用户名: 密码: 验证码:
纳秒激光诱导空气等离子体光学诊断与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从实验和理论上研究了纳秒激光诱导空气击穿机制,激光支持爆轰波(LSDW)形成机制与传播特性,激光等离子体的电子密度和冲击波波后气体分子的时空演化规律,以及空气等离子体的碰撞。
     首先,建立了具有数据自动采集功能的马赫-曾德尔数码化干涉测量系统,获得了高质量的等离子体干涉条纹图:提出了针对激光等离子体干涉图的处理方法,得到了高分辨的激光诱导空气等离子体折射率三维空间分布图。
     提出了空气击穿时间的测量方法,并得到了空气击穿时间和作用激光功率密度间的定量关系。实验发现,激光的透射率与其入射能量近似成反比。当入射激光能量较小时,激光的击穿时间与击穿功率密度之积为定值;随着入射能量的增加,并超过某阈值时,击穿时间将达到饱和。进而利用雪崩电离的机制对实验现象给予了解释,并提出了等效脉冲的概念。
     提出了一种基于阴影法和点扫描法的LSDW传播速度测量方法。通过观察等离子体二维屏蔽特征和对等离子体二维屏蔽分布图的处理,获得了不同作用激光能量导致的LSDW传播速度随时间的变化关系。提出了利用激光诱导电子气冲击波的Taylor模型来解释LSDW的形成机制,理论与实验结果吻合得较好。
     通过实验研究了纳秒激光诱导空气等离子体的时空演化过程,观察到等离子体通道的形成,发现激光等离子体动力学膨胀是形成等离子体通道的主要机制,且等离子体膨胀速度迅速衰减是等离子体通道塌陷的主要原因。通过对激光诱导冲击波波后气体分子密度三维分布随时间变化过程的研究,发现了冲击波后的分子密度先增长后衰减的现象,以及分子密度分布从非均匀向均匀分布的演化过程,并认为等离子体膨胀初期内部的各向异性是其主要因素。
     实验研究了激光诱导空气等离子体间的碰撞特性,观察到了碰撞区域冲击波后分子密度和等离子体电子密度的增强现象,提出冲击波碰撞形成的分子迟滞层是导致冲击波后分子密度的增强的主要原因,而电子密度的增强是由于自由电子受到了被迟滞层阻碍的正离子吸引并聚集的结果。
     本文的研究结果对激光诱导空气击穿的理论研究、激光的应用及相关检测技术的发展具有一定的促进作用。
In this dissertation, the laser induced gas breakdown, laser supported detonation wave (LSDW) and propagation mechanisms were systemically investigated in experiment and theory. The evolution of the electron density and the gas density behind the shock wave, as well as the gas plasma collision were investigated.
     First of all, an interferometry system based on Mach-Zehnder interferometer for laser plasma diagnoses was established. It has ability to automatically acquire the experimental data. The hingh quality interferogram was aquired. The method for the processing of the laser interferogram was proposed and high resolution imagings of the 3D distribution of the plasma refractive index were achieved.
     A method for determining the breakdown time of the air was proposed, and further to determine the quantitative relation of the breakdown time and the breakdown intensity. It was found that the transmissivity is inversely proportional to the incident pulse energy approximately. The arithmetic product of the breakdown time and the breakdown intensity is fixed with small pulse energy. However, with increasing the pulse energy, when a threshold was achieved, the breakdown time became saturation. This phenomenon was explained with the avalanche ionization mechanism and the concept of the equivalent pulse was proposed.
     Based on the shadowgraph and point scan technology, a method of measurement of the LSDW velocity was proposed. The characteristics of the plasma two-dimensional shielding were investigated. And then the LSDW velocity as a function of the pulse energy and time was obtained by the plasma two-dimensional shielding image processing. The mechanism of the formation of the LSDW was explained with the Taylor model, and the theory agrees with the experiments results well.
