用户名: 密码: 验证码:
人源性益生菌降胆固醇机制及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,心脑血管疾病已成为许多国家居民的首要死因,而引发心脑血管疾病的重要原因之一就是高胆固醇血症。药物治疗一直是临床处理高胆固醇血症的主要方式,然而降胆固醇药物往往存在着一定的副作用。益生菌是一类能够对人体健康起到促进作用的活体微生物,通常具有较高的安全性,因此使用益生菌预防和治疗高胆固醇血症具有重要意义。在本研究中,从27份人类粪便样品中分离出了150株乳酸菌,以该150株乳酸菌为受试菌株,对潜在的降胆固醇益生菌进行了筛选,同时并对筛选出的菌株的体外降胆固醇的机制、功能特性的影响因素及体内降胆固醇功能等进行了研究。
     基于胆盐解离途径对潜在的降胆固醇益生菌进行了筛选,最终筛选出干酪乳杆菌F0822、干酪乳杆菌F0422、屎肠球菌F0511和屎肠球菌IN7.12等4株乳酸菌;基于DCA脱除途径对潜在的降胆固醇益生菌进行了筛选,干酪乳杆菌F0822被最终筛选出来。干酪乳杆菌F0822是同时具有较强胆盐解离能力和脱氧胆酸(DCA)脱除能力的潜在降胆固醇益生菌。
     对上述4株乳酸菌的胆盐解离特性进行了研究,获得了如下发现:⑴胆盐直接影响菌株胆盐水解酶(BSH)的分布。在无胆盐的培养条件下,上述4株乳酸菌的BSH几乎全部集中在细胞内,而在含胆盐的培养条件下,胞内的BSH有部分转移到了细胞外;⑵细菌细胞膜阻碍了胞内的BSH对底物胆盐的解离作用,因而裂解细胞比活细胞具有更强的胆盐解离能力;⑶干酪乳杆菌F0822和干酪乳杆菌F0422活细胞对甘氨酸结合胆盐具有较强的解离能力,而屎肠球菌F0511和屎肠球菌IN7.12则对牛磺酸结合胆盐具有较强的解离能力。
     对干酪乳杆菌F0822脱除DCA的机制进行了研究,发现干酪乳杆菌F0822脱除DCA的机制应该主要归结为细胞壁的S层蛋白对DCA的吸附作用。该S层蛋白对DCA的吸附作用是在疏水作用推动作用下发生的氢键吸附。DCA的羧基是吸附在S层蛋白上的主要基团。采用现代仪器手段对该S层蛋白的理化特性进行了表征,发现该S层蛋白的分子量为43 kDa、等电点为9.7、热变性温度为78℃,含40.8%的疏水性氨基酸,不含半胱氨酸。
     在体外研究了吐温80对干酪乳杆菌F0822和干酪乳杆菌F0422功能特性的影响,发现0.2%(v/v)的吐温80能显著(P<0.05)增强两株干酪乳杆菌的胆盐解离能力和胆盐耐受能力。吐温80增强该两株菌胆盐解离能力的机制与吐温80增强菌株胞外的BSH的活性有关,而吐温80增强该两株菌胆盐耐受能力的途径与吐温80降低菌株胞内物质泄漏程度和增加菌株细胞内16:0游离脂肪酸的含量有关。
     在体外研究了氯化钙对干酪乳杆菌F0822和干酪乳杆菌F0422功能特性的影响,发现0.3%(m/v)的氯化钙能显著(P<0.05)增强该两株菌的黏附能力。对于干酪乳杆菌F0822,氯化钙增强菌株黏附能力的途径与钙离子介导S层蛋白与上皮细胞间的黏附作用有关;而对于干酪乳杆菌F0422,氯化钙增强菌株黏附能力的途径与钙离子介导脂磷壁酸与上皮细胞间的黏附作用有关。
     采用大鼠对干酪乳杆菌F0822和干酪乳杆菌F0422的体内降胆固醇功能进行了评价,发现干酪乳杆菌F0822在低剂量(1×108 CFU/mL饮用水)下就能显著(P<0.05)降低大鼠血清TC、LDL-C及肝脏TC水平,而干酪乳杆菌F0422只有在高剂量(1×109 CFU/mL饮用水)下才能发挥如此作用。增加大鼠每日粪便中总胆汁酸的排泄量是该两株菌在体内发挥降胆固醇功能的主要机制。
     在大鼠体内研究了0.6%(v/v)吐温80和0.1%氯化钙(m/v)的混合物对干酪乳杆菌F0822和干酪乳杆菌F0422降胆固醇功能的影响,发现该混合物可显著(P<0.05)增强干酪乳杆菌F0822和干酪乳杆菌F0422降低大鼠血清TC和LDL-C水平的能力。这提示该混合物可以用作干酪乳杆菌F0822和干酪乳杆菌F0422在体内发挥降胆固醇功能的促进剂。
Cardiovascular and cerebrovascular diseases are presently the leading causes of death in many countries, and hypercholesterolemia is a major reason leading to such diseases. Medications are the main approach for managing hypercholesterolemia. However, there are intractable side effects of the medication. Probiotics are viable microorganisms that have a beneficial effect to human heath when ingested. Probiotics are generally regarded as safe for human consumption, and therefore, use of probiotics to prevent or control hypercholesterolemia has important significance. In this study, 150 lactic acid bacteria (LAB) were isolated from 27 human fecal samples. The probiotics with potential cholesterol-lowering function were screened from the 150 LAB, and subsequently the in vitro cholesterol-lowering mechanisms, influencing factor of functional properties and in vivo cholesterol-lowering effects of the selected strains were investigated.
