用户名: 密码: 验证码:
硅酸铋粉体制备和熔体性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅酸铋(BSO)及含铋(Bi)氧化物系统具有一系列独特的声光、光电、介电等性能,可以用来制备发光材料、闪烁材料、电介质材料等高新材料,在材料、化工、国防、工业等领域有着广泛的应用。目前对于该系统的研究主要集中在晶体生长、性能改善、粉体制备等方面,而对于该系统在熔融及冷却过程中熔体结构和性质的研究却相对较少。
     探明硅酸铋熔体的结构和性质对了解硅酸铋晶体生长机理以及改进和提高硅酸铋晶体生长速度和质量无疑具有重要意义。而硅酸铋粉体是制备适合熔体的先决条件。因此,研究硅酸铋粉体制备对掌握硅酸铋熔体结构和性质有着重要的意义。
     本文主要研究了硅酸铋粉体制备和熔体性能。通过固相法和熔盐法分别制备了Bi_4Si_3O_(12)粉体和Bi_2SiO_5粉体,研究了相关的工艺参数,并探讨了形成机理。研究了熔体密度、表面张力等熔体性能以及熔体结构。在以下几方面获得了创造性成果:
     (1)采用固相法制备了较纯的Bi_4Si_3O_(12)粉体。以氧化铋和二氧化硅为原料,在乙醇中球磨5h,在830℃煅烧3h制得较纯Bi_4Si_3O_(12)粉体。在均匀实验中因素主次关系可知,煅烧温度对杂相数目的影响显著,其余因素为不显著。
     (2)采用NaCl-KCl熔盐制备了较纯的Bi_4Si_3O_(12)粉体,颗粒微观形貌主要以颗粒状与片状为主,同时利用NaCl-Na_2SO_4熔盐制备了纯相Bi_4Si_3O_(12)粉体,颗粒微观形貌主要为多面体。在NaCl-KCl熔盐系统中,以氧化铋和二氧化硅为原料,盐含量为40wt%,Bi_2O_3过量5wt%,在780℃煅烧4h制得较纯Bi_4Si_3O_(12)粉体。Bi_4Si_3O_(12)粉体的激发光谱和发射光谱分别位于266nm和457.6nm,和晶体材料相比,激发光谱和发射光谱显示蓝移。采用NaCl-Na_2SO_4系统用熔盐法制备Bi_4Si_3O_(12)粉体时,以氧化铋和二氧化硅为原料,盐含量40wt%,在850℃煅烧3h制得纯相Bi_4Si_3O_(12)粉体。Bi_4Si_3O_(12)的禁带宽度为2.44eV,Bi_4Si_3O_(12)粉体的激发光谱和发射光谱分别位于270nm和462nm,和晶体材料相比,激发光谱和发射光谱显示蓝移。通过比较两种熔盐系统中制备Bi_4Si_3O_(12)粉体的表观活化能可知,在NaCl-Na_2SO_4熔盐体系下较易形成Bi_4Si_3O_(12)粉体。通过比较固相法和熔盐法制备Bi_4Si_3O_(12)粉体的纯度和微观形貌可知,熔盐法更易制得纯相Bi_4Si_3O_(12)粉体,颗粒的形状和尺寸更容易控制。
     (3)采用NaCl-KCl熔盐和NaCl-Na_2SO_4熔盐制备了较纯的Bi_2SiO_5粉体,颗粒形貌为片状。在NaCl-KCl熔盐体系下,以氧化铋和二氧化硅为原料,盐含量30wt%,690℃下煅烧0.5h制得较纯的Bi_2SiO_5粉体。SEM观察表明Bi_2SiO_5粉体分散性较好,片状长度大约为1-4μm。采用NaCl-Na_2SO_4系统用熔盐法制备Bi_2SiO_5粉体时,以氧化铋和二氧化硅为原料,盐含量40wt%,625℃下煅烧1h制得较纯的Bi_2SiO_5粉体。通过比较两种熔盐系统中制备Bi_2SiO_5粉体的表观活化能可知,在NaCl-Na_2SO_4熔盐体系下较易形成Bi_2SiO_5粉体。
     (4)采用高温热台配合偏光显微镜对Bi_(12)SiO_20多晶粉体的熔融过程进行原位实时观察。熔融过程大致可分为以下三个阶段:多晶粉体熔化阶段、分相阶段(亚稳分相阶段和不稳定分相阶段),均一性阶段。在亚稳分相阶段,熔体中广泛分布着大量黑色斑点状结构,其结构随着熔体温度升高会越来越明显;在不稳定分相阶段,随着温度的变化熔体中主要存在两类不同的结构,一类为环状互锁结构,另一类为蠕虫状的滴状结构,且在分相过程中熔体中两相存在着明显的随温度运动的分界线。
Bismuth silicate (BSO) and Bi-contained oxide have many uniqueproperties such as acousto-optic, photoelectric, dielectric, and piezoelectric,which are widely used as luminescent, scintillant and dielectric materials indifferent kinds of industrial fields. In recent years, the aspects such as crystalgrowth, property improvement and powder preparation are mainly studied.However the structures and properties for melt during the process of melting andcooling are less researched.