     The evolution of the plasma electron density 3D distribution was investigated in experiment. The results show that the plasma channel has been formed in the early stage of laser induced air plasma, and the plasma expanding velocity rapid attenuation accelerates the plasma channel collapses. The evolution of the gas density 3D distribution behind shock wave front was also investigated. The result shows that, at the initial stage, the gas density was increasing at first and then decreasing, and the evolutionary process of the gas density from non-uniform density distribution to the uniform distribution duo to the anisotropic expansion of the plasma
     Laser induced gas plasma collision was investigated in experiment. From the results, the enhancement gas density behind the shock wave front and the electron density were observed at the collision zone. We think that the enhancement of the gas density behind the shock wave was induced by the formation of the gas stagnation layer, while the enhancement of the electron density was induced by the attraction of the positive ions which were stagnated by the gas molecules.
     The results of this dissertation will facilitate the theoretical study of laser induced gas breakdown, laser applications and the related development of detection technology.
引文
[1]Damon E K, Tomlinson R G. Observation of Ionization of Gases by a Ruby Laser. Appl Opt,1963,2(5):546-546.
    [2]Meyerand R G, Haught a F. Gas Breakdown at Optical Frequencies. Phys Rev Lett, 1963,11(9):401.
    [3]Minck R W. Optical Frequency Electrical Discharges in Gases. J Appl Phys,1964, 35(1):252-254.
    [4]陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社.1996.
    [5]陈笑.高功率激光与水下物质相互作用过程与机理研究,2004.
    [6]Rosen D, Weyl G. Laser-induced breakdown in nitrogen and the rare gases at 0.53 and 0.35 μm. Journal of physics D, Applied physics(Print),1987,20(10):1264-1276.
    [7]Radziemski L, Cremers D. Laser-induced plasmas and applications. CRC Press, 1989.
    [8]Phuoc T X. Laser spark ignition:experimental determination of laser-induced breakdown thresholds of combustion gases. Opt Commun,2000,175(4):419-423.
    [9]Lee J, Knystautas R. Laser spark ignition of chemically reactive gases. Aiaa J,1969, 7:312-317.
    [10]Schmieder R W. Laser spark ignition and extinction of a methane-air diffusion flame. J Appl Phys,1981,52(4):3000-3003.
    [11]Spiglanin T A, Mcilroy A, Fournier E W, Cohen R B, Syage J A. Time-resolved imaging of flame kernels:Laser spark ignition of H_2/O_2/Ar mixtures. Combust Flame, 1995,102(3):310-328.
    [12]Syage J A, Fournier E W, Rianda R, Cohen R B. Dynamics of flame propagation using laser-induced spark initiation:Ignition energy measurements. J Appl Phys,1988, 64(3):1499-1507.
    [13]Phuoc T X, White F P. Laser-induced spark ignition of CH_4/air mixtures. Combust Flame,1999,119(3):203-216.
    [14]Phuoc T X, White F P. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture. Fuel,2002,81(13):1761-1765.
    [15]Phuoc T X. Single-point versus multi-point laser ignition:experimental measurements of combustion times and pressures. Combust Flame,2000,122(4):508-510.
    [16]Lee T-W, Jain V, Kozola S. Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air:propane, dodecane, and jet-A fuel. Combust Flame,2001,125(4):1320-1328.
    [17]Phuoc T X. Laser-induced spark ignition fundamental and applications. Opt Laser Eng,2006,44(5):351-397.
    [18]张平.激光等离子体冲击波与表面吸附颗粒的作用研究.2007,
    [19]Edens a D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L. Study of high Mach number laser driven blast waves. Phys Plasmas, 2004,11(11):4968-4972.
    [20]Sobral H, Villagran-Muniz M, Navarro-Gonzalez R, Raga a C. Temporal evolution of the shock wave and hot core air in laser induced plasma. Appl Phys Lett,2000,77(20): 3158-3160.
    [21]Kurniawan H, Lahna K, Lie T J, Kagawa K, Tjia M O. Detection of Density Jump in Laser-Induced Shock Wave Plasma Using A Rainbow Refractometer. Appl Spectrosc,2001, 55(1):92-97.
    [22]Yoh J J, Lee H, Choi J, Lee K-C, Kim K-H. Ablation-induced explosion of metal using a high-power Nd:YAG laser. J Appl Phys,2008,103(4):043511-043516.
    [23]Yoh J J, Kim K-H. Shock compression of condensed matter using Eulerian multimaterial method:Applications to multidimensional shocks, deflagration, detonation, and laser ablation. J Appl Phys,2008,103(11):113507-113513.
