用户名: 密码: 验证码:
直流电弧等离子体炬的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧热等离子体被广泛应用于切割、焊接、喷涂、冶金、材料、化工和废物处理等工业领域。对电弧热等离子体的数值模拟有助于更好的理解热等离子体的物理过程和优化等离子体发生器的设计。本文首先比较了五种湍流模型,即:雷诺应力模型(RSM)、标准k-ε模型、重整化群(RNG)k-ε模型、考虑低雷诺数的重整化群k-ε模型以及可实现化k-ε模型。发现雷诺应力模型和考虑低雷诺数的重整化群k-ε模型所得到的流场温度、速度、压强非常相近;不但这两种湍流模型所得的压强、温度沿轴线上的分布与实验十分一致;而且由这两种模型计算出的弧电压也和实验值相当吻合。然而,其他三种模型所得到的等离子体射流部分的温度和实验值相差很远,其中标准k-ε模型以及可实现化k-ε模型所得到的轴线上的温度值在某些区域和实验值相差超过10000 K。这三种湍流模型所计算的弧电压值也和实验值差别很大。
     等离子体切割是利用电弧的高能量熔化金属,再利用等离子体射流的高动量将熔化金属吹走。目前,使用氧气作为等离子体气体的精细切割已在工业上广泛应用。本文利用考虑低雷诺数的重整化群k-ε模型对等离子体切割弧进行了系统的模拟,研究结果如下:(一)在研究旋转气流时发现,增加旋气度会增加弧室的压强并改变弧室内的压强分布,从而收缩电弧。旋气对切割炬喷嘴小孔内部和射流区域的温度影响很小,但会使喷口外等离子体得到更高的速度和更强的激波。旋气会通过改变阴极附近的气流方向和增加阴极附近的压强加速阴极的烧损。(二)在参数研究中发现,切割炬喷嘴小孔长度增加会使射流的最大速度增加,弧室压强增大,激波后的高速射流区域半径增大。减小喷嘴小孔半径,会使弧室的压强升高,激波强度增加,激波后的速度、能流密度径向分布的最大值偏离轴线。这会有利于电弧与切割工件的能量与动量交换,从而提升切割的速度。气流量会影响等离子体的速度和温度分布,强气流由于冷却效应强,会收缩电弧,增加弧电压和功率,从而增加射流的速度、温度和能量通量。弧电流对等离子体的速度场和温度场都有非常重要的影响。在等离子体射流中的能流密度几乎与弧电流成正比。(三)通过比较两种不同结构切割炬所产生的等离子体流场,发现保护气对等离子体的温度和速度分布影响很小。垂直保护气在切割炬喷口形成阻碍作用,造成切割炬内的压强有所升高,但是变化不大。两种结构保护气对切割弧的影响只是在炬喷口外的激波附近。加入保护气后激波的强度会减弱。相对于没有保护气的情况,保护气增加冷却作用,弧电压会略有升高。当改变保护气的成分时,发现弧柱区的氧气含量不受影响,所以保护气成分的改变不会影响到弧电压。计算发现轴线处氧气和周围气体的混和很少,在喷口下游10 mm处,氧气的摩尔分数仍在90%以上。
     大功率氢等离子体炬(5MW-10MW)是煤裂解制乙炔的核心设备。我们在四CPU工作站上使用FLUENT对V型炬的一半进行并行模拟。由于计算区域较大,我们使用雷诺应力模型考虑湍流。计算所得到的各电极电压分布与实验值基本吻合。数值模拟发现由于电极半径逐渐增大,进气量逐渐增多,所以在等离子体炬内,存在一系列的加速,减速过程。模拟还研究了旋转气流对等离子体流场的影响,发现旋气度对大功率等离子体炬内的流场影响不大;而增加气流量使弧电压值有很大提高,且电极壁面的热量损失显著降低。
Electrical arcs and, more generally thermal plasmas, are widely used in many industrial applications) such as cutting, welding, spraying, metallurgy, ultrafine particles synthesis and waste treatment. The understanding or the improvement of the corresponding processes or systems often requires precise modelling of the plasma. The thermal plasmas characteristics are first investigated with different turbulence models, i.e. the Reynolds Stress Model (RSM), the k-εmodel and its variants, the ReNor-malization Group (RNG) k-εmodel, the RNG k-εmodel taking into account the low Reynolds number effect and the realizable k-εmodel. The results of the RSM and the RNG k-εmodel taking into account the low Reynolds number effect are in reasonable agreement with the experiment. They both predict very close voltage, shock wave location and temperature variation along the axis to experiment. On the other hand, the other three models overestimate the turbulence effects and predict much lower velocity and temperature, especially the standard k-εmodel, which predicts the temperature is about 10000 K lower than the experiment in certain plasma jet regions.
     After comparing the turbulence model, we use the RNG k-εmodel taking into account the low Reynolds number effect to investigate the plasma cutting arc. The effects of plasma-gas swirl flow, the process parameters, torch geometry and the shielding gas on the plasma cutting arc are investigated. When the inlet gas swirl number increases, the maximum pressure location moves to the plenum chamber edge due to centrifugal force, the minimum pressure location moves much closer to the axis. The difference between the maximum and minimum pressure increases with swirl number. This will constricts the arc and leads to large current density and Ohm heating near the axis, and causes much higher temperature near the cathode. It is indicated that the swirl gas accelerates cathode erosion for two reasons: increasing plenum chamber pressure and changing the flow patterns in the vicinity of cathode. It is also found that, the gas with large swirl number leads swirl velocity component to be larger at cutting location according to angular momentum conservation. It has been suggested that this causes the different bevel angles for the left and right edges of the cutting kerf. In the parameters study, it is shown that gas flow rate, arc current, nozzle bore length and radius have essential effects on plasma arc characteristics. Long nozzle torch can provide high velocity plasma jet with high heat flux. Both arc voltage and chamber pressure increase with the nozzle length. Small radius nozzle torch increases the plenum chamber pressure and providing off-axis maximum velocity after shock wave. High arc current increases plasma velocity and temperature, enhances heat flux and augments chamber pressure and thus, the shock wave. Strong mass flow has pinch effect on plasma arc inside the torch, enhances the arc voltage and power, therefore increases plasma velocity, temperature and heat flux. After comparing two different torch geometries, it is found that the shielding flow has no significant effects on plasma velocity and temperature except the shock wave region. The shielding flow decreases the shock wave, and increases the arc voltage due to cooling effect. In the impinging geometry, shielding flow will crash the plasma jet after the nozzle exit and slightly increases the pressure in the torch. It is shown that the component of shielding gas has no significant effect on plasma cutting arc. The mole fraction of oxygen decreases very slowly along the axis and is still more than 90% at 10 mm downstream the nozzle exit.