     The structures and properties of bismuth silicate melt are important factorsinfluencing the crystal growth, which is significant to understand the mechanismof crystal growth and to improve the growth rate and quality of crystals. Bismuthsilicate powders are prerequisite of preparation for appropriate melt. Therefore, itis very important to study synthesis of bismuth silicate powders for commandingstructures and properties of melt.
     In this paper the powder preparation and melt properties of bismuth silicatewere mainly studied. By solid phase method and molten salt method, Bi_4Si_3O_(12)powders and Bi_2SiO_5powders were separately prepared. Relevant processparameters were researched. The formation mechanisms were discussed. Themelt properties such as densities and surface tensions and melt structures werestudied. The innovative achievements were obtained:
     (1) By solid phase method, high purity Bi_4Si_3O_(12)powders were synthesized.Bi_4Si_3O_(12)powders were produced at830℃for3h using Bi_2O_3and SiO_2as rawmaterials after the raw materials were milled for5h in ethanol. Throughanalyzing the relation among primary and secondary factors in uniformexperiment, the calcination temperature had significant effects on the number ofimpure phase, and the rest of the factors were not significant.
     (2) High purity Bi_4Si_3O_(12)powders were produced in NaCl-KCl molten salts.The microstructures of powders were mainly grains and sheets. And pure Bi_4Si_3O_(12)powders were prepared using NaCl-Na_2SO_4molten salts. The shapesof powders were polyhedrons. High purity Bi_4Si_3O_(12)powders were obtained at780℃for4h by reaction in NaCl-KCl molten salts using Bi_2O_3and SiO_2as rawmaterials with40wt%salts and5wt%excessive content of Bi_2O_3. Excitationspectra and emission spectra of Bi_4Si_3O_(12)powders respectively lay at266nm and457.6nm. Compared to crystalline materials, excitation spectra and emissionspectra showed blue shift. Pure Bi_4Si_3O_(12)powders were synthesized at850℃for3h under40wt%NaCl-Na_2SO_4molten salts, and the best combination of rawmaterials was bismuth oxide and silicon dioxide. The forbidden band width ofBi_4Si_3O_(12)was2.44eV. Excitation spectra and emission spectra of Bi_4Si_3O_(12)powders were separately at270nm and462nm. Compared to crystallinematerials, excitation spectra and emission spectra indicated blue shift. Bycomparing apparent activation energy for synthesizing Bi_4Si_3O_(12)powders underthe two kinds of molten salt systems, Bi_4Si_3O_(12)powders were more easilyformed using NaCl-Na_2SO_4molten salt system. By making a comparisonbetween the purity and microstructures of Bi_4Si_3O_(12)powders by solid phasemethod and by molten salt method. Pure Bi_4Si_3O_(12)powders were more easilyprepared by reaction in molten salts. The shapes and sizes of grains werefurthermore easily controlled.
