用户名: 密码: 验证码:
脉冲等离子体推力器工作过程及羽流的数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲等离子体推力器(Pulsed Plasma Thruster,PPT)作为一种电磁推力器是最早进行空间运用的电推进形式,具有体积小、重量轻、结构紧凑、控制方便灵活、可靠性高等特点,能够广泛应用于微小卫星的姿轨控推进系统,是目前小卫星推进技术的重要发展方向。PPT的工作过程包含多种复杂的物理过程,涉及流体力学、电动力学、等离子体物理等多个学科;PPT的羽流成分复杂,其中包含了复杂的电离、化合以及碰撞过程,且PPT瞬态的工作特征使得对其特征参数的把握十分不易,因此对PPT开展全面深入的研究具有十分重要的意义。
     本文采用理论分析和数值仿真的方法,针对局部热力学平衡的等离子体温度特性,建立了一维双温和三维MHD(磁流体力学,Magnetohydrodynamic)PPT工作过程模型,研究固体聚四氟乙烯推进剂平行板电极PPT工作过程和工作机理,探寻提高该PPT性能的途径和方法;改进了DSMC/PIC混合算法,对PPT的羽流进行数值仿真,掌握PPT羽流形成发展过程;通过对PPT羽流双温入口模型的建立,形成一套能够从PPT工作过程到羽流的全流场分析系统。
     建立了基于磁流体力学方法的平行板电极脉冲等离子体推力器工作过程的一维双温模型,对不同初始电压、电容以及不同电极长度的PPT工作过程以及性能进行评估,为发动机性能评估提供基本手段。在一维模型的基础上,建立了基于磁流体力学方法的PPT工作过程三维MHD模型,在此基础上给出了全MHD方程组,对全MHD方程组的特征值系统进行了求解。通过三维模型对脉冲等离子体推力器推力室工作过程开展三维数值仿真,对不同参数下的多种电极构型的推力器工作过程进行了仿真研究,获得了关于PPT工作过程的三维变化特性。
     对PPT的基本工作过程进行了研究,结果显示,脉冲时间内的放电电流的波形和大小影响着推力器中的流场变化,放电电流与感应磁场的相互作用影响着等离子体在各个方向的运动速度;推进剂表面温度具有与放电电流相似的波形变化规律,同时也影响着推力室中的等离子体的密度和速度分布;推力室的中心区域的温度较高,离子浓度较高,速度较高,而在推力室边缘地区,原子浓度相对较高,速度较低,低速度原子在一定程度上可能造成积碳问题。
     对影响推力器性能的各种因素进行了研究,结果表明,脉冲初期的高速等离子体是推力器推力的主要来源,脉冲末期过高的推进剂表面温度造成的滞后烧蚀,是造成推力器效率低下的一个重要原因;周边温度高的推进剂表面温度分布会使大量等离子体产生在低速区域,不利于推力器性能提高;长电极有助于电磁加速,但带来的电流密度减小又制约着喷射速度;适当加高电极间距有助于加速以及推进剂在放电末期的冷却;窄电极下的高放电电流密度、脉冲初期的高推进剂表面温度和末期的快速冷却,有利于性能的提高;通过改变构型对PPT性能进行改善时,气动力的加速效果非常有限,需要考虑有利于洛伦兹力加速的流动状态;通过延长高放电电流持续的时间和等离子体的膨胀过程,提高推进剂的高喷射速度,有利于性能提高,在进行电流优化的过程中,需要针对具体的推力器构型以及该构型下的能量水平,尽量采用低的电流变化率,努力延长等离子体膨胀加速的时间。
     建立了脉冲等离子体推力器羽流模型,实现了DSMC/PIC流体混合算法,对网格点统计权重因子求解进行了修正,并采用改进型极小残量剩余方法对电势场和温度场进行求解以提高运算效率,为获得与实际PPT工作过程相关的羽流场信息,建立了基于一维双温模型、三维双温模型的羽流入口模型,开展了对PPT羽流的数值仿真研究。
     对脉冲等离子体推力器羽流场的特征规律进行研究,结果表明,在脉冲持续周期时间内,等离子体羽流团迅速扩散,离子的扩散范围较中性粒子更广;离子和中性粒子团均出现了不同程度的回流现象,带电粒子回流不论是在影响区域还是影响程度上都远远高于中性粒子回流,是回流污染的主要因素;电荷交换(CEX)碰撞延缓了羽流的轴向扩散速度,促进了羽流的径向扩散,是影响回流现象的一个主要因素;粒子回流和羽流中CEX离子的分布受到放电电流波形特征的影响;在各类不同的能量状态下,羽流成分以及其变化规律是相似的,在高能量状态下羽流的质量流率更高,影响域更广。
     对运用几种不同的羽流入口模型的羽流结果进行比较后发现,推力器喷射产物决定着羽流分布和变化情况,要对这个过程进行正确的模拟需要借助建立在推力器工作过程模型基础上的入口边界模型;三维入口模型的入口边界较一维入口模型更能体现出脉冲初期高速离子流和脉冲末期低速中性粒子流的特征,且三维入口模型能够有效的反映入口速度的喷射角度对于回流的影响。
The Pulsed Plasma Thruster (PPT) is a pioneer electromagnetic thruster used in space at first, which has some advantages such as small bulk, light weight, compact framework, easy controllability and high reliability, etc. Thus, it can be widely applied in attitude or orbit control propulsion system of micro-satellites, and plays an important role in the propulsion system of micro and small satellites. The PPT operation process unites many complex interactions resulted from hydrodynamics, electromechanical, plasma-physics processes. The PPT plume contains complicated species, where ionization, combination and collision processes may occur. The pulse-typed operation mode makes it difficult to master characteristics of PPT operating physics. So it is very important to do theoretical research thoroughly on PPT.
     In the present thesis, by means of theoretical analysis and numerical simulation, for local temperature equilibrium, one-dimension two-temperature and three-dimension two-temperature MHD (Magneto-hydrodynamic) models were built, the basic physics research on Teflon propellant parallel-plate PPT has been carried out to investigate the method to enhance performance. With the improved DSMC (the Direct Simulation Monte Carlo) /PIC (Particle in Cell) fluid hybrid method, the PPT plume was simulated to understand the formation and development process of the plume. Through the two-temperature inlet model, an analytical system was built, which can simulate the whole flow field from the operation process to plume.