     High-power hydrogen plasma torch (5 MW-10 MW) is of great importance in coal pyrolysis for producing acetylene and other industrial applications. Considering the large computational domain, the RSM is used to investigate high-power plasma torch. The calculated arc voltage and the electric potential distribution at electrodes are very close to the experimental data. It is found the swirl number has no significant effect on the plasma characteristics except the first two electrodes region. Both the arc voltage and energy-efficiency increase with the mass flow rate. It is shown that large mass flow will constrict the plasma arc, and therefore enhance the maximal temperature and velocity at the torch outlet.
引文
[1]M.Φ.茹科夫,A.C.科罗捷耶夫,B.A.乌柳科夫.热等离子体实用动力学,赵文华,周力行译.北京:科学出版社,1981
    [2]过增元,赵文华.电弧与热等离子体.北京:科学出版社,1986
    [3]Boulos M I,Fauchais P and Pfender E.Thermal Plasmas:Fundamentals and Applications.New York:Plenum Press,1994.
    [4]Trelles J P.Finite Element Modeling of Flow Instabilities in Arc Plasma Torches,Ph.D.Thesis,Department of Mechanical Engineering,University of Minnesota,Minneapolis,USA,2007.
    [5]Heberlein J V R and Voshall R E,Thermal Plasma Devices,Encyclopedia of Applied Physics,1997,21:163-191.
    [6]Fauchais P and Vardelle A.Thermal plasmas J.Phys.D:Appl.Phys.,1997,25:1258-1280
    [7]Dowden J and Kapadia P.Plasma arc welding:a mathematical model of the arc.J.Phys.D:Appl.Phys.,1994,27:902-910
    [8]Goodarzi M,Choo R and Toguri J M.The effect of the cathode tip angle on the GTAW arc and weld pool:I.Mathematical model of the arc.J.Phys.D:Appl.Phys.,1997,30:2744-2756
    [9]Tanaka M,Terasaki H,Ushio M,Lowke J J.A unified numerical modeling of stationary Tungsten-Inert-Gas welding process.Metall.& Mater.Trans.2002,33(A):2043-2052
    [10]Jonsson P G,Westhoff R C and Szekely J.Arc characteristics in gas-metal arc welding of aluminum using argon as the shielding gas.J.Appl.Phys.,1993 74:5997-6006
    [11]Tanaka M,Ushio M and Lowke J J.Numerical analysis for weld formation using a free burning helium arc at atmospheric pressure.JSME Int.J.,2005,48:397-404
    [12] Haidar J. A theoretical model for gas metal arc welding and gas tungsten arc welding. I. J. Appl. Phys. 1998, 84: 3518-3529
    [13] Tanaka M, Lowke J J, Predictions of weld pool profiles using plasma physics,J. Phys. D: Appl. Phys. 2007,40, R1-R23
    [14] Bach W and Gruchow A. Plasma cutting in atmosphere and under water. Pure & Appl Chem. 1992, 64: 665-670
    [15] Kelly H, Mancinelli B, Prevosto L, Minotti F O and Marquez A. Experimental characterization of a low current cutting torch. Braz. J. Phys., 2004 34: 1518-1522
    [16] Bemis B L and Settles G S. Ultraviolet imaging of the anode attachment in transferred arc plasma cutting. IEEE Trans. Plasma Sci. 1999, 27: 44-45
    [17] Jose G A, Cecilia S P, Antonio R Y and Miguel A G C. A theoretical study of a cutting air plasma torch. IEEE Trans. Plasma Sci., 1999, 27: 264-271
    [18] Nemchinsky V A and Severance W S. What we know and what we do not know about plasma arc cutting J. Phys. D: Appl. Phys. 2006, 39: R423-R428
    [19] Mostaghimi J, Pasandideh-Fard M and Chandra S. Dynamics of splat formation in plasma spray coating process. Plasma Chem. Plasma Process. 2002,22: 59-84
    [20] Xiong H B, Zheng L L, Sampath S, Williamson R L and Fincke J R. Three dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior. Int. J. Heat Mass Transf. 2004,47:5189-5200
    [21] Fauchais P. Understanding plasma spraying. J. Phys. D: Appl. Phys. 2004, 37: R86-R108
    [22] Mclean A. The science and technology of steelmaking-measurements, models, and manufacturing. Metall. Mater. Trans. B 2006, 37B: 319-332
    [23] Wang F H, Jin Z J and Zhu Z S. Fluid flow modeling of arc plasma and bath circulation in DC electric arc furnace. J. Iron Steel Res. Int. 2006, 13:7-13
    [24]Qian F,Farouk B and Mutharasan R.Modeling of fluid flow and heat transfer in the plasma region of the DC electric arc furnace.Metall.Mater.Trans.B 1995,26B:1057-1067
    [25]Szekely J,Mckelliget J and Choudhary M.Heat transfer fluid flow and bath circulation in electric arc furnace and DC plasma furnaces.Ironmak.Steelmak.,1983,10:169-179
    [26]Alexis J,Ramirez M,Trapaga G and Jonsson R Modeling of a DC electric arc furnace heat transfer from the arc.ISIJ Int.2000,40:1089-1097
    [27]Ramirez M,Alexis J,Trapaga G,Jonsson P and Mckelliget J.Modeling of a DC electric arc furnace-mixing in the bath.ISIJ Int.,2001,41:1146-1155
    [28]田原宇,黄伟,鲍为仁,谢克昌.煤等离子体热解制乙炔工艺的工程探讨.现代化工,2002,22:7-10
    [29]关有俊,庞先勇,吕永康.氧对等离子体热解煤中乙炔收率的影响.煤炭转化,2003,26:36-39
    [30]Birkan M A.Arcjets and heaters:an overview of research status and needs.J.Propul.Power,1996,12:1011-1017