     (3) High purity Bi_2SiO_5powders were produced under molten salts(NaCl-KCl and NaCl-Na_2SO_4). The micrographs of powders were sheets. InNaCl-KCl molten salt system, high purity Bi_2SiO_5powders were obtained at690℃for0.5h. Bi_2O_3and SiO_2with30wt%salts were acted as raw materials.SEM images indicated that powders had preferable dispersity and the sizes ofsheets were about1-4μm. High purity Bi_2SiO_5powders were prepared byreaction at625℃for1h in40wt%NaCl-Na_2SO_4molten salts, and Bi_2O_3andSiO_2were selected as the best combination of raw materials. By comparingapparent activation energy for synthesizing Bi_2SiO_5powders under the two sortsof molten salt systems, Bi_2SiO_5powders were more easily produced byNaCl-Na_2SO_4molten salt system.
     (4) The melting processes of Bi_(12)SiO_20polycrystalline powders were insitu observed by hot-stage combined with polarizing microscope. The meltingprocess could divide into three stages: powder melting, phase splitting (metastable phase splitting and unstable phase splitting), and melt homogenizing.During metastable phase splitting, numerous black punctate structures werewidely distributed in the melt. As the melt temperature rose, the structures wouldbe more and more obvious. During unstable phase splitting, with the change oftemperature, two different types of structures mainly existed in melt. One wasannular interlocking structure. The other was vermiform structure. And duringthe process of phase splitting obvious dividing line between two phases in themelt appeared with temperature movement.
引文
[1] Zhereb V. P., Skorivo V. M.. Metastable States in Bismuth-Containing Oxide Systems [J].Inorganic Materials,2003,39(2):121-145.
    [2]费一汀,范世骥.Bi2O3-SiO2系统的相关系和行为的研究进展[J].无机材料学报,1997,l2(4):469-476.
    [3]费一汀,范世骥,孙仁英,等.Bi2SiO5亚稳定相平衡的研究[J].硅酸盐学报,1999,27(2):230-236.
    [4]费一汀,范世骥,孙仁英.Bi2O3-SiO2系统相图的研究[J].无机材料学报,1998,13(6):798-802.
    [5] Zhereb V. P., Skorivo V. M.. Effect of Metastable Phases on the Structural Perfection ofSingle Crystals of Stable Bismuth Oxide Compounds [J]. Inorganic Materials,2003,39(11):1365-1372.
    [6]潘峰.铝硅酸盐矿物、玻璃和熔体结构的Raman光谱研究[D].北京:中国地质大学,2006.
    [7] Asja Veber, pela Kunej, Danilo Suvorov. Synthesis and microstructural characterizationof Bi12SiO20(BSO) thin flms produced bythe sol-gelprocess [J]. Ceramics International,2010,36,245-250.
    [8] Bansi Lal, Sasmita K. Patro, Shivani Singh. Nano-sized polycrystalline bismuth siliconoxide powder by sol-gel technique [J]. J. Sol-Gel Sci. Technol.,2010,56:340-344.
    [9]何小玲,张昌龙,胡章贵,等.水热法生长硅酸铋晶体的结晶习性[J].人工晶体学报,2010,39:199-202,211.
    [10]鲁俊雀,王秀峰,江红涛,等.熔盐法制备单一相Bi12SiO20粉体[J].硅酸盐通报,2011,30(5):1164-1167.
    [11]王秀峰,鲁俊雀,江红涛,等.一种用熔盐法制备硅酸铋粉体的方法[P].中国专利:102275943A,2011-12-14.
    [12]王秀峰,鲁俊雀,江红涛,等.一种硅酸铋粉体的制备方法[P].中国专利:102351202A,2012-02-15.
    [13]王秀峰,许亚琴,江红涛,等.一种光学性能用硅酸铋粉体的制备方法[P].中国专利:102351513A,2012-02-15.
    [14]郭宏伟,王秀峰,贺祯,等.一种软铋矿硅酸铋微晶体的制备方法[P].中国专利:101792180A,2010-08-04.