     Based on bile salt deconjugation pathway, 4 LAB (Lactobacillus casei F0822, Lactobacillus casei F0422, Enterococcus faecium F0511 and Enterococcus faecium IN7.12) were screened out. Based on deoxycholic acid (DCA) removal pathway, L. casei F0822 was screened out. L. casei F0822 was a potential cholesterol-lowering probiotic that had stronger bile deconjugation ability as well as a stronger DCA removal ability.
     The 4 LAB as mentioned above were investigated for the bile salt deconjugation property. The following conclusions were drawn: (1) Bile salts markedly affected bile salt hydrolase (BSH) location of the strains. In the absence of bile salts, BSH of the strains was located in intercellular fractions almost entirely, and in the presence of bile salts, a portion of intercellular BSH was transfered to extracellular broth. (2) Cellular membranes blocked the deconjugation action of intercellular BSH against conjugated bile salts, and thus resulted in that the lysed cells of the strains had stronger bile salt deconjugation ability than the whole cells. (3) The viable cells from L. casei F0822 and L. casei F0422 showed stronger deconjugation activity against glyco-conjugated bile salts, and the viable cells from E. faecium F0511 and E. faecium IN7.12 showed stronger deconjugation activity against tauro-conjugated bile salts.
     The mechanisms on DCA removal for L. casei F0822 were investigated. It was concluded that the DCA removal action for L. casei F0822 should be attributed to binding of the S-layer protein on DCA. The binding action belongs to hydrogen-bond binding that occurs under hydrophobic action of DCA. Carboxyl of DCA was the main group bound to the S-layer protein. The physicochemical properties of the S-layer protein were determined using modern instruments, and results demonstrated that molecular weight, isoelectric point and thermal denaturation temperature of the S-layer protein were 43 kDa, 9.7 and 78℃, respectively. Moreover, the S-layer protein contained 40.8% hydrophobic amino acids and are absent of cysteine.
     The effects of tween 80 on functional properties of L. casei F0822 and L.casei F0422 were investigated in vitro. It was found that 0.2% (v/v) tween 80 could significantly (P<0.05) enhance bile salt dedonjugation ability and bile salt tolerance ability of the strains. The mechanism on the tween 80 enhanced bile salt deconjugation ability of the strains was related to the tween 80 enhanced activity of extracellular BSH of the strains. The mechanism on the tween 80 enhanced bile salt tolerance ability of the strains was related to the tween 80 reduction in the degree of intercellular material leakage and enhanced the percentage of intercellular 16:0 free fatty acid to total intercellular free fatty acids.