    [24]Sy-Bor W, Xianglei M, Ralph G, Richard E R. Expansion of the laser ablation vapor plume into a background gas. I. Analysis. J Appl Phys,2007,
    [25]鲁欣,张喆,郝作强,王兆华,魏志义,江秀臣,张杰.激光引雷研究中的若干基础物理问题.高电压技术,2008,10
    [26]Bohn W L, Schall W O. Laser Propulsion Activities in Germany; proceedings of the BEAMED ENERGY PROPULSION:First International Symposium on Beamed Energy Propulsion, Huntsville, Alabama (USA), F,2003. AIP.
    [27]Ageichik a A, Egorov M S, Rezunkov Y A, Safronov a L, Stepanov V V. Experimental Study on Thrust Characteristics of Airspace Laser Propulsion Engine; proceedings of the BEAMED ENERGY PROPULSION:Second International Symposium on Beamed Energy Propulsion, Sendai (JAPAN), F,2004. AIP.
    [28]Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, Mccanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, Mckenna P. Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat Phys,2007,3(1):58-62.
    [29]Schwoerer H, Pfotenhauer S, Jackel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T. Laser-plasma acceleration of quasi-monoenergetic protons from micro structured targets. Nature,2006,439(7075): 445-448.
    [30]Schollmeier M, Becker S, Geissel M, Flippo K, Blazevic A, Gaillard S, Gautier D, Gruner F, Harres K, Kimmel M. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys Rev Lett,2008,101(055004).
    [31]Zhaoyang C, Davide B, Annemie B. Effect of ambient pressure on laser ablation and plume expansion dynamics:A numerical simulation. J Appl Phys,2006,
    [32]Thiyagarajan M, Scharer J. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air. J Appl Phys,2008,104(1): 013303-013301.
    [33]Thiyagarajan M, Scharer J E. Experimental Investigation of 193-nm Laser Breakdown in Air. Plasma Science, IEEE Transactions on,2008,36(5):2512-2521.
    [34]Wu B, Shin Y C, Pakhal H, Laurendeau N M, Lucht R P. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air. Physical review E, Statistical, nonlinear, and soft matter physics,2007, 76(2):026405.
    [35]Harilal S S. Influence of spot size on propagation dynamics of laser-produced tin plasma. J Appl Phys,2007,
    [36]Zel'dovich Y. Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications,2002.
    [37]Morgan C G. Laser-induced breakdown of gases. Rep Prog Phys,1975,38(5): 621-665.
    [38]Hughes T. Plasmas and laser light. John Wiley & Sons New York,1975.
    [39]Keldysh L. Ionization in the field of a strong electromagnetic wave. Soviet Physics-JETP,1965,20:1307-1314.
    [40]Gold A, Bebb H B. Theory of Multiphoton Ionization. Phys Rev Lett,1965,14(3): 60.
    [41]Demichelis C. Laser induced gas breakdown:A bibliographical review. Quantum Electronics, IEEE Journal of,1969,5(4):188-202.
    [42]Phelps A. Theory of growth of ionization during laser breakdown. Physics of Quantum Electronics,1966,
    [43]Dalgarno A, Lane N. Free-free transitions of electrons in gases. The Astrophysical Journal,1966,145:623-633.
    [44]Kroll N, Watson K M. Theoretical Study of Ionization of Air by Intense Laser Pulses. Phys Rev A,1972,5(4):1883.
    [45]Chan C H, Moody C D, Mcknight W B. Significant loss mechanisms in gas breakdown at 10.6 mu. J Appl Phys,1973,44(3):1179-1188.
    [46]Smith D. Laser induced gas breakdown and plasma interaction; proceedings of the AIAA, Aerospace Sciences Meeting and Exhibit,38th, Reno, NV; UNITED STATES; 10-13 Jan 2000, F,2000.
    [47]Young M, Hercher M. Dynamics of Laser-Induced Breakdown in Gases. J Appl Phys,1967,38(11):4393-4400.
    [48]Alcock A, Kato K, Richardson M. New features of laser-induced gas breakdown in the ultraviolet. Opt Commun,1972,6:342-344.
    [49]Williams W E, Soileau M J, Van Stryland E W. Picosecond air breakdown studies at 0.53 mu m. Appl Phys Lett1983,43(4):352-354.
    [50]Dewhurst R J. Comparative data on molecular gas breakdown thresholds in high laser-radiation fields. J Phys D Appl Phys, 1978,11(16):L191-L195.