    [15] Philipsborn H. V., et al. Croissance deulytine Bi4Si3O12ét descomposes substitutesBi4Ge3O12parlaméthode czochralski[J]. Journal of Crystal Growth,1971,11(3):348-350.
    [16]何景棠,朱国义,陈端保,等.硅酸铋(BSO)晶体闪烁性能的研究[J].高能物理与核物理,1997,21(10):886-89.
    [17] Ishii M., Harada K., Senguttuvan N., et a1. Crystal growth of BSO (Bi4Si3O12)by verticalbridgman method[J]. Journal of Crystal Growth,1999,205:191-195.
    [18] Ishii M., Harada K., Hirose Y., et a1. Development of BSO (Bi4Si3Ol2) crystal forradiation detector [J]. Optical Materials,2002,19(1):20l-212.
    [19]徐家跃,王红,何庆波,等.坩埚下降法生长硅酸铋闪烁晶体[J].硅酸盐学报,2009,37(2):296-298.
    [20]张争光,王秀峰.硅酸铋(BSO)闪烁晶体的研究综述[J].陶瓷,2009,9:33-34.
    [21] Mariya Zhuravleva, Valery I. Chani, Takayuki Yanagida, et a1.The micro-pulling-downgrowth of Bi4Si3Ol2(BSO)and Bi4Ge3O12(BGO) fiber crystals and their scintillationefficiency[J]. Journal of Crystal Growth,2008,310(7-9):2152-2156.
    [22] Macedo Zé1ia Soares, Silva Ronaldo Santos da, Valerio Mário Emesto Giroldo, et a1.Radiation detectors based on laser sintered Bi4Ge3O12ceramics [J]. Nuclear Instrumentsand Methods in Physics Research B,2004,218:153-157.
    [23] Kozhbakhteeva D. E., Leonyuk N. I., et al. Hydrothermal synthesis and morphology ofeulytite-like single crystals [J]. Journal of Optoelectronics and Advanced Materials,2010,5(3):621-625.
    [24] Armelao L., Colombo P., Fabrizio M., et al. Synthesis of Bi2O3and Bi4(SiO4)3thin filmsby the sol-gel method [J]. Journal of Sol-Gel Science and Technology,1998,13:213-217.
    [25] Zhao H. B., Xue W. B., Ru J., et al. Preparation and characterization of bismuth silicatenanopowders [J]. Chinese Journal of Inorganic Chemistry,2006,22(7):1327-1329.
    [26] Dimitriev Y., Krupchanska M., Ivanova Y., et al. Sol-gel synthesis of materials in thesystem Bi2O3-SiO2[J]. Journal of the University of Chemical Technology and Metallurgy,2010,45(1):39-42.
    [27]贾彩霞,江元汝,谢会东,等.水热法制备Bi4Si3O12粉体[J].应用化工,2011,40(8):1357-1359.
    [28]江红涛,王秀峰,于成龙,等.均匀实验优化Bi4Si3O12粉体制备工艺[J].硅酸盐通报,2011,30(2):452-456.
    [29]江红涛,王秀峰,贺宝成,等.一种熔盐法制备Bi4Si3O12粉体的方法[P].中国专利:102010196A,2011-04-13.
    [30]朱常任,王秀峰,江红涛,等.化学溶液分解法制备硅酸铋粉体及其表征[J].中国陶瓷,2010,46(6):20-22.
    [31]王燕,王秀峰,于成龙,等. Bi2O3-SiO2系统固相反应研究[J].硅酸盐通报,2007,26(3):378-379.
    [32]郭宏伟,王秀峰,杨兴平,等.一种含铋的闪铋矿硅酸铋晶体的制备方法[P].中国专利:101709508A,2010-05-19.
    [33]郭宏伟,王秀峰,龚煜轩,等.一种Bi4Si3O12纳米晶的制备方法[P].中国专利:101780959A,2010-07-21.
    [34]郭宏伟,王秀峰,田鹏,等.一种硅铋石微晶体的制备方法[P].中国专利:101850982A,2010-10-06.