    [31]Manuel M S and Miller S A.Arcjets modeling:status and prospect.J.Propul.Power 1996,12:1035-1043
    [32]汤海滨.电弧喷射推力器数值模拟与实验研究,博士学位论文.北京:北京航空航天大学,2001
    [33]R Ronsheim,A.Mazza,and A.N.Christensen.Thermal plasma synthesis of transition metal nitrides and alloys.Plasma Chem.Plasma Process.1980:135-147
    [34]Inoue A,Kim B G,.Nosaki K,Yamaguchi T and Masumoto T.Production of ultrafine aluminum nitride particles by plasma-alloy reaction and their microstructure and morphology.J.Appl.Phys.1992,71:4025-4029
    [35]F.Gitzhofer.Induction plasma synthesis of ultrafine SiC.Pure Appl.Chem.1996,68:1113-1120
    [36]Li H D,Yang H B,Zou G T and Yu S.Ultrafine AlN and Al-AlN powders:preparation by DC arc plasma and thermal treatment.Advanced Mater.1997,9:156-159
    [37]Lu Z P and Pfender E.DC plasma synthesis of aluminum nitride ceramic powders.Mater.Res.Soc.Symp.1990,180:857-860
    [38]Ageorges H,Megy S,Chang K,Baronnet J M,Williams J K and Chapman C.Synthesis of aluminum nitride in transferred arc plasma furnaces.Plasma Chem.Plasma Process 1993,13:613-632
    [39]Iwata M,Adachi K,Furukawa S and Amakawa T.Synthesis of purified AlN nano powder by transferred type arc plasma.J.Phys.D:Appl.Phys.2004,37:1041-1047
    [40]Murphy A B and McAllister T Modeling of the physics and chemistry of thermal plasma waste destruction.Phys.Plasmas 2001,8:2565-2571
    [41]Fiedler J,Lietz E,Bendix D and Hebecker D Experimental and numerical investigations of a plasma reactor for the thermal destruction of medical waste J.Phys.D:Appl.Phys.2004,37:1031-1040
    [42]Heberlein J and Murphy A B,Thermal plasma waste treatment J.Phys.D:Appl.Phys.2008,41:053001
    [43]国家自然科学基金委员会,等离子体物理学,科学出版社,1994
    [44]Gleizes A,Gonzalez J J and Freton P.Thermal plasma modeling.J.Phys.D:Appl.Phys.2005,38:R153-R183
    [45]Lowke J J,Voshall R E and Ludwig H C.Decay of electrical conductance and temperature of arc plasmas J.Phys.D:Appl.Phys.1973,8:3513
    [46]Hsu K C,Etemadi K and Pfender E.Study of the free-burning high-intensity argon arc.J.Appl.Phys.1983,54:1293-1301
    [47]Bauchire J M,Gonzalez and Gleizes A.Modeling of a DC plasma torch in laminar and turbulent flow.Plasma Chem.Plasma Process.1997,17(4):409-432
    [48]Han P and Chen X.Modeling of the subsonic-supersonic flow and heat transfer in a DC arc plasma torch.Plasma Chem.Plasma Process 2001,21:249-264
    [49]Scott D A,Kovitya D and Haddad G N.Temperatures in the plume of a dc plasma torch.J.Appl.Phys.1989,66(11):5232-5239
    [50]Westhoff R and Szekely J.A model of fluid,heat flow,and electromagnetic phenomena in a nontransferred arc plasma torch.1991,70:3455-3466
    [51]Yuan X Q,Li H,Zhao T Z,Wang F,Guo W K and Xu P Comparative study of flow characteristics inside plasma torch with different nozzle configurations Plasma Chem.Plasma Process 2004 24:585-601
    [52]袁行球.直流电弧等离子体发生器的数值模拟及电子束离子阱物理研究.博士学位论文.上海:复旦大学,2003
    [53]黎林村.磁分散电弧等离子体的实验研究与数值模拟.博士学位论文.合肥:中国科学技术大学,2008
    [54]Yan J D,Fang M T C and C Jones.Electrical and aerodynamic behavior of arcs under shock conditions.IEEE Trans.Plasma Sci.1997,25:840-844
    [55]Huang P C,Heberlein J and Pfender E.A two-fluid model of turbulence for a thermal plasma jet Plasma Chem.Plasma Process 1995,15:25-46
    [56]Dilawari A H,Szekely J,Batdorf J,Detering R and Shaw S B.The temperature profiles in an argon plasma issuing into an argon atmosphere:a comparison of measurement and predictions.Plasma Chem.Plasma Process 1990,10:321-337
    [57]Pan W,Zhang W,Zhang W and Wu C.Generation of Long,Laminar Plasma Jets at Atmospheric Pressure and Effects of Flow Turbulence.Plasma Chem.Plasma Process.2001,21:23-35
    [58]Gonzalez J J,Freton P,Gleizes A.Comparison between a two- and a three-dimensional models:gas injection and arc attachment.J.Phys.D:Appl.Phys.2002,35:3181-3191
    [59]Rajabian M,Gravelle D V and Vacquie S.Measurements of temperature and electron number density in a dc argon-nitrogen plasma torch-supersonic operation.Plasma Chem.Plasma Process 2004,24:285-305
    [60] Kuo S P. Plasma mitigation of shock wave: experiments and theory. Shock Wave 2007, 17: 225-239
    [61 ] Harbec D, Meunier J L, Guo L and Jureidini J. A parametric study of carbon nan- otubes production from tetrachloroethylene using a supersonic thermal plasma jet. Carbon. 2007,45: 2054-2064
    [62] Pal S, Dey S and Miebach T. Numerical simulation of a dual-source supersonic plasma jet expansion process: continuum approach. J. Phys. D: Appl. Phys. 2007,40:3128-3136
    [63] Bartosiewicz Y, Proulx P and Mercadier Y. A self-consistent two-temperature model for the computation of supersonic argon plasma jets. J. Phys. D: Appl.Phys. 2002, 35: 2139-2148
    [94] Modeling of the supersonic argon plasma jet at low gas pressure environment. Thin Solid Flim. 2001,390: 181-185.