     One-dimension time-dependent two-temperature parallel-plate PPT operation process model based on magneto-hydrodynamic was established. The operation process and performance of PPT were evaluated on different initial voltage, capacitance and electrode length. The model can provide an effective tool to evaluate the thruster performance. On the one-dimension basic model, three-dimension PPT operation process time-dependent two-temperature model based on magneto-hydrodynamic was built. The full MHD equations were proposed, and the eigenvalues system was solved. Using the three-dimension model, the processes of PPT at different parameters and geometries were simulated, the three-dimension characteristics of PPT operation process were obtained.
     The basic operation process of PPT was studied, the results showed that in pulse the variation of discharge current affects the flow field in thruster, interaction on discharge current and inductive magnetic field influences on velocity of plasma; propellant surface temperature has the similar variation with the discharge current, which influences plasma density and velocity in chamber; there is plasma with high temperature, high ion density and high velocity in the central area of the chamber; and around the chamber, the plasma’s temperature and velocity are low, atom density is high, and atom with low velocity may bring the problem of charring.
     The factors affecting the performance of PPT were investigated, the results showed that in the early pulse, high-velocity plasma is the main source of thrust, in the late pulse, the late-ablation aroused by high propellant surface temperature is an important reason for low efficiency of PPT; the high-temperature propellant around makes a great deal of plasma with low velocity, which is not good for performance; long electrode is favorable for magnetism acceleration, but the little current density is not good for spout velocity; proper long gap between electrodes is useful for acceleration of plasma and propellant cooling in late pulse; the high current density, high propellant surface temperature and quick cooling in late pulse at narrow electrode are beneficial for performance; to improve performance of PPT through geometry variation, the acceleration of gas dynamic force is limited, the flow situation suitable for Lorentz force should be considered; prolonging the time with high discharge current, expansion of plasma, advancing velocity of plasma is helpful for performance; in order to optimize current, it is necessary to choose low variation of current and prolong the time of expansion of plasma based on PPT geometry and energy.
     The model of PPT plume was built, the DSMC/PIC fluid hybrid method is programmed, the appropriate conserving expression of shape factor for the sampling at node is corrected, potential field and electron temperature field are solved by improving GMRES algorithm to advance operation speed, for time-dependent PPT plume, one-dimension two-temperature inlet model and three-dimension two-temperature inlet model were built, the numerical researches of PPT plume were carried out.
     The characteristics of PPT plume were studied, results showed, in pulse, plasma plume diffuses quickly, ion diffuses more widely than atom; there are back-flow of ion and atom, ion back-flow is stronger than atom, which is the main factor of back-flow pollution; charge exchange(CEX)collision delays the axial velocity of plume, accelerates the radial velocity, which is an important influence on back-flow; the distribution of back-flow and CEX ion in plume are affected by discharge current; variations of plume are similar with different energy, under higher energy the mass-flow-rate of plume is higher, and the area of plume is more extensive.
     Comparing the results of different inlet models, results showed that the distribution and variation of plume were determined by thruster spout, and the correct simulation needs the inlet model based on PPT operation process model; high-velocity ion in early pulse and low-velocity neutral in late pulse can be acquired through three-dimension inlet model, which is better than one-dimension inlet model, and through which the influence of the spout angle of inlet velocity on back-flow could be effectively simulated.
引文
[1]陆建华,王京,龚克.微小卫星技术发展及其应用[J].世界电信, 2001, 14 (11): 8~11.
    [2] Jahn R G. Physics of Electric Propulsion [M]. New York:McGraw-Hill,1968.
    [3] Burton R L, Turchi P J. Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 1998, 14 (5): 716~735.
    [4]吴汉基,蒋远大,张志远.电推进技术的应用与发展趋势[J].推进技术, 2003, 24 (5): 385~392.
    [5] Eckman R F. Langmuir Probe Measurements in the Plume of a Pulsed Plasma Thruster [D]. USA:Worcester Polytechnic Institute(Master),1999.
    [6]吴汉基.卫星控制用的脉冲等离子体推进系统[J].中国空间科学技术, 1981, (4): 47~53.
    [7]梁荣庆,郭文康,袁行球, et al.适用于微小卫星的脉冲等离子体推进器[C].中国电推进技术学术研讨会.哈尔滨, 2005.
    [8] Sanchez M M, Pollard J E. Spacecraft Electric Propulsion:An Overview [J]. Journal of Propulsion and Power, 1998, 14 (5): 688~698.
    [9]吴汉基.俄罗斯等离子体发动机的研究和应用[J].中国航天, 1993, (9): 40~43.
    [10]刑继发.世界导弹与航天发动机大全[M].北京:军事科学出版社,1999.
    [11] Ziemer J K, Cubbin E A, Choueiri E Y, et al. Pulsed Plasma Propulsion for a Small Satellite: Mission COMPASS P3OINT [C]. AIAA Paper 96-3292, 32ndAIAA Joint Propulsion Conference. Lake Buena Vista, FL, 1996.
    [12] Popov G A, Antropov N N. Ablative PPT. New quality, New Perspectives [J]. Acta Astronautica, 2006, 59: 174~180.
    [13] Antropov N N, G. D, N. L, et al. Correction Propulsion System with Ablative Pulsed Plasma Thruster for United Space Platform "Vulcan" [C]. 4th Spacecraft Propulsion Conference. Cagliari, Sardinia, Italy, 2004.
    [14] Guman W J, Nathanson D M. Pulsed Plasma Microthruster Propulsion System for Synchronous Orbit Satellite [J]. Journal of Spacecraft, 1970, 7 (4): 409~415.
    [15] Vondra R J. One Millipound Pulsed Plasma Thruster Development [C]. AIAA 82-1877, 16th International Electric Propulsion Conference. New Orleans, Louisiana, 1982.