    [35]王秀峰,许亚琴,江红涛,等.一种新的闪烁硅酸铋粉体的制备方法[P].中国专利:102275944A,2011-12-14.
    [36]王秀峰,鲁俊雀,江红涛,等.一种用熔盐法制备闪烁硅酸铋粉体的方法[P].中国专利:102351204A,2012-02-15.
    [37]王秀峰,鲁俊雀,江红涛,等.一种制备闪烁硅酸铋粉体的方法[P].中国专利:102275945A,2011-12-14.
    [38]王秀峰,鲁俊雀,江红涛,等.一种闪烁硅酸铋粉体的制备方法[P].中国专利:102351205A,2012-02-15.
    [39]张争光,王秀峰,田清泉,等. Bi4Si3O12晶列结构中的晶粒变化趋势和相关性分析[J].硅酸盐通报,2009,28(3):454-458.
    [40]张争光,王秀峰,田清泉.硅酸铋(Bi4Si3O12)晶列结构中的晶粒尺寸和晶粒夹角分布[J].硅酸盐通报,2009,28(4):800-804.
    [41] Zhang Zhengguang, Wang Xiufeng, Tian Qingquan. Grain orientation distribution anddevelopment of grain line in highly ordered Bi4Si3O12micro-crystals [J]. Science ofSintering,2010,42(1):51-59.
    [42] Zhang Zhengguang, Wang Xiufeng, Tian Qingquan, et al. Grain size trends andcorrelation analysis in highly ordered grain line structure of bismuth silicate (Bi4Si3O12):Micro-crystals [J]. Science of Sintering,2009,41(1):83-90.
    [43] Tian Q. Q., Wang X. F., Yu C. L., et al. Domain Structure and Defects of Highly OrderedBi4Si3O12Micro-crystals [J]. Science in China Series E: Technological Science,2009,52(8):2295-2301.
    [44] Aurivillius B., Lindblom C. I.. The crystal structure of Bi2GeO5[J]. Acta Chem Scand,1964,18(6):1555.
    [45] Firsov A. V., Skorokhodov N. E., Astafev A. V., et al. Growth and some properties ofbismuth germanium oxide (Bi2GeO5) and bismuth silicon oxide (Bi2SiO5)[J].Kristallografiya,1984,29(3):509.
    [46] Samuel Georges, Francois Goutenoire, Philippe Lacorre. Crystal structure of lanthanumbismuth silicate Bi2-xLaxSiO5(x~0.1)[J]. Journal of Solid State Chemistry,2006,179:4020-4028.
    [47]王燕,王秀峰,于成龙,等.反应温度和时间对Bi2SiO5合成的影响[J].无机盐工业,2007,39(4):38-40.
    [48] Xiao-Jun Dai, Yong-Song Luo, Shao-Yun Fu, et al. Facile hydrothermal synthesis of3Dhierarchical Bi2SiO5nanoflowers and their luminescent properties [J]. Solid StateSciences,2010,12:637-642.
    [49] Ruigen Chen, Jinhong Bi, Ling Wu, et al. Template-Free hydrothermal synthesis andphotocatalytic performances of novel Bi2SiO5nanosheets[J]. Inorganic Chemistry,2009,48:9072-9076.
    [50]许雅琴,王秀峰,江红涛,等.化学溶液分解法合成亚稳相硅酸铋(Bi2SiO5)粉体[J].人工晶体学报,2011,40(6):1541-1546.
    [51] Jun-que Lu, Xiu-feng Wang, Yuan-ting Wu, et al. Synthesis of Bi2SiO5powder bymolten salt method [J]. Materials Letters,2012,74:200-202.
    [52]王秀峰,许亚琴,江红涛,等.一种硅酸铋纳米粉体的制备方法[P].中国专利:102275942A,2011-12-14.
    [53]王秀峰,鲁俊雀,江红涛,等.一种制备片状硅酸铋粉体的方法[P].中国专利:102351203A,2012-02-15.
    [54]陈晓晖,郑婧,黄清明,等.一种含铋的硅酸盐的合成和应用[P].中国专利:101229510A,2008-7-30.