    [65] Selezneva S E, Boulos M I, van de Sanden M C M, Engeln R and Schram D C. Stationary supersonics plasma expansion: continuum fluid mechanics versus direct simulation Monte Carlo method. J. Phys. D: Appl. Phys. 2002, 35: 1362-1372
    [66] Lago F, Gonzales J J, Freton P and Gleizes A. A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. J.Phys. D: Appl. Phys. 2004, 37: 883 - 897
    [67] Gonzales J J, Lago F, Freton P, Masquere M and Franceries X. Numerical modelling of an electric arc and its interaction with the anode: Part II. The three-dimensional model - influence of external forces on the arc column. J. Phys. D:Appl. Phys. 2005, 38: 306-318
    [68] Tanaka M, Tashiro S, Satoh T, Murphy A B and Lowke J J. Influence of shielding gas composition on arc properties in TIG welding. Sci. Tech. Weld & Join 2008,13: 225-231
    [69] Lowke J J, Kovitya P and Schimdt H P. Theory of free-burning arc columns including the influence of the cathode J.Phys.D:Appl.Phys.1992,25:1600-1606
    [70]Lowke J J,Morrow R and Haidar J A simplified unified theory of arcs and their electrodes,J.Phys.D:Appl.Phys.1997,30..2033-2042
    [71]Menart J and Lin L Numerical study of high-intensity free burning arc J.Thermophys.Heat Transfer 1998,12:500-506
    [72]Blais A,Proulx P and Boulos M I.Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon J.Phys.D:Appl.Phys.2003,36:488-496
    [73]Bini R,Monno M and Boulos M I.Numerical and experimental study of transferred arcs in argon.J.Phys.D:Appl.Phys.2006,39:3253-3266
    [74]Li H and Chen X.Three-dimensional modeling of a dc non-transferred arc plasma torch.J.Phys.D:Appl.Phys.2001,34:L99-L102
    [75]Li H and Pfender E.Three dimensional modeling of the plasma spray process.J.Therm.Spray Technol.2007,16:245-260
    [76]Li H and Pfender E.Three-dimensional effects inside a dc arc plasma torch.IEEE Trans.Plasma Sci 2005,33:400-401
    [77]Li H and Chen X.Three-dimensional modeling of the flow and heat transfer in a laminar non-transferred arc plasma torch.Chin.Phys.2002,11:44-49
    [78]Li H,Pfender E and Chen X.Application of Steenbeck's minimum principle for three dimensional modelling of DC arc plasma torches.J.Phys.D:Appl.Phys.2004,36:1084-1096
    [79]Park J M,Kim K S,Hwang T H and Hong S H.Three-dimensional modeling of arc root rotation by external magnetic field in non-transferred thermal plasma torches.IEEE Trans.Plasma Sci.2004,32:479-487
    [80]Bhuyan P J and Goswami K S.Two-dimensional and three-dimensional simulation of dc plasma torches.IEEE Trans.Plasma Sci.2007,35:1781-1786
    [81] Trelles J P, Pfender E and Heberlein V R J. Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem. Plasma Process. 2006,26: 557-575
    [82] Trelles J P, Pfender E and Heberlein V R J. Modelling of the arc reattachment process in plasma torches. J. Phys. D: Appl. Phys. 2007,40: 5635-5648
    [83] Trelles J P, Heberlein V R J and Pfender E. Non-equilibrium modeling of arc plasma torches.J. Phys. D: Appl. Phys. 2007,40: 5937-5952
    [84] Hsu K C and Pfender E. Two-temperature modelling of the free-burning, high- intensity arc. J. Appl. Phys. 1983, 54: 4359-4366
    [85] Haidar J. Non-equilibrium modelling of transferred arcs. J. Phys. D: Appl. Phys. 1999, 32: 263-272
    [86] Morsli M E and Proulx P. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP J. Phys. D: Appl. Phys. 2005, 38: R153-R183
    [87] Rat V, Murphy A B, Aubreton J, Elchinger M F and Fauchais P,Treatment of non-equilibrium phenomena in thermal plasma flows.J. Phys. D: Appl. Phys.2008,41: 183001
    [88] Watanabe T and Sugimoto N. Numerical analysis of oxygen induction thermal plasmas with chemically non-equilibrium assumption for dissociation and ion-ization. Thin Solid Films. 2004,457: 201-208
    [89] Park J, Heberlein J, Pfender E, Candler G and Chang C H.Two-Dimensional Numerical Modeling of Direct-Current Electric Arcs in Nonequilibrium. Plasma Chem. Plasma Process. 2008, 28: 213-331
    [90] Li H, Heberlein J and Pfender E. Three-dimensional, non-equilibrium effects in a high intensity blown arc. IEEE Trans. Plasma Sci. 2005, 33: 402-403
    [91] Ghorui S, Heberlein J V R and Pfender E. Thermodynamic and transport properties of two-temperature oxygen plasmas Plasma Chem. Plasma Process. 2007, 27: 267-291
    [92] Fauchais P and Vardelle A. Heat, mass and momentum transfer in coating formation by plasma spraying. Int. J. Therm. Sci. 2000, 39: 852-870
    [93] Dong H, Gao H and Wu L, Numerical simulation of fluid flow and temperature field in keyhole double-sided arc welding process on stainless steel. Int. J.Numer. Meth. Engng. 2006, 65: 1673-1687
    [94] Han P and Chen X. Modeling of the supersonic argon plasma jet at low gas pressure environment. Thin Solid Films 2001, 390: 181-185
    [95] Xue S, Proulx P and Maher I B. Extended-field electromagnetic model for inductively coupled plasma. J. Phys. D: Appl. Phys. 2001, 34: 1897-1906