    [51]Byron K C, Pert G J. Measurement of the wavelength dependence of the threshold of laser-induced gas breakdown. Journal of Physics D (Applied Physics),1979,12(3): 410-418.
    [52]Phuoc T X. Laser spark ignition:experimental determination of laser-induced breakdown thresholds of combustion gases. Opt Commun,2000,175(4-6):419-423.
    [53]Turcu I C E, Gower M C, Huntington P. Measurement of KrF laser breakdown threshold in gases. Opt Commun,1997,134(1-6):66-68.
    [54]Bradley D, Sheppard C G W, Suardjaja I M, Woolley R. Fundamentals of high-energy spark ignition with lasers. Combust Flame,2004,138(1-2):55-77.
    [55]Chylek P, Jarzembski M A, Srivastava V, Pinnick R G. Pressure dependence of the laser-induced breakdown thresholds of gases and droplets. Appl Opt,1990,29(15): 2303-2306.
    [56]Hickling R, Smith W, Engineers S O A. Combustion bomb tests of laser ignition. Society of Automotive Engineers,1974.
    [57]Pinnick R G, Chylek P, Jarzembski M, Creegan E, Srivastava V, Fernandez G, Pendleton J D, Biswas A. Aerosol-induced laser breakdown thresholds:wavelength dependence. Appl Opt,1988,27(5):987-996.
    [58]Raizer I. Heating of a gas by a powerful light pulse. Soviet Physics-JETP,1965,21: 1009-1017.
    [59]Pirri a N. Theory for momentum transfer to a surface with a high-power laser. Phys Fluids,1973,16(9):1435-1440.
    [60]Holmes B S, Erlich D C. Surface pressures from laser-supported detonations. J Appl Phys,1977,48(6):2396-2403.
    [61]Cabalin L M, Laserna J J. Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim Acta B, 1998,53(5):723-730.
    [62]Gatti M, Palleschi V, Salvetti A, Singh D P, Vaselli M. Spherical shock waves in laser produced plasmas in gas. Opt Commun,1988,69(2):141-146.
    [63]Ramsden S, Savic P, Ottawa N R C O C. A radiative detonation model for the development of a laser-induced spark in air. Defense Technical Information Center,1964.
    [64]Taylor G. The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences (1934-1990),1950,201(1065):159-174.
    [65]Phuoc T, White F. An Optical and Spectroscopic Study of the Laser-Induced Spark for Determination of the Laser Minimum Ignition Energy. PROCEEDINGS-COMBUSTION INSTITUTE,2002,29(2):1621-1628.
    [66]Godlstein S. Modern developments in fluids dynamics. Dover Publications, Inc. 1965.
    [67]Von Neumann J. The point source solution. Collected works,1963,6:219-237.
    [68]谢多夫,沈青.力学中的相似方法与量纲理论.科学出版社,1982.
    [69]Bach G, Lee J. An analytical solution for blast waves. Aiaa J,1970,8(271).
    [70]Oshima K. Quasisimilar Solutions of Blast Waves. Report,1964,29(8):119-134.
    [71]Brode H. Numerical solutions of spherical blast waves. J Appl Phys,1955,26(766.
    [72]Dabora E. Variable energy blast waves. Aiaa J,1972,10:1384-1386.
    [73]Freeman R. Variable-energy blast waves. Journal of Physics D Applied Physics, 1968,1(12):1697-1710.
    [74]Director M, Dabora E. Predictions of variable-energy blast waves. Aiaa J,1977,15: 1315-1321.
    [75]Barenblatt G, Guirguis R, Kamel M, Kuhl A, Oppenheim A, Zel'dovich Y. Self-similar explosion waves of variable energy at the front. Journal of Fluid Mechanics Digital Archive,2006,99(04):841-858.
    [76]Bundy M. A non-similar solution for blast waves driven by an asymptotic piston expansion, F,1983.
    [77]李鸿志,高树滋.带膛口装置的膛口流场与冲击波形成机理.华东工程学院学报.1979.
    [78]卞保民,侯枫.激光等离子体空气冲击波前参量的测定及研究.中国激光,2001,28(002):155-159.