    [55]郭宏伟,王秀峰,杨兴平,等.一种硅酸铋微晶体的制备方法[P].中国专利:101708863A,2010-05-19.
    [56]郭宏伟,王秀峰,高档妮,等.一种硅酸铋纳米晶的制备方法[P].中国专利:101792181A,2010-08-04.
    [57]江红涛,王秀峰,贺宝成,等.一种熔盐法制备Bi2SiO5粉体的方法[P].中国专利:101979320A,2011-02-23.
    [58] Fei Y. T., Fan S. J., Sun R. Y., et al. Crystallizing behavior of Bi2O3-SiO2system [J].Journal of Materials Science Letters,2000,19:893-895.
    [59] Zhereb V. P., Kargin Yu. F., Skorikov V. M. Structural Model of Bi2O3-AO2(A=Si, Ge)Melts [J]. Neorg. Mater.,1978,14(11):2029-2031.
    [60] Zhereb V. P.. Physicochemical Study of Metastable Range Phase Equilibrium in theSystems Bi2O3-AO2(A=Si, Ge, Ti)[R]. Cand. Sci.(Chem.) Dissertation, Moscow:Kurnakov Inst. of General and Inorganic Chemistry, USSR. Acad. Sci.,1980.
    [61] Corsmit G., Van Driel M. A., Elsenaar R J, et al. Thermal Analysis of BismuthGermanate Compounds[J]. J. Cryst. Growth,1986,75(3):551-560.
    [62] Debenedetti P. G.. Metastable Liquid: Concepts and Principle[M]. Princeton: PrincetonUniv. Press,1996.
    [63]仇怀利,王爱华,尤静林,等.BSO晶体的高温拉曼光谱与高温结构特征[J].光谱学与光谱分析,2005,25(2):222-225.
    [64]仇怀利,王爱华,刘晓静,等.BSO晶体及生长固/液边界层的拉曼光谱分析[J].光谱实验室,2004,21(1):1-5
    [65]蒋国昌,尤静林,余丙鳗,等.高温Raman光谱测试技术进展[J].光谱学与光谱分析,2000,20(2):206-211.
    [66]仇怀利,王爱华,刘晓静,等.实时测量熔体法生长晶体固/液边界层结构的高温热台[J].人工晶体学报,2002,31(6):555-558.
    [67]蒋国昌,尤静林.硅酸盐熔体微结构研究的高温Raman光谱技术[J].硅酸盐学报,2003,31(10):998-1002.
    [68] Kozo Fujiwara, Kensaku Maeda, et al. In situobservation of Si faceted dendrite growthfrom low-degree-of-undercooling melts[J]. Acta Materialia,2008,56(11):2633-2668.
    [69] Toshiro Minami, Susumu Maeda, Mitsuo Higasa. In-situobservation of bubbleformation at silicon melt-silica glass interface[J]. Journal of Crystal Growth,2011,318(1):196-199.
    [70] Wu J., Howe J. M., Zhang W. Z.. An in situ transmission electron microscopy study ofinterface growth during martensitic transformation in an Fe-Ni-Mn alloy[J]. ActaMaterialia,2011,59(8):3297-3303
    [71] Orlando Rios, Sonalika Goye, Michael S. Kesler. An evaluation of high-temperaturephase stability in the Ti-Al-Nb system[J]. Scripta Materialia,2009,60(3):156-159
    [72] Grant S. Henderson, Daniel R. Neuville. The structure of GeO2-SiO2glasses and melts:A Raman spectroscopy study[J]. Journal of Non-Crystalline Solids,2009,355(8):468-474.
    [73] Shigeaki Ono, Yasuo Ohishi. In situ X-ray observation of phase transformation in Fe2O3at high pressures and high temperatures[J]. Journal of Physics and Chemistry of Solids,2005,66(10):1714-1720.
    [74] Dweck J., Morais L. C., Fonseca M. V. A., et al. Calcined sludge sintering evalution byheating microscopy thermal analysis[J]. Journal of thermal analysis and calormietry,2009,95(3):985-989.