    [16] Guman W J, Palumbo D J. Pulsed Plasma Propulsion System for North-South Stationkeeping [C]. AIAA Paper 76-0999, 12th International Electric Propulsion Conference. Key Biscayne, Florida, 1976.
    [17] Brill Y, Eisner A, Osborn L. The Flight Application of a Pulsed Plasma Microthruster: The NOVA Satellite [C]. AIAA Paper 82-2497, New Orleans, Louisiana, 1982.
    [18] Vondra R J, Thomassen K I. Flight Qualified Pulsed Electric Thruster for Satellite Control [J]. Journal of Sapcecraft and Rocket, 1974, 11 (9): 613~617.
    [19] Vondra R J. The MIT Laboratory Pulsed Plasma Thruster [C]. AIAA 76-0998, 12th International Electric Propulsion Conference. Key Biscayne, Florida, 1976.
    [20] LeDuc J R, Bromaghim D R, Peterson T, et al. Mission Planning, Hardware Development, and Ground Testing for the Pulsed Plasma Thruster(PPT) Space Demonstration on MightySat II.1 [C]. AIAA 97-2779, 33rdAIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Seattle, WA, 1997.
    [21] Benson S W, Arrington L A, Hoskins W A, et al. Development of a PPT for the EO-1 Spacecraft [C]. AIAA 99-2276, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles, CA, 1999.
    [22] Zakrzwski C, Benson S W, P. S, et al. On-Orbit Testing of the EO-1 Pulsed Plasma Thruster [C]. AIAA Paper 2002-3973, 38th AIAA Joint Propulstion Conference. Indianapolis, Indiana, 2001.
    [23] Zakrzwski C. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment [C]. AIAA 2001-3637, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT, 2001.
    [24] Zakrzwski C, Davis M. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns [C]. AIAA 2001-3641, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT, 2001.
    [25] Hoskins W A, Rayburn C, C. S. Pulsed Plasma Thruster Electromagnetic Compatibility: History, Theory, and the Flight Validation on EO-1 [C]. AIAA Paper 2003-5016, 39th AIAA Joint Propulsion Conference. Huntsville, Alabama, 2003.
    [26] Cassady R J, .Willey M J, Meckel N J, et al. Pulsed plasma thruster for the new millennium space interferometer experiment DS-3 [C]. AIAA 98-3326, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [27] Rayburn C, Campbell M. Development of a micro pulsed plasma thruster for the dawgstar nanosatellite [C]. AIAA 2000-3256, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL, 2000.
    [28] Cassady R J, Hoskins W A. A Micro Pulsed Plasma Thruster(PPT) for the "Dawgstar" Spacecraft [C]. Aerospace Conference Proceedings 2000 IEEE. 2000.
    [29] Hoskins W A, Cassady R J. Application for Pulsed Plasma Thruster and the Development of Small PPTs for Microspacecraft [C]. AIAA Paper 2000-3434, 36th AIAA Joint Propulsion Conference. Huntsville, Alabama, 2000.
    [30] Rayburn C D. The Development of a Pulsed Plasma Thruster for the Dawgstar Satellite [D]. USA:University of Washington(Master),2001.
    [31] Gulczinski F S, Dulligan M J, Lake J P, et al. Micropropulsion Research at AFRL [C]. AIAA 2000-3255, 38th Joint Propulsion Conference & Exhibit. Huntsville, Alabama, 2000.
    [32] Spanjers G G, Antonsen E L, Burton R L, et al. Advanced Diagnostics for Millimeter-Scale Micro Pulsed Plasma Thrusters [C]. AIAA 2002-2119, 33rd Plasmadynamics and Lasers Conference. Maui, Hawaii, 2002.
    [33] Spanjers G G, Bromaghim D R, Lake C J. AFRL MicroPPT Development for Small Spacecraft Propulsion [C]. AIAA 2002-3974, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, Indiana, 2002.
    [34] Hirata M, Murakami H. Electromagnetic Noise Measurement Study of Pulsed Plasma Thruster [C]. AIAA Paper 81-0722, 15th Inernational Electric Propulsion Conference. Las Vegas, Nevada, 1981.
    [35] Hirata M, Murakami H. Development of a Pulsed Plasma Engine [C]. IEPC Paper 84-48, 17th Inernational Electric Propulsion Conference. Tokyo, Japan, 1984.
    [36] Hirata M, Murakami H. Impulse Measurement of a Pulsed Plasma Engine onEngineering Test Satallite-IV [J]. Journal of Spacecraft, 1984, 21 (6): 553~557.
    [37] Tamura K, Igarashi M, Kumagai N. Evaluation of low power pulsed plasma thruster forμ-LabSat II [C]. AIAA 2002-4272, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, IN, 2002.
    [38] Kumagai N, Igarashi M, Sato K. Plume diagnostics in pulsed plasma thruster [C]. AIAA 2002-4124, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, IN, 2002.
    [39] An S M, Wu H J. MDT-2A Teflon Pulsed Plasma Thruster [C]. AIAA 81-0713, 15th International Electric Propulsion Conference. Las Vegas, Nevada, 1981.
    [40] An S M, Wu H J. MDT-2A Teflon Pulsed Plasma Thruster [J]. Journal of Spacecraft, 1982, 19 (5): 385~386.
    [41] An S M, Wu H J, Feng X Z, et al. Space Flight Test of Electric Thruster System MDT-2A [J]. Journal of Spacecraft, 1984, 21 (6): 593~594.
    [42] Wu H J, Feng X Z. Experimental Research of 20 Joule PPT [C]. AIAA 85-2067, 18th International Electric Propulsion Conference. Alexandria, Virgina, 1985.
    [43] An S M, Liu W X, Fang Y. Computerized Method for PPT's Performance Experiment [C]. AIAA 85-2061, 18th International Electric Propulsion Conference. Alexandria, Virgina, 1985.
    [44]杨乐.脉冲等离子体推力器工作过程理论和实验研究[D].长沙:国防科技大学(博士),2007.
    [45]李自然.脉冲等离子体推力器设计与性能的理论与实验研究[D].长沙:国防科学技术大学(博士),2008.