     The effects of CaCl2 on functional properties of L. casei F0822 and L. casei F0422 were investigated in vitro. It was found that 0.2% (m/v) tween 80 could significantly (P<0.05) enhance adhesive ability of the strains. For L. casei F0422, such phenomenon was related to the Ca ion mediated adhesive action between lipteichoic acid and the epithelial cell. For L. casei F0422, such phenomenon was related to the Ca ion mediated adhesive action between the S-layer protein and the epithelial cell. The in vivo cholesterol-lowering effects of L. casei F0822 and L. casei F0422
     were investigated in rats. The results demonstrated that L. casei F0822 could significantly (P<0.05) decrease serum TC, LDL-C and liver TC levels of rats at a low dose(1×108 CFU/mL driking water), while L. casei F0422 could significantly (P<0.05) decrease serum TC, LDL-C and liver TC levels of rats only under a high dose(1×109 CFU/mL driking water). It was the main cholesterol-lowering mechanism for the two strains to increase daily total fecal bile acid excresion of rats.
     The mixture of 0.6% (v/v) tween 80 and 0.1% (m/v) CaCl2 could significantly (P<0.05) enhance the potential capability of L. casei F0822 and L. casei F0422 to decrease serum TC and LDL-C levels of rats. This finding suggested that such a mixture might have potential as a facilitating agent that helps L. casei F0822 and L. casei F0422 to exert a cholesterol-lowering function.
引文
[1] Lee C M Y, Barzi F, Woodward M, et al. Adult Height and the Risks of Cardiovascular Disease and Major Causes of Death in the Asia-Pacific Region: 21 000 Deaths in 510 000 Men and Women[J]. International Journal of Epidemiology, 2009, 38(4):1060-1071.
    [2] Jain K S, Kathiravan M K, Somani R S, et al. The Biology and Chemistry of Hyperlipidemia[J]. Bioorganic and Medicinal Chemistry, 2007, 15(14): 4674- 4699.
    [3]刘梅林.常用调脂药物的分类、用途及主要副作用(续3)[J].中国循环杂志, 2010, 25(1):69-70.
    [4] Florentin M, Liberopoulos E N, Elisaf M S. Ezetimibe-Associated Adverse Effects: What the Clinician Needs to Know[J]. International Journal of Clinical Practice, 2008, 62(1):88-96.
    [5]张灼阳,刘畅,郭晓奎.益生菌的安全性[J].微生物学报, 2008, 48(2): 257-261.
    [6] Kushiro A, Chervaux C, Cools-Portier S, et al. Antimicrobial Susceptibility Testing of Lactic Acid Bacteria and Bifidobacteria by Broth Microdilution Method and Etest[J]. International Journal of Food Microbiology, 2009, 132(1):54-58.
    [7] Grimoud J, Durand H, Courtin C, et al. In Vitro Screening of Probiotic Lactic Acid Bacteria and Prebiotic Glucooligosaccharides to Select Effective Synbiotics[J]. Anaerobe, 2010, 16(5):493-500.
    [8] Gao X W, Mubasher M, Fang C Y, et al. Dose-Response Efficacy of a Proprietary Probiotic Formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for Antibiotic-Associated Diarrhea and Clostridium difficile-Associated Diarrhea Prophylaxis in Adult Patients[J]. American Journal of Gastroenterology, 2010, 105(7):1636-1641.
    [9] Perez-Cano F J, Dong H L, Yaqoob P. In Vitro Immunomodulatory Activity of Lactobacillus fermentum CETA5716 and Lactobacillus salivarius CETA5713: Two Probiotic Strains Isolated from Human Breast Milk[J]. Immunobiology, 2010, 215(12):996-1004.
    [10] Ma E L, Choi Y J, Choi J, et al. The Anticancer Effect of Probiotic Bacillus polyfermenticus on Human Colon Cancer Cells Is Mediated through ErbB2 and ErbB3 Inhibition[J]. International Journal of Cancer, 2010, 127(4):780-790.
    [11] McNamara J R, Warnick G R, Cooper G R. A Brief History of Lipid andLipoprotein Measurements and Their Contribution to Clinical Chemistry[J]. Clinica Chimica Acta, 2006, 369(2):158-167.
    [12] Stauffer R D, Bischoff F. Solubility Determination of Cholesterol Polymorphs in Organic Solvents[J]. Clinical Chemistry, 1966, 12(4):206-210.
    [13] Berkowitz M L. Detailed Molecular Dynamics Simulations of Model Biological Membranes Containing Cholesterol[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(1):86-96.