    [96] Lago F, Gonzales J J, Freton P, Uhlig F, Lucius N and Gleizes A. A numerical modelling of an electric arc and its interaction with the anode: Part Ⅲ. Application to the interaction of a lightning strike and an aircraft in flight. J. Phys. D:Appl. Phys. 2006, 39: 2294-2310
    [97] Bernardi D, Colombo V, Ghedini E and Mentrelli. Comparison of different techniques for the FLUENT-based treament of the electromagnetic field in inductively coupled plasma torches. Eur. Phys. J. D 2003, 27: 55-72
    [98] Amakawa T, Henista J, Heberlein J and Pfender E. Anode-boundary-layer behaviour in a transferred, high-intensity arc. J. Phys. D: Appl. Phys. 1998, 31:2826-2834
    [105] Freton P, Gonzalez J J, Gleizes A. Comparison between a two- and a three-dimensional arc plasma configuration. J. Phys. D: Appl. Phys. 2000, 33: 2442-2452
    [100] Cheng K, Chen X and Pan W. Comparison of laminar and turbulent thermal plasma jet characteristics-a modeling study. Plasma Chem. Plasma Process. 2006,26:211-235
    [101] Cheng K and Chen X. Numerical prediction of the noise emission from a turbulent argon thermal-plasma jet issue into ambient air Plasma Chem. Plasma Process. 2005, 25: 667-687
    [102] Wang H, Chen X and Pan W. Modeling study on the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Plasma Chem. Plasma Process. 2007, 27: 141-162
    [103] Benocci R, Esena P, Galassi A, Piselli M and Sciascia M, Study of the thermal plasma etching at atmospheric pressure on silica rods, J. Phys. D: Appl. Phys. 2004, 37: 1206 - 1213
    [104] Colombo V, Concetti A, Ghedini E, Dallavalle S and Vancini M. Understanding plasma fluid dynamics inside plasma torches through advanced modeling IEEE Trans. Plasma Sci. 2008, 36: 389-402
    [105] Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, and Delzenne M. Numerical and experimental study of a plasma cutting torch J. Phys. D: Appl.Phys. 2002, 35: 115-31
    [106] Freton P, Gonzalez J J, Peyret F C and Glezes A. Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch J. Phys. D: Appl. Phys. 2003, 36: 1269-83
    [107] El-Hadj A A and Ait-Messaoudene N. Comparison between two turbulence models and analysis of the effect of the substrate movement on the flow field of a plasma jet Plasma Chem. Plasma Process 2005,25: 279-307
    [1]Emmons H W.Arc measurement of high-temperature gas transport properties.Phys.Fluids,1967,10:1125-1136
    [2]韩隆恒,岳兵,杨富荣.高温氩气传导特性实验研究.空气动力学学报,1997,15:444-450
    [3]陈熙,韩鹏,李和平.关于氩等离子体热导率的测量.空气动力学学报,1999,17:472-476
    [4]Devoto R S.Transport properties of ionized monatomic gases.Phys.Fluids 1966,9:1230-1240
    [5]Devoto R S.Transport coefficients of partially ionized argon.Phys.Fluids 1967,10:354-365
    [6]Devoto R S.Transport coefficients of ionized argon.Phys.Fluids1973,16:616-623
    [7]Hirschfelder J O,Curtiss C F,Bird R B.Molecular theory of gases and liquids.New York:Wiley,1966
    [8]S.Chapman and T.G.Cowling.The mathematical theory of non-uniform gases.2nd edition,London:University of Cambridge Press,1970
    [9]Spitzer L Jr and Harm R.Transport phenomena in a completely ionized gas Phys.Rev.1953,89:977-981
    [10]Murphy A B.Diffusion in equilibrium mixtures of ionized gases.Phys.Rew.E,1993,48:3594-3603
    [11]Murphy A B and Arundell C J.Transport coefficients of argon,nitrogen,oxygen,argon-nitrogen,and argon-oxygen plasmas.Plasma Chem.Plasma Process.,1994,14:451-490
    [12]Murphy A B.Transport coefficients of air,argon-air,nitrogen-air,and oxygenair plasmas.Plasma Chem.Plasma Process.,1995,15:279-307
    [13]Murphy A B.Thermal plasmas in gas mixtures.J.Phys.D:Appl.Phys.2001,34:R151-R173
    [14]Ramshaw J D and Chang C H.Ambipolar diffusion in two-temperature multi-component plasma.Plasma Chem.Plasma Process.1993,13:489-498
    [15]Ramshaw J D.Hydrodynamic theory of multicomponent diffusion and thermal diffusion in multitemperature gas mixtures.J.Non-equilib.Thermodyn.1991,83:121-134
    [16]Ramshaw J D and Chang C H.Multicomponent diffusion in two-temperature magneto-hydrodynamics.Phys.Rew.E,1996,53:6382-6388
    [17]过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986
    [18]Chauveau S,Deron C,Perrin M Y,Riviere P and Soufiani A.Radiative transfer in LTE air plasmas for temperatures up to 15,000 K J.Quantum Spectrosc.Radiat.Transfer 2003,77:113-130
    [19]Gleizes A,Rahmani B,Gonzalez J J and Liani B.Calculation of net emission coefficient in N_2,SF_6 and SF_6-N_2 arc plasmas J.Phys.D:Appl.Phys.1991,24:1300-1309
    [20]Naghizadeh-Kashani Y,Cressault Y and Gleizes A.Net emission coefficient of air thermal plasmas,J.Phys.D:Appl.Phys.2002,35:2925-2934
    [21]Modest M 1993 Radiative Heat Transfer.New York:McGraw-Hill
    [22]Gleizes A,Gonzalez J J,Razafinimanana M and Robert T.Influence of radiation on temperature field calculation in SF_6 arcs Plasma Sources Sci.Technol.1992,1:135-140
    [23]Liani B,Rahmouni M,Belbachir A H,Riad H and Gleizes A.Computation of net emission of CH_4-H_2 thermal plasmas,J.Phys.D:Appl.Phys.1997,30:2964-2971.