    [46] Nawaz A, Auweter-Kurtz M, Kurtz H, et al. Pulsed Plasma thrusters for Primary Propulsion and Attitude Control of a Small all Electrical Satellite [C]. 4th Spacecraft Propulsion Conference. Cagliari, Sardinia, Italy, 2004.
    [47] Wagner H P, Auweter-Kurtz M. Pulsed Plasma Thruster Based Moon Orbiter Propulsion System [C]. AIAA 2004-3465, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Frot Lauderdale, FL, 2004.
    [48] Wagner H P, Kurtz M A. Plasma Impulse Based Peening and Decoating of Eneing Parts and Pulsed Plasma Thrusters for Small Spacecraft Propulsion [J]. Vacuum, 2004, 73: 461~467.
    [49] Shin G-H, Nam M-R, Cha W-H, et al. Development of the Pulsed Plasma Thruster (PPT) for Science and Technology Satellite-2(STSAT-2) [C]. IEEE ICCAS2005, Kintex, Gyeonggi-do, Korea, 2005.
    [50] Shin G-H, Shin G-S, Nam M-R, et al. High Voltage DC-DC Converter of Pulsed Plasma Thruster for Science and Technology Satellite-2(STSAT-2) [C]. IEEE PEDS. 2005.
    [51] Brito H H, Alessandro R O D, Dominguez C A. Preliminary Development Status of the IUA's P4S-1 Pulsed Plasma Thruster [C]. IEPC Paper 99-238, 26th Inernational Electric Propulsion Conference. Kitakyushu, Japan, 1999.
    [52] Brito H H, Calcagni E, Elaskar S, et al. A Review of Design and Development Works on P4S-1 Pulsed Plasma Thurster [C]. IAF-01-S.4.03, 52nd Inernational Astronautical Congress. Toulouse, France, 2001.
    [53] RMIT Space Science Expo - 2003&2004 Posters [EB/OL].
    [54] Rolfo A, Cadiou A, O.Secheresse, et al. Plasma Thrusters Development in France [J]. Acta Astronautica, 2002, 51 (1-9): 39~46.
    [55] Antropov N N, Popov G A, Rudikov A I. Development and Laboratory Tests of Erosion Pulsed Plasma Thruster, Design for Altitude Control of GeostatinoarySatellite [C]. IEPC Paper 93-160, 23rd Inernational Electric Propulsion Conference. 1993.
    [56] Antropov N N, Krivonosov I G. PPT Model Experimental Refinement [C]. AIAA 96-2728, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Lake Buena Vista, FL, 1996.
    [57] Antropov N, Gomilka L. Parameters of Plasmoids Injected by PPT [C]. AIAA 97-2921, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exihibit. Seattle, WA, 1997.
    [58] Alexeev Y A, Kazeev M N. Performance Study of High Power Ablative Pulsed Plasma Thruster [C]. IEPC Paper 99-207, 26th International Propulsion Conference. Kitakyushu, Japan, 1999.
    [59] Alexeev Y A, Kazeev M N, Kozlov V F. Propellant Energy Flux Measurements in Pulsed Plasma Thruster [C]. IEPC Paper 2003-39, 28th International Electric Propulsion Conference. Toulouse, France, 2003.
    [60] Alexeev Y A, Kazeev M N, Kozlov V F. Energy Transfer to the Propellant in High Power Pulsed Plasma Thrusters [C]. Proceedings of the 4th International Spacecraft Propulsion Conference (ESA SP-555). Chia Laguna (Cagliari), Sardinia, Italy, 2004.
    [61] Kazeev M N, Popov G A, Antropov N N. Dynamics and Distribution of Electron Density in the Channel of Pulsed Plasma Thruster [C]. AIAA Paper 2002-4119, 38th AIAA Joint Propulsion Conference. Indianapolis, Indiana, 2002.
    [62] Guman W J, Peko P E. Solid Propellant Pulsed Plasma Microthruster Studies [J]. Journal of Spacecraft, 1968, 5 (6): 732~733.
    [63] Vondra R J, Thomassen K, Solbes A. Analysis of Solid Teflon Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 1970, 7 (12): 1402~1406.
    [64] Vondra R J, Thomassen K I. Performance Improvements in Solid Fuel Microthrusters [J]. Journal of Spacecraft, 1972, 9 (10): 738~742.
    [65] Thomassen K I, Tong D. Interferometric Density Measurements in the Arc of a Pulsed Plasma Thruster [C]. AIAA Paper No. 72-463, AIAA 9th Electric Propulsion Conference. Bethesda, M D., 1972.
    [66] Solbes A, Vondra R J. Performance Study of a Solid Fuel-Pulsed Electric Microthruster [J]. Journal of Spacecraft, 1973, 10 (6): 406~410.
    [67] Guman W J. Designing Solid Propellant Pulsed Plasma Thrusters [C]. AIAA Paper 75-410, 11th Electric Propulsion Conference. New Orleans, LA, 1975.
    [68] Palumbo D J, Guman W J. Effects of Propellant and Electrode Geometry on Pulsed Ablative Plasma Thruster Performance [J]. Journal of Sapcecraft and Rocket, 1976, 13 (3): 163~167.
    [69] Dawbarn R, McGwire R L, Steely S L. Operating Characterisitics of an Ablative Pulsed Plasma Engine [R].ADA118260. 1982.
    [70] Leiweke R L, Turchi P J, Kamhawi H, et al. Multi-material Propellants in Ablation-Fed Pulsed Plasma Thrusters [C]. AIAA 95-2916, 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego, CA, 1995.
    [71] Kamhawi H, Turchi P J, J. Leiweke R, et al. Design and Operation of a Laboratory Bench-Mark PPT [C]. AIAA Paper 96-2732, 32nd AIAA Joint Propulsion Conference. Lake Buena Vista, FL, 1996.
    [72] Arrington L A, Haag T W, Pencil E J, et al. A Performance Comparison of Pulsed Plasma Thruster Electrode Configurations [C]. IEPC Paper 97-127, 25thInternational Electric Propulsion Conference. Cleveland, Ohio, 1997.