    [79]卞保民,杨玲,陈笑,倪晓武.激光等离子体及点爆炸空气冲击波波前运动方程的研究.物理学报,2002,51(004):809-813.
    [80]Zhi-Hua L, Duan-Ming Z, Bo-Ming Y, Li G. Characteristics of plasma shock waves generated in the pulsed laser ablation process. Chinese Phys Lett,2002,19:1841-1843.
    [81]赵瑞.激光等离子体冲击波传输及空泡动力学特性研究.2007,
    [82]Fujimoto J, Lin W, Ippen E, Puliafito C, Steinert R. Time-resolved studies of Nd: YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation. Invest Ophth Vis Sci,1985,26(12):1771-1777.
    [83]Zysset B, Fujimoto J, Deutsch T. Time-resolved measurements of picosecond optical breakdown. Appl Phys B:lasers O,1989,48(2):139-147.
    [84]Doukas A, Zweig A, Frisoli J, Birngruber R, Deutsch T. Non-invasive determination of shock wave pressure generated by optical breakdown. Appl Phys B:lasers O,1991, 53(4):237-245.
    [85]Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am,1996,100(1): 148-165.
    [86]Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. Journal of Fluid Mechanics Digital Archive,2006,206:299-338.
    [87]卞保民,陈笑,夏铭,杨玲,沈中华.液体中激光等离子体冲击波波前传播特性研究及测试.物理学报,2004,53(002):508-513.
    [88]Chen J, Ni X, Lu J, Bian B, Wang Y. Laser-induced plasma shock wave and cavity on metal surface underwater. Microw Opt Techn Let,2000,25(5):
    [89]Hinsch K, Brinkmeyer E. Investigation of very short cavitation shock waves by coherent optical methods, F,1977.
    [90]Xiao-Wu Ni J L a-Z H. Interferometric diagnosis of laser-produced plasma on an aluminum target. Microw Opt Techn Let,1997,14(5):271-274.
    [91]Zhang H, Lu J, Shen Z, Ni X. Investigation of 1.06 μm laser induced plasma in air using optical interferometry. Opt Commun,2009,
    [92]Schiffers W, Shaw S, Emmony D. Acoustical and optical tracking of the collapse of a laser-generated cavitation bubble near a solid boundary. Ultrasonics,1998,36(1-5): 559-563.
    [93]Shaw S, Schiffers W, Emmony D. Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity. The Journal of the Acoustical Society of America,2001,110(1822).
    [94]Harilal S S, Bindhu C V, Tillack M S, Najmabadi F, Gaeris a C. Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J Appl Phys,2003, 93(5):2380-2388.
    [95]Grava J, Purvis M A, Filevich J, Marconi M C, Rocca J J, Dunn J, Moon S J, Shlyaptsev V N. Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry. Phys Rev E,2008,78(1):9.
    [96]Smith R A, Lazarus J, Hohenberger M, Marocchino A, Robinson J S, Chittenden J P, Moore a S, Gumbrell E T, Dunne M. High resolution imaging of colliding blast waves in cluster media. Plasma Phys Contr F,2007,49(12B):B117-B124.
    [97]Kim K Y, Alexeev I, Milchberg H M. Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides. Phys Plasmas,2005,12(5):056712-056717.
    [98]孙承纬,陆启生,范正修.激光辐照效应.北京:国防工业出版社.2002.
    [99]Nakata Y, Kaibara H, Okada T, Maeda M. Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa[sub 2]Cu[sub 3]O[sub 7-x]. J Appl Phys,1996,80(4):2458-2466.
    [100]Chen Y-L, Lewis I W L. Visualization of laser-induced breakdown and ignition. Opt Express,2001,9(7):360-372.
    [101]Weber B V, Fulghum S F. A high sensitivity two-color interferometer for pulsed power plasmas. Rev Sci Instrum,1997,68:1227-1232.
    [102]Breitling D, Schittenhelm H, Berger P, Dausinger F, Hugel H. Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths. Appl Phys A:mater,1999,69(0):S505-S508.
    [103]Vest C M. Holographic Interferometry. New York:Wiley,1979.
    [104]Villagran-Muniz M, Sobral H, Camps E. Shadowgraphy and interferometry using a CW laser and a CCD of a laser-induced plasma in atmospheric air. Ieee T Plasma Sci,2001, 29(4):613-616.