    [24]Menart J and Malik S,Net emission coefficients for argon-iron thermal plasmas,J.Phys.D:Appl.Phys 2002,35:867-874
    [25]Gleizes A,Gonzalez J J,Liani B and Raynal G.Calculation of net emission coefficient of thermal plasmas in mixtures of gas I with metallic vapour J.Phys.O:Appl.Phys.1993,26:1921-1927
    [26]Ghorui S,Heberlein J V R and Pfender E.Non-equilibrium modelling of an oxygen-plasma cutting torch J.Phys.D:Appl.Phys.2007,40:1966-1976
    [27]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004
    [28]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    [29]帕坦卡S V,传热和流动的数值计算.张政译.北京:科学出版社,1989.77-79
    [30]Harlow F H and Welch J E,Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface.Phys.Fluids,1965,8:2182
    [31]Patankar S V and Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows.Int J Heat Mass Transfer;1972,15:1787-1806
    [32]Patankar S V,Numerical heat transfer and fluid flow.New York:McGraw-Hill,1980.
    [33]Patankar S V,A calculation procedure for two-dimensional elliptic situations.Numer Heat Transfer;1985,4:409-425
    [34]van Doormaal J P and Raithby G D,Enhancement of the SIMPLE method for predicting incompressible fluid flow.Numer Heat Tranfer,1984,7:1-10
    [35]Raithby G D and Schnider G E,Elliptic systems:finite difference methods Ⅱ.In:Handbook of numerical heat transfer.New York:John Wiley & Sons,1988:241-289
    [36]Spalding D B,A general purpose computer program for multi-dimensional one-and -two phase flow.Math Comput Simulation.1981,23:267-276
    [37]Markatos N C and Pericleous K A,Laminar and turbulent natural convection in an enclosed cavity.Int J Heat Mass Transfer,1985,27:755-772
    [38] Fluent Inc. 2001, FLUENT User' s Guide
    [39] C. M. Rhie and W. L. Chow. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA Journal, 1983,21(11):1525-1532.
    [40] Lago F, Gonzalez J J, Freton P and Gleizes A. A numerical modeling of an electric arc and its interaction with the anode: I. The two-dimensional model. J. Phys. D: Appl. Phys., 2004, 37: 883-897
    [41] Gonzalez J J,Lago F, Freton P and Gleizes A. Numerical modeling of an electric arc and its interaction with the anode: II. The three-dimensional model-influence of external forces on the arc column. J. Phys. D: Appl. Phys., 2005, 38: 306-318
    [42] Freton P, Gonzalez J J, Gleizes A. Comparison between a two- and a three- dimensional arc plasma configuration. J. Phys. D: Appl. Phys. 2000, 33: 2442-2452
    [43] Gonzalez J J, Freton P, Gleizes A. Comparison between a two- and a three- dimensional models: gas injection and arc attachment. J. Phys. D: Appl. Phys.2002,35:3181-3191
    [44] Bini R, Monno M and Boulos M I. Numerical and experimental study of transferred arcs in argon. J. Phys. D: Appl. Phys. 2006, 39: 3253-3266
    [45] Bini R, Monno M and Boulos M I. Effects of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem. Plasma Process. 2007, 27: 359-380
    [46] Blais A, Proulx P and Boulos M I. Three-dimensional numerical modeling of a magnetically deflected DC transferred arc in argon. J. Phys. D: Appl. Phys.2003, 36: 488-496
    [47] Bernardi D, Colombo V, Ghedini E, Melini S and Mentrelli A. Three- dimensional time-dependent modeling of magnetically deflected transferred arc.IEEE Trans. Plasma Sci. 2005, 33: 428-429
    [48] Colombo V, Ghedini E and Mentrelli A. Time dependent 3D numerical simulation of transferred arc plasma treatment. Proc. 17th Int. Symp. Plasma Chem.,Toronto, Canada, 2005
    [49]Bernardi D,Colombo V,Ghedini E,Mentrellil A and Trombetti T,3-D numerical simulation of fully-coupled particle heating in ICPTs,Eur.Phys.J.D 2004,28:423-433
    [50]Bernardi D,Colombo V,Ghedini E and Mentrelli A.Comparison of different techniques for the FLUENT-based treatment of the electromagnetic field in inductively coupled plasma torches,Eur.Phys.J.D 2003,27:55-72
    [51]Xue S,Proulx P and Boulos M I.Extended-field electromagnetic model for inductively coupled plasma,J.Phys.D:Appl.Phys.2001,34:1897-1906
    [52]Benocci R,Esena P,Galassi A,Piselli M and Sciascia M,Study of the thermal plasma etching at atmospheric pressure on silica rods,J.Phys.D:Appl.Phys.2004,37:1206-1213
    [53]Kang C W,Ng H W and Yu S C M.Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates Plasma Chem Plasma Process 2006,26:149-175
    [54]黎林村.磁分散电弧等离子体的实验研究与数值模拟.博士学位论文.合肥:中国科学技术大学,2008
    [1] Han P and Chen X. Modeling of the subsonic-supersonic flow and heat transfer in a DC arc plasma torch. Plasma Chem. Plasma Process 2001, 21: 249-264
    [2] Pal S, Dey S and Miebach T. Numerical simulation of a dual-source supersonic plasma jet expansion process: continuum approach. J. Phys. D: Appl. Phys. 2007,40:3128-3136
    [3] Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, and Delzenne M. Numerical and experimental study of a plasma cutting torch J. Phys. D: Appl. Phys. 2002, 35: 115-31
    [4] Freton P, Gonzalez J J, Peyret F C and Glezes A. Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch J. Phys. D: Appl. Phys. 2003, 36: 1269-83