    [73] Ziemer J K, Choueiri E Y, Birx D. Trends in Performance Improvements of a Coaxial Gas-Fed Pusled Plasma Thruser [C]. IEPC Paper 97-040, 25th International Electric Propulsion Conference. Cleveland, OH, 1997.
    [74] Ziemer J K, Cubbin E A, Choueiri E Y. Performance characterization of a high efficiency gas-fed pulsed plasma thruster [C]. AIAA 97-2925, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exihibit. Seattle, WA, 1997.
    [75] Ziemer J K, Choueiri E Y. Dimensionless Performance Model for Gas-Fed Pulsed Plasma Thrusters [C]. AIAA 98-3661, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [76] Ziemer J K, Choueiri E Y. Is the Gas-Fed PPT an Electromagnetic Accelerator?An Investigation Using Measured Performance [C]. AIAA 99-2289, 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. St. Louis, MO, 1999.
    [77] Ziemer J K, Choueiri E Y. A Characteristic Velocity for Gas-Fed PPT Performance Scaling [C]. AIAA 2000-3432, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL, 2000.
    [78] Ziemer J K. Performance Scaling of Gas-Fed Pulsed Plasma Thrusters [D]. USA:Princeton University(Doctor),2001.
    [79] Spanjers G G, Lotspeich J S, McFall K A, et al. Propellant Losses Because of Particulate Emission in a Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 1998, 14 (4): 554~559.
    [80] Spanjers G G, Malak J B, Leiweke R J, et al. Effect of Propellant Temperature on Effciency in the Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 1998, 14 (4): 545~553.
    [81] Spanjers G G, Spores R A. PPT Research at AFRL: Material Probes to measure the Magnetic Field Distribution in a pulsed plasma thruster [C]. AIAA 98-3659, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [82] Pencil E J, Arrington L A, Carter T J. Evaluation of Pulsed Plasma Thruster Electrical Components [C]. AIAA 2001-3899, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT, 2001.
    [83] Scharlemann C A, York T M. Pulsed Plasma Thruster Using Water Propellant, Part I: Investigation of Thrust Behavior and Mechanism [C]. AIAA 2003-5022, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, 2003.
    [84] Scharlemann G A, York T M, Turchi P J. Alternative Propellants for Pulsed Plasma Thruster [C]. AIAA 2002-4270, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, IN, 2002.
    [85] Scharlemann C A. Investigation of Thrust Mechanisms in a Water Fed Pulsed Plasma Thruster [D]. USA:The Ohio State University(Doctor),2003.
    [86] Antonsen E L, Burton R L, Spanjers G G. Microsecond Timescale Surface Temperature Measurements in Micro-Pulsed Plasma Thruster [C]. AIAA Paper 2003-5167, 39th AIAA Joint Propulsion Conference. Huntsville, Alabama, 2003.
    [87] Antonsen E L, Burton R L, Spanjers G G, et al. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thruster [C]. IEPC Paper 03-290, 28th Internatinal Electric Propulsion Conference. Toulouse, France, 2003.
    [88] Pencil E J, Kamhawi H. Alternate Propellant Evaluation for 100-joule-class Pulsed Plasma Thruster [C]. AIAA Paper 2005-3695, 39th AIAA Joint Propulsion Conference. Huntsville, Alabama, 2003.
    [89] Kamhawi H, Arrington L. Performance Evaluation of A High Energy Pulsed Plasma Thruster [C]. AIAA 2005-3695, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson, AZ, USA, 2005.
    [90] Kimura I, Ogiwara K, Yanagi R, et al. Effect of Applied Magnetic Fields on a Solid-Propellant Pulsed Plasma Thruster [C]. AIAA Paper 79-2098, 14th International Electric Propulsion Conference. Priceton, N.J., 1979.
    [91] Yanagi R, Kimura I. New Type of Target for the Measurement of Impulse Bits of Pulsed Plasma Thrusters [J]. Journal of Spacecraft, 1982, 19 (3): 246~249.
    [92] Okada M, Okawa Y, Tachibana T. Double Discharge Operation for Pulsed Plasma Thruster [C]. IEPC Paper 01-156, 27th International Electric Propulsion Conference. Pasadena, California, 2001.
    [93] Koizumi H, Kakami A, Komurasaki K, et al. A Thrust Stand for Liquid Propellant Pulsed Plasma Thruster [C]. ISTS 2002-b-13, 23rd International Symposium on Space Technology and Science. Matsue, 2002.
    [94] Koizumi H, Kakami A, Furta Y, et al. Liquid Propellant Pulsed Plasma Thruster [C]. IEPC Paper 03-087, 28th International Electric Propulsion Conference. Toulouse, France, 2003.
    [95] Kakami A, Koizumi H, Komurasakiz K, et al. Performance Strudy on Liquid Propellant Pulsed Plasma Thruster [C]. AIAA Paper 2003-5021, 39th AIAA Joint Propulsion Conference. Huntsville, Alabama, 2003.
    [96] Kakami A, Korzumi H, Komurasaki K, et al. Design and Performance of Liquid Propellant Pulsed Plasma Thruster [J]. Vacuum, 2004, 73: 419~425.
    [97] Koizumi H, Komurasaki K, Arakawa Y. Effect of Solute Mixing in the Liquid Propellant of a Pulsed Plasma Thruster [J]. Vacuum, 2006, 80: 1234~1238.
    [98] Kuang Y-Z. Effecit of Propellant Geometry on PPT Performance [C]. 18th International Electric Propulsion Conference. Tokyo,Japan, 1984.
    [99] An S M. The Effect of Ignition Energy on Main Discharge Process [C]. AIAA Paper 87-1047, 19th International Electric Propulsion Conference. 1987.
    [100]胡宗森. 40J脉冲等离子体推力器(PPT)性能研究[D].中国:中国科学院空间科学与应用研究中心(硕士),2002.
    [101] Dubey N, Ravi V, Kushan A. Auto-initiating Solid Propellant Pulsed Plasma [C]. AIAA 2005-373, 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA, 2005.
    [102] Dubey N, Ravi V, Kushari A. Discharge Frequency Modulation of Pulsed Plasma Thruster [J]. Journal of Spacecraft and Rockets, 2005, 42 (4): 761~764.