    [105]Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am,1982,72(1): 156.
    [106]Kemao Q. Two-dimensional windowed Fourier transform for fringe pattern analysis:Principles, applications and implementations. Opt Laser Eng,2007,45(2): 304-317.
    [107]Bioucas-Dias J M, Valadao G. Phase Unwrapping via Graph Cuts. Pattern Recognition and Image Analysis.2005:360-367.
    [108]Bioucas-Dias J, Valadao G. Discontinuity Preserving Phase Unwrapping Using Graph Cuts. Energy Minimization Methods in Computer Vision and Pattern Recognition. 2005:268-284.
    [109]Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H. Reconstruction of Abel-transformable images:The Gaussian basis-set expansion Abel transform method. Rev Sci Instrum,2002,73(7):2634-2642.
    [110]Tomassini P. G, A.; Gizzi, L. A.; Numico, R.; Galimberti, M.; Giulietti, D.; Borghesi, M. Application of novel techniques for interferogram analysis to laser-plasma femtosecond probing. Laser Part Beams,2002,20(2):195-199
    [111]Asaki T J, Campbell P R, Chartrand R, Powell C E, Vixie K R, Wohlberg B E. Abel inversion using total variation regularization:applications. Inverse Problems in Science and Engineering,2006,14:873-885.
    [112]Chattopadhyay a K. Abel inversion using Bessel function as a radial basis function for sparse spectroscopic data. Plasma Devices Oper,2008,16(2):115-126.
    [113]Pedretti E, Traub W A, Monnier J D, Millan-Gabet R, Carleton N P, Schloerb F P, Brewer M K, Berger J-P, Lacasse M G, Ragland S. Robust determination of optical path difference:fringe tracking at the Infrared Optical Telescope Array interferometer. Appl Opt, 2005,44(25):5173-5179.
    [114]Shao M, Staelin D H. First fringe measurements with a phase-tracking stellar interferometer. Appl Opt,1980,19(9):1519-1522.
    [115]Lawson P R. Group-delay tracking in optical stellar interferometry with the fast Fourier transform. J Opt Soc Am A,1995,12(2):366-374.
    [116]贺安之;阎苗张王.从流场干涉图定量计算冲击波传播速度和压力.爆炸与冲击,Explosion and Shock Waves,1993.3.
    [117]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社.2002.
    [118]靳国旺.InSAR获取高精度DEM关键处理技术研究.2007
    [119]Ghiglia D, Pritt M. Two-dimensional phase unwrapping:theory, algorithms, and software. Wiley New York,1998.
    [120]李平湘,杨杰.雷达干涉测量原理与应用.由测绘出版社出版,2006.
    [121]Goldstein R, Zebker H, Werner C. Satellite radar interferometry:two-dimensional phase unwrapping. Radio Sci,23(4):
    [122]路元刚,王向朝,何国田,钟向红,郑德锋.基于分支设置的质量导引相位展开算法.光学学报,2005,25(004):460-464.
    [123]张永志,王卫东,李萍.InSAR图像的最小范数法相位解缠研究.地球科学与环境学报,2005,27(001):80-83.
    [124]Chen C, Zebker H. Phase unwrapping for large SAR interferograms:statistical segmentation and generalized network models. Ieee T Geosci Remote,2002,40(8): 1709-1719.
    [125]刘国林,独知行,薛怀平,郝晓光.卡尔曼滤波在InSAR噪声消除与相位解缠中的应用.大地测量与地球动力学,2006,26(002):66-69.
    [126]穆冬,朱兆达.干涉SAR最小二乘二维相位展开法的改进.现代雷达,2001,23(002):23-26.
    [127]裴怀宁,马德宝,郑芳.INSAR匹配中基于高精度枝切法解缠的插值核选取方法.信息工程大学学报,2005,6(003):76-78.
    [128]Quiroga J, Servin M, Cuevas F. Modulo 2π fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm. Journal of the Optical Society of America A,2002,19(8):1524-1531.
    [129]Abutaleb A. Number theory and bootstrapping for phase unwrapping. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002, 49(5):632-638.