    [5] Bartosiewicz Y, Proulx P and Mercadier Y. A self-consistent two-temperature model for the computation of supersonic argon plasma jets.J. Phys. D: Appl.Phys. 2002, 35: 2139-2148
    [6] Peters J, Heberlein J and Lindsay J. Spectroscopic diagnostics in a highly constricted oxygen arc J. Phys. D: Appl. Phys. 2007,40: 3960-71
    [7] Gleizes A, Gonzalez J J and Freton P. Thermal plasma modelling. J. Phys. D:Appl. Phys. 2005, 38: R153-R183
    [8] Ghorui S, Heberlein J V R and Pfender E. Non-equilibrium modelling of an oxygen-plasma cutting torch J. Phys. D: Appl. Phys. 2007,40: 1966-76
    [9] Bauchire J M, Gonzalez and Gleizes A. Modeling of a DC plasma torch in laminar and turbulent flow. Plasma Chem. Plasma Process. 1997, 17(4): 409-432
    [10] El-Hadj A A and Ait-Messaoudene N. Comparison between two turbulence models and analysis of the effect of the substrate movement on the flow field of a plasma jet Plasma Chem. Plasma Process 2005, 25: 279-307
    [11]Colombo V,Concetti A,Ghedini E,Dallavalle S and Vancini M.Understanding plasma fluid dynamics inside plasma torches through advanced modeling IEEE Trans.Plasma Sci.2008,36:389-402
    [12]Williamson R L,Fincke J R,Crawford D M,Snyder S C,Swank W D and Haggard D C.Entrainment in high-velocity,high-temperature plasma jets.Part Ⅱ:computational results and comparison to experiment Int.J.Heat Mass Transfer 2003,46:4215-28
    [13]Launder B E and Spalding D B.Lectures in Mathematical Models of Turbulence Academic Press,London,England 1972
    [14]Yakhot V and Orszag S A.Renormalization Group Analysis of Turbulence:I.Basic Theory.Journal of Scientific Computing,1986,1:1-51
    [15]Shih T H,Liou W W,Shabbir A,Yang Z and Zhu J.A new-eddy-viscosity model for high reynolds number turbulent flows-model development and Validation Computers Fluids,1995,24:227-238
    [16]Gibson M M and Launder B E.Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer J.Fluid Mech.1978,86:491-511
    [17]Launder B E.Second-moment closure:present..,and future? Inter.J.Heat Fluid Flow 1989,10:282-300
    [18]Launder B E,Reece G J,and Rodi W.Progress in the development of a reynolds-stress turbulence closure J.Fluid Mech.1975,68:537-566
    [19]White F,Viscous fluid flow.New YorkMcGrawoHill,1974:472
    [20]Fluent Inc.FLUENT User's Guide,2001
    [21]Jayatilleke C.The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer Prog.Heat Mass Transfer 1969,1:193-321
    [22]Lago F,Gonzalez J J,Freton P and Gleizes A.A numerical modelling of an electric arc and its interaction with the anode:Part 1.The two-dimensional model J.Phys.D:Appl.Phys.2004,37:883-897
    [23] Bini R, Monno M and Boulos M I. Numerical and experimental study of transferred arcs in argon J. Phys. D: Appl. Phys. 2006, 39: 3253-66
    [24] Peters J, Yin F, Borges C F M, Heberlein J and Hackett C. Erosion mechanisms of hafnium chathodes at high current J. Phys. D: Appl. Phys. 2005,38: 1781-94
    [25] Gonzalez J J, Freton P and Gleizes A. Comparisons between two- and three- dimensional models: gas injection and arc attachment J. Phys. D: Appl. Phys. 2002, 35: 3181-91
    [26] Trelles J P, Pfender E and Heberlein J. Multiscale finite element modeling of arc dynamics in a DC plasma torch Plasma Chem. Plasma Process 2006,26: 557-75
    [27] Hsu K C, Etemadi K and Pfender E. Study of the free-burning high-intensity argon arc J. Appl. Phys. 1983, 54: 1293-301
    [28] Li H P and Chen X. Three-dimensional modelling of a dc non-transferred arc plasma torch J. Phys. D: Appl. Phys 2001, 34: L99-L102
    [29] Yuan X Q, Li H, Zhao T Z, Wang F, Guo W K and Xu P. Comparative study of flow characteristics inside plasma torch with different nozzle configurations Plasma Chem. Plasma Process 2004, 24: 585-601
    [30] Lien F S and Leschziner M A. Assessment of turbulent transport models including non-Linear RNG eddy-viscosity formulation and Ssecond-moment closure Computers and Fluids, 1994, 23: 983-1004
    [31] Reynolds W C. Fundamentals of turbulence for turbulence modeling and simulation. Lecture Notes for Von Karman Institute Agard Report No. 755. 1987
    [32] Girard L, Teulet Ph, Razafinimanana M, Gleizes A, Camy-Peyret F, Ballot E and Richard F. Experimental study of an oxygen plasma cutting torch: I. Spec-troscopic analysis of the plasma jet J. Phys. D: Appl. Phys. 2006, 39: 1543-1556
    [33] Ramakrishnan S, Gershenzon M, Polivka F, Kearny T N and Rogozinsky M W. Plasma generation for the plasma cutting process IEEE Trans. Plasma Sci. 1997,25: 937-946
    [34]Nemchinsky V A.Plasma flow in a nozzle during plasma arc cutting J.Phys.D:Appl.Phys.1998,31:3102-3107
    [35]Gonzalez-Aguilar J,Pardo C,Rodriguez-Yunita A and Calderon M A G.A theoretical study of a cutting air plasma torch IEEE Trans.Plasma Sci.1999,27:264-271
    [36]Patankar S V,Numerical Heat Transfer and Fluid flow(New York:McGraw-Hill)1980
    [1] Gage R M Arc torch and process, US 2806124,1957.