    [14] Volkman J K. Sterols in Microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5):495-506.
    [15] Lindner R, Naim H Y. Domains in Biological Membranes[J]. Experimental Cell Research, 2009, 315(17):2871-2878.
    [16] Gupta A, Thompson P D. The Relationship of Vitamin D Deficiency to Statin Myopathy[J]. Atherosclerosis, 2011, 215(1):23-29.
    [17] Rezen T, Rozman D, Pascussi J M, et al. Interplay between Cholesterol and Drug Metabolism[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 2011, 1814(1):146-160.
    [18] Ridlon J M, Kang D J, Hylemon P B. Isolation and Characterization of a Bile Acid Inducible 7α-Dehydroxylating Operon in Clostridium hylemonae TN271[J]. Anaerobe, 2010, 16(2):137-146.
    [19] MacKay D, Jones P J H. Evaluation of Methods for the Determination of Cholesterol Absorption and Synthesis in Humans[J]. Atherosclerosis, 2011, 216(2):300-308.
    [20] Dietschy J M. Regulation of Cholesterol Metabolism in Man and in Other Species[J]. Journal of Molecular Medicine, 1984, 62(8):338-345.
    [21] Masako A, Osamu M, Toshio S. Cholesterol Esterification in Rat-Liver Cell Sap[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1967, 137(3):525-532.
    [22] Jim S, Ambrose S H, Evershed R P. Stable Carbon Isotopic Evidence for Differences in the Dietary Origin of Bone Cholesterol, Collagen and Apatite: Implications for Their Use in Palaeodietary Reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68(1):61-72.
    [23] Hu Y W, Zheng L, Wang Q. Regulation of Cholesterol Homeostasis by Liver X Receptors[J]. Clinica Chimica Acta, 2010, 411(9-10):617-625.
    [24] Berger A, Jones P, Abumweis S. Plant Sterols: Factors Affecting Their Efficacy and Safety as Functional Food Ingredients[J]. Lipids in Health and Disease, 2004, 3(1):1-19.
    [25] Bosner M S, Lange L G, Stenson W F, et al. Percent Cholesterol Absorptionin Normal Women and Men Quantified with Dual Stable Isotopic Tracers and Negative Ion Mass Spectrometry[J]. Journal of Lipid Research, 1999, 40(2):302-308.
    [26] Ostlund R. Phytosterols, Cholesterol Absorption and Healthy Diets[J]. Lipids, 2007, 42(1):41-45.
    [27] Howles P N, Carter C P, Hui D Y. Dietary Free and Esterified Cholesterol Absorption in Cholesterol Esterase (Bile Salt-Stimulated Lipase) Gene- Targeted Mice[J]. Journal of Biological Chemistry, 1996, 271(12): 7196- 7202.
    [28] Dekoning A J, Hearshaw K D, Vandermerwe G. Free and Esterified Cholesterol in a Number of South-African Fish Oils and Their Corresponding Meals[J]. Fett Wissenschaft Technologie-Fat Science Technology, 1993, 95(1):27-31.
    [29] Ross P E, Kouroumalis E, Clarke A, et al. Cholesteryl Esters in Human Gallbladder Bile and Mucosa[J]. Clinica Chimica Acta, 1984, 144(2-3): 145-154.
    [30] Wilson M D, Rudel L L. Review of Cholesterol Absorption with Emphasis on Dietary and Biliary Cholesterol[J]. Journal of Lipid Research, 1994, 35 (6): 943-955.
    [31] Altmann S W, Davis H R, Zhu L J, et al. Niemann-Pick C1 Like 1 Protein Is Critical for Intestinal Cholesterol Absorption[J]. Science, 2004, 303(5661): 1201-1204.
    [32] Hui D Y, Howles P N. Molecular Mechanisms of Cholesterol Absorption and Transport in the Intestine[J]. Seminars in Cell & Developmental Biology, 2005, 16(2):183-192.
    [33] Voloshyna I, Reiss A B. The ABC Transporters in Lipid Flux and Atherosclerosis[J]. Progress in Lipid Research, 2011, 50(3):213-224.