    [103] Brito C M, Elaskar S A, Brito H H, et al. Zero-Dimensional Model for Preliminary Design of Ablative Pulsed Plasma Teflon Thrusters [J]. Journal of Propulsion and Power, 2004, 20 (6): 970~977.
    [104] Turchi P J. Transport Processes in Pulsed Plasma Thrusters [R].AFRL-SR-BL-TR-98-0265. 1998.
    [105] Waltz P M. Analysis of a Pulsed Electromagnetic Plasma Thruster [D]. USA:Massachusetts Institute of Technology(Doctor),1969.
    [106] Leiweke R J. An Advanced Pulsed Plasma Thruster Design Study Using One-Dimensional Slug Modeling [R].New Mexico: 1996.
    [107] Gatsonis N A, Demetriou M A. Prospects of Plasma Flow Modeling and Controlfor Micro Pulsed Plasma Thrusters [C]. AIAA 2004-3464, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, FL, 2004.
    [108] Laperriere D D. Electromechanical Modeling and Open-Loop Control of Parallel-Plate Pulsed Plasma Microthrusters with Applied Magnetic Fields [D]. USA:Worcester Polytechnic Institute(Master),2005.
    [109] Hart P J. Plasma Acceleration with Coaxial Electrode [J]. The Physics of Fluids, 1962, 5 (1): 38~47.
    [110] Michels C J, Heighway J E, A.E. Analytical and Experimental Performance of Capacitor Powered Coaxial Plasma Guns [J]. AIAA Journal, 1966, 4 (5): 823~830.
    [111] Keidar M, Boyed I D. Electrical Discharge in the Teflon cavity of a Coaxial Pulsed Plasma Thruster [J]. Transactions on Plasma Science, 2000, 28 (2): 376~385.
    [112] Keidar M, Boyd I D. Analyses of Teflon Surface Charring and Near Field Plume of a Micro-Pulsed Plasma Thruster [R].AFRL-PR-ED-TP-2002-185. 2001.
    [113] Keidar M, Boyd I D. Ionization Non-Equilibrium and Ablation Phenomena in a Micro-Pulsed Plasma Thruster [C]. AIAA 2002-4275, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, IN, 2002.
    [114] Keidar M, Boyd I D. Ablation Study in the Capillary Discharge of an Electrothermal Gun [J]. Journal of Applied Physics, 2006, 99 (5): 053301~053308.
    [115] Keidar M, Boyd I D, Beilis I I. Model of an Electrothermal Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 2003, 19 (3): 424~430.
    [116] Keidar M, Boyd I D, Lepsetz N. Performance Study of the Ablative Z-pinch Pulsed Plasma Thuster [C]. AIAA 2001-3898, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Salt Lake City, Utah, 2001.
    [117] Keidar M, Boyed D, Beilis I I. On the Model of Teflon Ablation in an Ablation-Controlled Discharge [J]. Journal of Physics D: Applied Physics, 2001, 34: 1675~1677.
    [118] Keidar M, Fan J, Boyd I D. Vaporization of Heated Materials Into Discharge Plasmas [J]. Journal of Applied Physics, 2001, 89 (6): 3095~3098.
    [119] Keidar M, D.Boyd I, Antonsen E, et al. Electromagnetic Effects in the Near-Field Plume Exhaust of a Micro-Pulsed-Plasma Thruster [J]. Journal of Propulsion and Power, 2004, 20 (6): 961~969.
    [120] Keidar M, Boyd I D. Device and Plume Model of an Electrothermal Pulsed Plasam Thruster [C]. AIAA 2000-3430, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Huntsville, AL, 2000.
    [121] Keidar M, Boyd I D. Electronagnetic Effects in the Near Field Plume Exhaust of a Pulsed Plasma Thruster [C]. AIAA 2001-3638, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT, 2001.
    [122] Spanjers G G, Malak J B, Leiweke R J, et al. Effect of Propellant Temperature on Efficiency in the Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 1998, 14 (4): 545~553.
    [123] Spanjers G G, Malak J B, Leiweke R J, et al. The Effect of Propellant Temperature on Efficiency in the Pulsed Plasma Thruster [C]. AIAA 97-2920, 33nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Seattle,WA, 1997.
    [124] Spanjers G G, Malak J B, Leiweke R J. The effect of Propellant Temperature on Efficiency in the Pulsed Plasma Thruster [C]. AIAA 1997-2920, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Seattle, WA, 1997.
    [125] Thomas H D. Numerical Simulation of Pulsed Plasma Thrusters [D]. U.S.A:The University of Tennessee(Doctor),2000.
    [126] Mikellides Y G. Theoretical Modeling and Optimization of Ablation-Fed Pulsed Plasma Thrusters [D]. U.S.A:The Ohio State University(Doctor),1999.
    [127] Schmahl C S. Thermochemical and Transport Processes in Pulsed Plasma Microthrusters: A Two-Temperature Analysis [D]. U.S.A:The Ohio State University(Doctor),2002.
    [128] Schmahl C S, Turchi P J, Mikellides P G, et al. Development of Equation-of-State and Temperature Properties for Molecular Plasma in Pulsed Plasma Thruster Part 2: Two-Temperature Equation-of-State for Teflon [C]. AIAA Paper 98-3662, 34th AIAA Joint Propulsion Conference. Cleveland, OH, 1998.
    [129] Mikellides I G, Turchi P J. Optimizaiton of Pusled Plasma Thrusters in Rectangular and Coaxial Geometries [C]. IEPC 99-211, 26th International Electric Propulsion Conference. Kitakyushu, Japan, 1999.
    [130] Mikellides P G, Neilly C. Pulsed Inductive Thruster, Part 1: Modeling, Validation and Performance Analysis [C]. AIAA 2002-4091, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, IN, 2002.
    [131] Mikellides P G, Turchi P J. Modeling of Late-Time Ablation in Teflon Pulsed Plasma Thrusers [C]. AIAA 96-2733, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exihibit. Lake Buena Vista, FL, 1996.