    [130]陈进军.Fft法进行干涉测试的研究.2004,
    [131]陈法新,郑坚,李正宏,徐荣昆.三种逆阿贝尔变换方法比较.数值计算与计算机应用,2007,03:
    [132]阮怀林,万宝年,张先梅,刘建坤.用勒让德级数处理Abel变换.物理学报,2000,12:
    [133]郑坚,俞昌旋,李文洪,郑志坚.全息干涉诊断等离子体电子密度的数值研究.强激光与粒子束,1997,02:
    [134]Freeman M P, Katz S. Determination of a Radiance-Coefficient Profile from the Observed Asymmetric Radiance Distribution of an Optically Thin Radiating Medium. J Opt Soc Am,1963,53(10):1172-1176.
    [135]Minerbo G N, Levy M E. Inversion of Abel's Integral Equation by Means of Orthogonal Polynomials. Siam J Numer Anal,1969,6(4):598-616.
    [136]Piessens R. Calculation of the radial distribution of emitters in a cylindrical source. Journal Name:Comput Phys Commun, v 5, no 4, pp 294-298; Other Information:Orig Receipt Date:31-DEC-73,1973, Medium:X.
    [137]Nestor O H, Olsen H N. Numerical Methods for Reducing Line and Surface Probe Data. Siam Rev,1960,2(3):200-207.
    [138]lvarez R, Rodero A, Quintero M C. An Abel inversion method for radially resolved measurements in the axial injection torch. Spectrochim Acta B,2002,57(11): 1665-1680.
    [139]Deutsch M, Beniaminy I. Inversion of Abel's integral equation for experimental data. J AppI Phys,1983,54(1):137-143.
    [140]Fleurier C, Chapelle J. Inversion of Abel's integral equation-application to plasma spectroscopy. Journal Name:Comput Phys Commun, v 7, no 4, pp 200-206; Other Information:Orig Receipt Date:31-DEC-74; Bib Info Source:NL (Netherlands (sent to DOE from)),1974, Medium:X.
    [141]邵其鋆,何煜,郭文康,须平,臧德鸿.直流等离子体弧温度测量与模拟计算结果的比较.物理学报,1999,09:
    [142]邵华,朱丹平,吴毅雄.Abel逆变换的数值算法.上海交通大学学报,2005,8:[143] Hasinoff S. Three-Dimensional Reconstruction of Fire from Images; University of Toronto,2002.
    [144]Gonzalez R, Woods R. Digital image processing. Prentice Hall,2007.
    [145]Canny J. A Computational Approach to Edge Detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1986, PAMI-8(6):679-698.
    [146]Hilditch C. Linear skeletons from square cupboards. Pattern Recognition: Introduction and Foundations,1973,299.
    [147]Zhang T, Suen C. A fast parallel algorithm for thinning digital patterns. Commun Acm,1984,27(3):236-239.
    [148]Deutsch E. Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun Acm,1972,15(9):827-837.
    [149]戴福隆,王朝阳.条纹图象的数字化自动分析处理技术之一:条纹中心法.光子学报,1999,08:
    [150]施启乐,王从军,黄树槐.数学形态学图像细化算法在RE中的应用研究.华中科技大学学报(自然科学版), 2004,07:
    [151]Zhang D, Ma M, Arola D. Fringe skeletonizing using an improved derivative sign binary method. Opt Laser Eng,2002,37(1):51-62.
    [152]Hermann J, Floch T L. Generation of absorption waves by CO[sub 2] laser pulses at low power density. J Appl Phys,2004,96(6):3084-3094.
    [153]Soubacq S, Pignolet P, Schall E, Batina J. Investigation of a gas breakdown process in a laser-plasma experiment. Journal of Physics D (Applied Physics),2004,37(19): 2686-2702.
    [154]Soubacq S, Pignolet P, Schall E, Batina J. Investigation of a gas breakdown process in a laser-plasma experiment. J Phys D Appl Phys,2004,37(19):2686-2702.
    [155]Hill G, James D, Ramsden S. Breakdown thresholds in rare and molecular gases using pulsed 10-6 pm radiation. J Phys D:Appl Phys,1972,5.
    [156]Smith D C. Gas-Breakdown Dependence on Beam Size and Pulse Duration with 10.6-mu Wavelength Radiation. Appl Phys Lett,1971,19(10):405-408.
    [157]Chen Y L, Lewis J W L, Parigger C. Spatial and temporal profiles of pulsed laser-induced air plasma emissions. Journal of Quantitative Spectroscopy and Radiative Transfer,2000,67(2):91-103.