    [2] Nemchinsky V A and Severance W S. What we know and what we do not know about plasma arc cutting J. Phys. D: Appl. Phys. 2006, 39: R423-428
    [3] Ramakrishnan S and Rogozinski M W. Properties of electric arc for metal cutting J. Phys. D: Appl. Phys. 1997, 30: 636-644
    [4] Ramakrishnan S, Gershenzon M, Polivka F, Kearny T N and Rogozinsky M W. Plasma generation for the plasma cutting process IEEE Trans. Plasma Sci. 1997, 25: 937-946
    [5] Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A and Calderon M A G. Spec- troscopic analysis of an air plasma cutting torch J. Phys. D: Appl. Phys. 1999, 32: 2181-2189
    [6] Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, and Delzenne M. Numerical and experimental study of a plasma cutting torch J. Phys. D: Appl.Phys. 2002, 35: 115-131
    [7] Freton P, Gonzalez J J, Peyret F C and Glezes A. Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch J. Phys. D: Appl. Phys. 2003, 36: 1269-1283
    [8] Girard L, Teulet Ph, Razafinimanana M, Gleizes A, Camy-Peyret F, Ballot E and Richard F. Experimental study of an oxygen plasma cutting torch: I. Spec-troscopic analysis of the plasma jet J. Phys. D: Appl. Phys. 2006,39: 1543-1556
    [9] Peters J, Yin F, Borges C F M, Heberlein J and Hackett C. Erosion mechanisms of hafnium chathodes at high current J. Phys. D: Appl. Phys. 2005, 38: 1781-1794
    [10] Peters J, Heberlein J and Lindsay J. Spectroscopic diagnostics in a highly constricted oxygen arc J. Phys. D: Appl. Phys. 2007, 40: 3960-3971
    [11] Nemchinsky V A and Showalter M S. Cathode erosion in high-current high-pressure arc J. Phys. D: Appl. Phys. 2003, 36: 704 - 712
    [12] Peters J, Bartlett B, Lindsay J and Heberlein J Releting spectroscopic measurements in a plasma cutting torch to cutting performance. Plasma Chem. Plasma Process. 2008, 28: 331-352
    [13] Bini R, Colosimo B M, Kutlu A E and Monno M. Experimental study of the features of the kerf generated by a 200A high tolerance plasma arc cutting system.J. Mater. Process. Tech. 2008,196: 345-355
    [14] Ramakrishnan S, Shrinet V, Polivka F B, Kearney T N and Koltun P Influence of gas composition on plasma arc cutting of mild steel J. Phys. D: Appl. Phys. 2000, 33: 2288-2299
    [15] Teulet Ph, Girard L, Razafinimanana M, Gleizes A, Bertrand Ph, Camy-Peyret F, Baillot E and Richard F. Experimental study of an oxygen plasma cutting torch:Ⅱ. Arc-meterial interaction, energy transfer and anode attachment J. Phys. D:Appl. Phys. 2006, 39: 1557-1573
    [16] Nemchinsky V A Dross formation and heat transfer during plasma arc cutting J.Phys. D: Appl. Phys. 1997,30: 2566-2572
    [17] Nemchinsky V A. Liquid metal movement during plasma arc cutting Weld. J.1996, 75: 388s - 392s
    [18] Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A and Calderon M A G. A theoretical study of a cutting air plasma torch IEEE Trans. Plasma Sci. 1999, 27:264-71
    [19] Patankar S V, Numerical Heat Transfer and Fluid flow. New York: McGraw-Hill.1980.
    [20] Ghorui S, Heberlein J V R and Pfender E. Non-equilibrium modelling of an oxygen-plasma cutting torch /. Phys. D: Appl. Phys. 2007,40: 1966-1976
    [21] Colombo V, Concetti A, Ghedini E, Dallavalle S and Vancini M. Understanding plasma fluid dynamics inside plasma torches through advanced modeling IEEE Trans. Plasma Sci. 2008, 36: 389-402
    [22]Westhoff R and Szekely J.A model of fluid,heat flow,and electromagnetic phenomena in a nontransferred arc plasma torch.J.Appl.Phys.1991,70:3455-3466
    [23]Fluent Inc.FLUENT User' s Guide,2001.
    [24]Naghizadeh-Kashani Y,Cressault Y and Gleizes A.Net emission coefficient of air thermal plasmas J.Phys.D:Appl.Phys.2002,35:2925-2934
    [25]Murphy A B.Transport Coefficients of Air,Argon-Air,Nitrogen-Air,and Oxygen-Air Plasmas.Plasma Chem.Plasma Process 1995,15:279-307
    [26]Murphy A B.Transport Coefficients of Argon,Nitrogen,Oxygen,Argon-Nitrogen,and Argon-Oxygen Plasmas.Plasma Chem.Plasma Process 1994,14:451-490
    [27]Benilov M S and Marotta A.A model of the cathode region of atmospheric pressure arc J.Phys.D:Appl.Phys.1995,28:1869-1882
    [28]过增元,赵文华.电弧与热等离子体.北京:科学出版社,1986
    [29]Lago F,Gonzalez J J,Freton P and Gleizes A.A numerical modelling of an electric arc and its interaction with the anode:Part 1.The two-dimensional model J.Phys.D:Appl.Phys.2004,37:883-897
    [1] Gibson M M and Launder B E. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer J. Fluid Mech. 1978, 86: 491-511
    [2] Launder B E. Second-moment closure: present... and future? Inter. J. Heat Fluid Flow 1989,10: 282-300
    [3] Launder B E, Reece G J, and Rodi W. Progress in the development of a reynolds- stress turbulence closure J. Fluid Mech. 1975, 68: 537-566
    [4] Fluent Inc. FLUENT User' s Guide, 2001
    [5] Bauchire J M, Gonzalez and Gleizes A. Modeling of a DC plasma torch in laminar and turbulent flow. Plasma Chem. Plasma Process. 1997,17(4): 409-432
    [6] Westhoff R and Szekely J. A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch. J. Appl. Phys. 1991,70: 3455- 3466
    [7] Murphy A B. Transport coefficients of hydrogen and argon - hydrogen plasmas, Plasma Chem. Plasma Process. 2000, 20: 279 - 297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700