    [132] Mikellides P G, Turchi P J. Theoretical Investigation of Pulsed Plasma Thrusters [C]. AIAA 98-3807, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [133] Lin G, Karniadakis G E. High-Order Modeling of Micro-Pulsed Plasma Thrusters [C]. AIAA 2002-2872, 3th Theoretical Fluid Mechanics Meeting. St. Louis, Missouri, 2002.
    [134] Lin G, Kamiadakis G E. A Discontinuous Galerkin Method for Two-Temperature Plasmas [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 3504~3527.
    [135] Byrne L T. Langmuir Probe Measurements in the Plume of a Pulsed Plasma Thruster [D]. USA:WIT(Doctor),2002.
    [136] Thomassen K I, Vondra R J. Exhaust Velocity Studies of a Solid Teflon Pulsed Plasma Thruster [C]. AIAA Paper No. 71-194, AIAA 9th Aerospace Sciences Meeting. New York, USA, January,1971.
    [137] Guman W J, Begun M. Pulsed Plasma Plume Studies [R].AFRPL-TR-77-2. 1977.
    [138] Guman W J, Begun M. Exhaust Plume Studies of a Pulsed Plasma Thruster [C]. AIAA 78-0704, 13th International Electric Propulsion Conference. San Diego, California, 1978.
    [139] Rudolph L K, Jones R M. Pulsed Plasma Thruster Contamination Studies [C]. AIAA 79-2106, 14th International Electric Propulsion Conference. Princeton, 1979.
    [140] Rudolph L K, Pless L C, Harstad K G. Pulsed Plasma Thruster BackflowCharacteristics [J]. Journal of Spacecraft, 1980, 17 (5): 447~452.
    [141] Rudolph L K, King D Q. 100 kWe Magnetoplasmadynamic Thruster System Design [J]. Journal of Spacecraft, 1984, 21 (6): 563~562.
    [142] Gatsonis N A, Byrne L, Eckmen R, et al. Pulsed Plasma Thruster Plumes:Experimental Investigations and Numerical Modeling [C]. AIAA 2000-0464, 38th Aerospace Sciences Meeting and Exhibit. Reno, NV, 2000.
    [143] Gatsonis N A, Byrne L T, Zwahlen J C, et al. Current-Mode Triple and Quadruple Langmuir Probe Methods With Applications to Flowing Pulsed Plasma [J]. IEEE Transactions on Plasma Science, 2004, 32 (5): 2118~2129.
    [144] Gatsonis N A, Hastings D E. Thruster Firings and Other Releases from Orbiting Spacecraft and the Induced Plasma and Radiation Emission Enviroment [C]. AIAA 92-0575, 30th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, 1992.
    [145] Gatsonis N A, Zwahlen J, Wheelock A, et al. Pulsed Plasma Thruster Plume Investigation Using a Current-Mode Quadruple Probe Method [J]. Journal of Propulsion and Power, 2004, 20 (2): 243~254.
    [146] Eckman R. Pulsed Plasma Thruster Plume Diagnostics [C]. AIAA 98-0004, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [147] Eckman R, byrne L, Cameron E. Triple Langmuir Probe Measurements in the Plume of a Pulsed Plasma Thruster [C]. AIAA 98-3806, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [148] Eckman R, byrne L, Cameron E. Analysis of Triple Langmuir Probe Measurements in the Plume of a pulse plasma thruster [C]. AIAA 99-2286, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles, CA, 1999.
    [149] Eckman R, Byrne L, Gatsonis N A, et al. Triple Langmuir Probe Measurements in the Plume of a Pulsed Plasma Thruster [J]. Journal of Propulsion and Power 2001, 17 (4): 762-771.
    [150] Markusic T E, Spores R A. Spectroscopic Emission Measurements of a Pulsed Plasma Thruster Plume [C]. AIAA 97-2924, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Seattle, WA, 1997.
    [151] Arrington L A, Haag T W. Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster [C]. AIAA 99-2290, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles, CA, 1999.
    [152] Arrington L A, Marrese C M, Blandino J J. Pulsed Plasma Thruster Plume Strdy Symmetry and Impact on Spacecraft Surfaces [C]. AIAA 2000-3662, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL, 2000.
    [153] Arrington L A, Marrese C M, Blandino J J. Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces [C]. AIAA 2000-3262, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, AL, 2000.
    [154]Burton R L, Bushman S S. Probe Measurements in Acoaxial Gasdynamic PPT [C]. AIAA 99-2288, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles, CA, 1999.
    [155] Bushman S S, Burton R L, Antonsen E L. Arc Measurements and PerformanceCharacteristics of a Coaxial Pulsed Plasma Thruster [C]. AIAA 98-3660, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cleveland, OH, 1998.
    [156] Bushman S S, Burton R L. Heating and Plasma Properties in a Coaxial Gasdynamic Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 2001, 17 (5): 959~966.
    [157] Parker K. Pulsed Plasma Thruster Plume Analysis [J]. Acta Astronautica, 2003, 53: 789~795.
    [158] Gatsonis N A, Hastings D E. Evolution of the Plasma Environment Induced Around Spacecraft by Gas Releases: Three-dimensional Modeling [J]. Journal of Geophysical Research, 1992, 97 (A10): 14989~15005.
    [159] Brukhty V I, Kirdyashev K P, Svetlitskaya O E. Electromagnetic Interference Measurements within the T-100 Endurance Test [C]. IEPC 95-73, 1995.
    [160] Robinson R S, Kaufman H R, Winder D R. Plasma Propagation Simulation Near an Electrically Propelled Spacecraft [J]. Journal of Spacecraft, 1982, 19 (5): 445~450.
    [161] Surzhikov S T, Gatsonis N A. Plasma Flow Through a Localized Heat Release Region [C]. AIAA 99-3438, 30th AIAA Plasmadynamics and Lasers Conference. Norfolk, VA, 1999.
    [162] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. [M]. Oxford:Clarendon Press,1994.
    [163] Birdsall C K, Langdon A B. Plasma Physics via Computer Simlation [M]. New York:McGraw-Hill,1985.
    [164] Hockney R W, Eastwood J W. Computer Simulation Using Particles [M]. New York:Adam Hilger,1988.
