印诚,林文漪,周力行.煤粉燃烧过程中NOx生成的数值模拟.燃烧科学与技术.1998,4(1):18-23.
    [193]史永征,郭全.两个轴向叶片式旋流器的旋流强度计算公式的探讨.北京建筑工程学院学报.2007,23(2):17-18.
    [194]董学文,王宏,邱建荣.不同气氛下燃煤SO2的排放规律研究.环境科学学报.2003,23(3):322-326.
    [195]王宏,邱建荣,郑楚光.燃煤在O2/CO2方式下的SO2生成特性的实验研究.华中科技大学学报(自然科学版).2002,30(1):100-102.
    [196]王宏,董学文,王泉海.新型燃烧方式下SO2脱除机理.化工学报.2005,56(10):1948-1954.
    [197] Liu, H., Katagiri, S., Okazaki, K. Drastic SOxRemoval and Influences of VariousFactors in O2/CO2Pulverized Coal Combustion System. Energy&fuels.2001,15(2):403-412.
    [198] Liu, H., Okazaki, K. Simultaneous easy CO2recovery and drastic reduction of SOxand NOxin O2/CO2coal combustion with heat recirculation. Fuel.2003,82(11):1427-1436.
    [199]钟秦.石灰石与SO2直接硫酸化反应宏观动力学的研究.重庆环境科学.1994,19(4):5-11.
    [200] Snow, M. J. H., Longwell, J. P., Sarofim, A. F. Direct sulfation of calcium carbonate.Industrial&engineering chemistry research.1988,27(2):268-273.
    [201] Hajaligol, M. R., Longwell, J. P., Sarofim, A. F. Analysis and modeling of the directsulfation of calcium carbonate. Industrial&engineering chemistry research.1988,27(12):2203-2210.
    [202]王宏,董学文,邱建荣.燃煤在O2/CO2方式下的NOx生成规律的实验研究.燃料化学学报.2001,29(5):458-462.
    [203] Hayashi, J., Hirama, T., Okawa, R., et al. Kinetic relationship between NO/N2Oreduction and O2consumption during flue-gas recycling coal combustion in abubbling fluidized-bed. Fuel.2002,81(9):1179-1188.
    [204] Liu, H., Zailani, R., Gibbs, B. M. Pulverized coal combustion in air and in O2/CO2mixtures with NOxrecycle. Fuel.2005,84(16):2109-2115.
    [205]钟统林.电站锅炉炉内NOx生成规律的数值模拟:[硕士论文].华北电力大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700