    [75] Emamy M., Mahta M., Rasizadeh J.. Formation of TiB2particles during dissolution ofTiAl3in Al-TiB2metal matrix composite using an in situ technique[J]. CompositesScience and Techology,2006,66(7-8):1063-1066.
    [76] Olson E. A., Efremov M. Yu., et al. Size-dependent melting of Bi nanoparticles[J].Journal of Applied Physics,2005,97(3):030041-030049.
    [77]胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2004.
    [78]李云雁,胡传荣.试验设计与数据处理[M].第2版,北京:化学工业出版社,2008.
    [79]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [80] Sam Chehab, Pierre Conflant, Michel Drache, et al. Solid-state reaction pathways ofsillenite-phase formation studied by high-temperature X-ray diffractometry anddifferential thermal analysis[J]. Materials Research Bulletin.2003,38:875-897.
    [81]周健,焦宝祥.熔盐法合成无机粉体[J].常熟理工学院学报,2008,22(2)71-77.
    [82] Ki Hyun Yoon, Yong Soo Cho, Dong Heon Kang. Molten salt synthesis of lead-basedrelaxors [J]. Journal of Materials Science,1998,33:2977-2984.
    [83]孙晓琴.熔盐法合成BaTiO3以及片状SrTiO3的研究与机制[D].武汉:武汉理工大学,2004
    [84]李雪冬,朱伯铨,汪厚植.熔盐法在无机材料粉体制备中的应用[J].材料导报,2006,20(3):44.
    [85]柯行飞.熔盐法制备无机纳米材料及其性能研究[D].南京:南京航空航天大学,2007.
    [86]石江涛,王秀峰,于成龙,等.偏化学计量比熔盐法合成Bi4Ti3O12晶化过程研究[J].材料导报:研究篇,2010,24(9):94-96.
    [87]石江涛,王秀峰,于成龙,等.熔盐法合成板状钛酸铋微晶[J].材料导报:研究篇,2010,24(11):95-98.
    [88]王茂华,王秋丽,姚超.熔盐法制备Ca0.9La0.2/3Cu3Ti4O12陶瓷粉体及其介电性能研究[J].无机化学学报,2012,28(4):727-732.
    [89]于斌,曹博,曹慧群,等.棒状KNb3O8晶体的熔盐法制备及荧光性的研究[J].陶瓷学报,2012,33(1):50-53.
    [90] Bing Yan, Fang Lei. Molten salt synthesis, characterization and luminescence ofZnWO4: Eu3+nanophosphors [J]. Journal of Alloys and Compounds,2010,507:460-464.
    [91] Daniel Doni Jayaseelan, Shaowei Zhang, Shinobu Hashimoto, et al. Templateformation of magnesium aluminate (MgAl2O4) spinel microplatelets in molten salt [J].Journal of the European Ceramic Society2007,27:4745-4749.
    [92] Atsushi FURUBAYASHI and Toshio KIMURA. Preparation of needlelikeSr0.5Ba0.5Nb2O6particles using molten SrCl2-BaCl2salt[J]. Journal of the CeramicSociety of Japan,2011,119(4):282-284.
    [93]苏周.熔盐法合成片状氧化铝粉体的研究[D].长沙:中南大学,2004.
    [94]姚连增.晶体生长基础[M].合肥:中国科技大学出版社,1995.
    [95] Hongtao Jiang, Xiufeng Wang, Chenglong Yu, et al. Molten salt synthesis ofNi0.5Zn0.5Fe2O4powders[J]. Materials and Manufacturing Processes,2010,25:1489-1493.
    [96]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999.
    [97] Costas Sikalidis. Advances in Ceramics-Synthesis and Characterization ProcessingAnd Specifc Applications[M]. Rijeka: InTech,2011,77.
    [98] Banasri Roy, Scott P. Ahrenkiel, and Paul Anton Fuierer. Controlling the size andmorphology of TiO2powder by molten and solid salt synthesis[J]. J.Am.Ceram.Soc.,2008,91(8):2455-2463.