    [158]Yablonovitch E. Self-phase modulation and short-pulse generation from laser-breakdown plasmas. Phys Rev A,1974,10(5):1888.
    [159]Yablonovitch E. Self-Phase Modulation of Light in a Laser-Breakdown Plasma. Phys Rev Lett,1974,32(20):1101.
    [160]Song K-D, Alexander D R. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets. J Appl Phys,1994,76(6):3302-3312.
    [161]Docchio F, Regondi P, Capon M, Mellerio J. Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses.2:Plasma luminescence and shielding. Appl Opt,1988,27(17):3669-3674.
    [162]Vogel A, Nahen K, Theisen D, Noack J. Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance. Selected Topics in Quantum Electronics, IEEE Journal of,1996, 2(4):847-860.
    [163]张树材.激波和高温流体动力学现象物理学.上.1980.
    [164]李维新.一维不定常流与冲击波.国防工业出版社,2003.
    [165]钱祖文.非线性声学.科学出版社,1992.
    [166]Mori K, Komurasaki K, Arakawa Y. Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. J Appl Phys. 2004,95(11):5979-5983.
    [167]Whitman G. Linear and nonlinear waves. New York,1999.
    [168]Wen S-B, Mao X, Greif R, Russo R E. Analysis of laser ablation:Contribution of ionization energy to the plasma and shock wave properties. J Appl Phys,2007,102(4): 043103-043110.
    [169]Najaf-Zadeh R A. Interferometric measurement of gas densities behind the shock front of a laser-triggered air spark in the nanosecond regime. J Appl Phys,2000,87(6): 3180-3182.
    [170]Dittrich T R, Haan S W, Marinak M M, Pollaine S M, Hinkel D E, Munro D H, Verdon C P, Strobel G L, Mceachern R, Cook R C, Roberts C C, Wilson D C, Bradley P A, Foreman L R, Varnum W S. Review of indirect-drive ignition design options for the National Ignition Facility; proceedings of the The 40th annual meeting of the division of plasma physics of the american physical society, New Orleans, Louisiana (USA), F,1999 [C]. AIP.
    [171]Clark R W, Davis J, Velikovich A, Whitney K G. X-ray lasing in colliding plasmas; proceedings of the Conference on Soft X-Ray Lasers and Applications, San Diego, Ca, F Jul 10-11,1995 [C]. Spie-Int Soc Optical Engineering.
    [172]Smith R, Lazarus J, Hohenberger M, Moore A, Robinson J, Gumbrell E, Dunne M. Colliding Blast Waves Driven by the Interaction of a Short-Pulse Laser with a Gas of Atomic Clusters. Astrophys Space Sci,2007,307(1):131-137.
    [173]Bosch R A, Berger R L, Failor B H, Delamater N D, Charatis G, Kauffman R L. Collision and interpenetration of plasmas created by laser-illuminated disks. Physics of Fluids B:Plasma Physics,1992,4(4):979-988.
    [174]Harilal S S, Bindhu C V, Kunze H J. Time evolution of colliding laser produced magnesium plasmas investigated using a pinhole camera. J Appl Phys,2001,89(9): 4737-4740.
    [175]Luna H, Kavanagh K D, Costello J T. Study of a colliding laser-produced plasma by analysis of time-and space-resolved image spectra. J Appl Phys,2007,101(3):
    [176]Beduneau J-L, Ikeda Y. Spatial characterization of laser-induced sparks in air. Journal of Quantitative Spectroscopy and Radiative Transfer,2004,84(2):123-139.
    [177]Yi Z, Yu-Tong L, Zhi-Yuan Z, Feng L, Jia-Yong Z, Xuan L X, Xin L, Jie Z. Evolution of shock waves formed by laser-induced breakdown in air. Chinese Phys,2007, 16(12):3728-3731.
    [178]张翼,郑志远,李玉同,刘峰,李汉明,鲁欣,张杰.两个冲击波相互碰撞的演化过程.物理学报,2007,10):
    [179]Berger R L, Albritton J R, Randall C J, Williams E A, Kruer W L, Langdon a B, Hanna C J. Stopping and thermalization of interpenetrating plasma streams. Physics of Fluids B:Plasma Physics,1991,3(1):3-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700