    [165] Samanta Roy R I. Numerical Simulation of Ion Thruster Plume Backflow for Spacecraft Contamination Assessment [D]. USA:MIT(Doctor),1995.
    [166] Samanta Roy R I, Hastings D E, Gatsonis G A. Ion-Thruster Plume Modeling for Backflow Contamination [J]. Journal of Spacecraft and Rocket, 1996, 33 (4): 525~534.
    [167] Samanta Roy R I, Hastings D E, Gatsonis G A. Numerical Simulation of Spacecraft Contamination and Interactions by Ion-Thruster Effluents [J]. Journal of Spacecraft and Rocket, 1996, 33 (4): 535~542.
    [168] Oh D Y. Computational Modeling of Expanding Plasma Plumes in Space Using a PIC-DSMC Algorithm [D]. USA:MIT(Doctor),1997.
    [169] Keidar M, Boyd I D. Plasma Generation and Plume Expansion for a Transmission-Mode Micro-Laser Ablation Plasma Thruster [C]. AIAA 2003-4567, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, 2003.
    [170] Yin X. Axisymmetric Hybrid Numerical Modeling of Pulsed Plasma Thruster Plumes [D]. USA:Worcester Polytechnic Institute(Doctor),1999.
    [171] Gatsonis N A, Yin X. Hybrid (Particle-Fluid) Modeling of Pulsed Plasma Thruster Plumes [J]. Journal of Propulsion and Power, 2001, 17 (5): 945~958.
    [172] Gatsonis N A, Yin X M. Axisymmetric DSMC-PIC Simulation of Quasineutral Partislly Ionized Jets [C]. AIAA 97-2535, 32nd AIAA Thermophysics Conference. Atlanta, GA, 1997.
    [173] Gatsonis N A, Gagne M. Electron Temperature Effects on Pulsed Plasma Thruster Plume Expansion [C]. AIAA 2000-3428, 36th AIAA/ASME/SAE/ASEE JointPropulsion Conference & Exhibit. Huntsville, Alabama, 2000.
    [174]李瀚荪.电路分析基础[M].北京:高等教育出版社,1994.
    [175]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983.
    [176] Moore C E. Atomic Energy Levels [M]. Washington, D.C.:NSRDS,1971.
    [177] Raizer, P. Y. Gas Discharge Physics [M]. Berlin Heidelberg NY:Springer-Verlag,1986.
    [178] Mitchner M, Charles H. Kruger J. Partially Ionized Gases [M]. John Wiley,1994.
    [179]林成森.数值计算方法[M].北京:科学出版社,1998.
    [180]李庆扬,王能超,易大义.数值分析[M].武昌:华中理工大学出版社,1986.
    [181]胡希伟.等离子体理论基础[M].北京:北京大学出版社,2006.
    [182]吴其芬,李桦.磁流体力学[M].长沙:国防科技大学出版社,2007.
    [183] Spitzer L J. Physics of Fully Ionized Gases [M]. Interscience Publishers,1962.
    [184] Deb P, Agarwal R K. Numerical Study of MHD-Bypass Scramjet Inlets with Finite-Rate Chemistry [C]. AIAA 2001-0794, 39th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV, 2001.
    [185] Deb P, Agarwal R. Numerical Simulation of Compressible Viscous MHD Flows with a Bi-Temperature Model for Reducing Supersonic Drag of Blunt Bodies and Scramjet Inlets [C]. AIAA 2000-2419, 31st AIAA Plasmadynamics and Lasers Conference. Denver, CO, 2000.
    [186] Augustinus J, Harada S, agarwal R K, et al. Numerical Solutions of the Eight-Wave Structure Ideal MHD Equations by Modified Runge-Kutta Scheme with TVD [C]. AIAA Paper 97-2398, 28th Plasmadynamics and Lasers Conference. Atlanta, GA, 1997.
    [187] Reksoprodjo H S, Agarwal R. A Kinetic Scheme for Numerical Solution of Ideal Magnetohydrodynamics Equations with a Bi-Temperature Model [C]. AIAA Paper 2000-0448, 38th Aerospace Sciences Meeting & Exhibit. Reno, NV, 2000.
    [188]田正雨.高超声速流动的磁流体力学控制数值模拟研究[D].长沙:国防科学技术大学(博士),2008.
    [189] Roe P L, Balsara D S. Notes on the Eigensystem of Magnetohydrodynamics [J]. Journal of applied Mathematic, 1996, 56 (1): 57~67.
    [190] Turchi P J, Mikellides P G. Modeling of Ablatin-fed Pulsed Plasma Thrusters [C]. AIAA 95-2915, 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, CA, 1995.
    [191] Avatinjan G A, Rylov Yu P, Salichov R S. Electric Propulsion Systems for Small Satellite to Observe the Earth, Small Satellite for Earth Observation [M]. Nerlin:Walter de Gruyter & Co.,1996.
    [192] Keidar M, Boyed D, Beilis I I. Model of Particulate Interaction with Plasma in a Teflon Pulsed Plasma Thruster [J]. Journal of Propulsion and Power, 2001, 17 (1): 125~131.
    [193]吴其芬,陈伟芳.高温稀薄气体热化学非平衡流动的DSMC方法[M].中国长沙:国防科技大学出版社,1999.
    [194] Koura K, Matsumoto H. Variable Soft Sphere Molecular Model for Inverse-power-law or Lennard-Jones Potential [J]. Physics of Fluids A, 1991, 3 (10): 2459~2465.
    [195] Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Material Processing [M]. John Wiley & Sons,1994.
    [196] Sakabe S, Izawa Y. Cross Sections for Resonant Charge Transfer Between Atomsand Their Positive Ions: Collision Velocity≤1 a.u. [J]. Atomic and Nuclear Data Table, 1991, 49: 257~314.
    [197] Bittencourt J A. Fundamental of Plasma Physics [M]. New York:Springer,2004.
    [198]于春肖,穆运峰.预条件广义极小残余新算法[J].数学理论与应用, 2003, 25 (2): 38~42.
    [199]程治胜,张兰.一种改进的混合广义极小剩余算法[J].科学技术与工程, 2008, 8 (19): 5477~5480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700