    [99] Zongying Cai, Xianran Xing, Ranbo Yu, et al. Morphology-controlled synthesis of leadtitanate powders[J]. Inorganic Chemistry,2007,46:7423-7427.
    [100] Zushu Li, William Edward Lee, and Shaowei Zhang. Low-temperature synthesis ofCaZrO3powder from molten salts[J]. J.Am.Ceram.Soc.,2007,90(2):364-368.
    [101] Francesca Bortolani, Robert A. Dorey. Molten salt synthesis of PZT powder for directwrite inks[J]. Journal of the European Ceramic Society,2010,30:2073-2079.
    [102]柯昌明,甘霖.KCl-LiCl-KF系熔盐介质中MgAl2O4粉体的合成制备[J].耐火材料,2010,44(5):329-333.
    [103]陈浩.熔盐法制备氧化镁及含镁尖晶石粉体的研究[D].武汉:武汉科技大学,2010.
    [104]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2011.
    [105]李月明,汪丹,廖润华,等.熔盐法制备片状CaBi4Ti4O15晶粒的研究[J].材料导报:研究篇,2010,24(3):33-35,51.
    [106] Janz. G.1. NIST Properties of Molten Salt Database[M]. Boulder: NIST SRD.1992.27
    [107]郭宏伟,王秀峰,田鹏,等.Bi2O3-SiO2系统玻璃非等温析晶动力学[J].硅酸盐学报,2010,38(9):1843-1847.
    [108]王进松,李月明,廖润华,等.熔盐法制备片状Bi2.5Na3.5Nb5O18晶体[J].人工晶体学报,2010,39(5):1186-1190.
    [109]郭良斋.ZnNb2O6陶瓷粉体制备技术研究[D].青岛:中国海洋大学,2007.
    [110]耿浩然,孙春静,王瑞,等.Sb和Bi熔体的密度变化[J].科学通报,2007,52(7):756-759.
    [111]孙春静.金属熔体的黏滞特性及相关物性的研究[D].济南:山东大学,2007.
    [112] Iordanova R., Aleksandrov L., Bachvarova-Nedelcheva A., et al. Glass formation andstructure of glasses in B2O3-Bi2O3-MoO3system[J]. Journal of Non-Crystalline Solids,2011,357(14):2663-2668.
    [113] Maczka M., Macalik L., Hanuza J.. Raman and IR spectra of the cation‐deficientAurivillius layered crystal Bi2W2O9[J]. Journal of Raman Spectroscopy,2009,40(12):2099-2103.
    [114] Wagner A., Shollockb A., Mcleanm. Grain structure development in directionalsolidification of nickel-base superalloys[J]. Mater Sci Eng A,2004,374:270-279.
    [115] Souza N. D., Ardakani M. G., Wagner A., et al. Morphological aspects of competitivegrain growth during directional solidification of a nickel-base superalloy[J].Journal ofMateriaals Science,2002,37(3):481-487.
    [116]刘志义,傅恒志.DD8镍基高温合金定向凝固界面形态的晶体取向及抽拉方式效应[J].稀有金属材料与工程,1997,26(5):13-17.
    [117]张美怡,卢静.重液分离密度差值很小的单矿物的技术及其应用[J].地质通报,2010,29(11):1726-1729.
    [118]孙仁英,范世,吴金娣,等.石英晶体在Bi4Si3O12熔体中析出形态及机理[J].人工晶体学报,1997,26(3-4):206-209.
    [119] Fumiko Iwasaki, Hideo Iwasaki. Historical review of quartz crystal growth[J]. Journalof Crystal Growth,2002,237-239:820-827.
    [120] Hao Liang Cheng, Lei Miao, Li Fen. Synthesis of3-MPS Grafting Silica CryogelsUsing Xylene as Solvent[J]. Key Engineering Materials,2012,512-513(2012):563-567.
    [121] G. Malmros. The crystalstructure of-Bi2O3[J]. Acta Chemica Scandinavica,1970,24:384-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700