    [34] Yu L, Li Hawkins J, Hammer R E, et al. Overexpression of ABCG5 and ABCG8 Promotes Biliary Cholesterol Secretion and Reduces Fractional Absorption of Dietary Cholesterol[J]. The Journal of Clinical Investigation, 2002, 110(5):671-680.
    [35] Duan L P, Wang H H, Ohashi A, et al. Role of Intestinal Sterol Transporters ABCG5, ABCG8, and NPC 111 in Cholesterol Absorption in Mice: Gender and Age Effects[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006, 290(2):G269-G276.
    [36] Natarajan P, Ray K K, Cannon C P. High-Density Lipoprotein and Coronary Heart Disease: Current and Future Therapies[J]. Journal of the American College of Cardiology, 2010, 55(13):1283-1299.
    [37] Toth P P, Davidson M H. High-Density Lipoproteins: Marker of Cardiovascular Risk and Therapeutic Target[J]. Journal of Clinical Lipidology, 2010,4(5):359-364.
    [38] Lillis A P, Van Duyn L B, Murphy-Ullrich J E, et al. Ldl Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies[J]. Physiological Reviews, 2008, 88(3):887-918.
    [39] Lewis G F, Rader D J. New Insights into the Regulation of HDL Metabolism and Reverse Cholesterol Transport[J]. Circulation Research, 2005, 96 (12): 1221-1232.
    [40] Ross R. The Pathogenesis of Atherosclerosis: a Perspective for the 1990s[J]. Nature, 1993, 362(6423):801-809.
    [41] McMahan C A, Gidding S S, McGill Jr H C. Coronary Heart Disease Risk Factors and Atherosclerosis in Young People[J]. Journal of Clinical Lipidology, 2008, 2(3):118-126.
    [42] Lindop G B M. Diseases of Blood Vessels[J]. Surgery (Oxford), 2009, 27(8):313-319.
    [43] Tomiyama H, Tanaka H, Hashimoto H, et al. Arterial Stiffness and Declines in Individuals with Normal Renal Function/Early Chronic Kidney Disease[J]. Atherosclerosis, 2010, 212(1):345-350.
    [44] Kannel W B, Castelli W P, Gordon T, et al. Serum Cholesterol, Lipoproteins, and the Risk of Coronary Heart Disease[J]. Annals of Internal Medicine, 1971, 74(1):1-12.
    [45] LaRosa J, Hunninghake D, Bush D, et al. The Cholesterol Facts. A Summary of the Evidence Relating Dietary Fats, Serum Cholesterol, and Coronary Heart Disease. A Joint Statement by the American Heart Association and the National Heart, Lung, and Blood Institute. The Task Force on Cholesterol Issues, American Heart Association[J]. Circulation, 1990, 81(5):1721-1733.
    [46] Howard-Alpe G, Fo?x P, Biccard B. Cardiovascular Protection by Anti-Inflammatory Statin Therapy[J]. Best Practice & Research Clinical Anaesthesiology, 2008, 22(1):111-133.
    [47] Sirvent P, Mercier J, Lacampagne A. New Insights into Mechanisms of Statin-Associated Myotoxicity[J]. Current Opinion in Pharmacology, 2008, 8(3):333-338.
    [48] Charlton-Menys V, Durrington P N. Human Cholesterol Metabolism and Therapeutic Molecules[J]. Experimental Physiology, 2008, 93(1):27-42.
    [49] Ge L, Wang J, Qi W, et al. The Cholesterol Absorption Inhibitor Ezetimibe Acts by Blocking the Sterol-Induced Internalization of NPC111[J]. Cell Metabolism, 2008, 7(6):508-519.
    [50]陈志飞,高芃,徐海滨.植物甾醇影响胆固醇代谢机制的研究进展[J].国外医学(卫生学分册), 2008, 35(6):360-363.
    [51] Patel M D, Thompson P D. Phytosterols and Vascular Disease[J]. Atherosclerosis, 2006, 186(1):12-19.
    [52] Ostlund R E, Spilburg C A, Stenson W F. Sitostanol Administered in Lecithin Micelles Potently Reduces Cholesterol Absorption in Humans[J]. The American Journal of Clinical Nutrition, 1999, 70(5):826-831.
    [53] Holt P R. The Roles of Bile Acids During the Process of Normal Fat and Cholesterol Absorption[J]. Archives of Internal Medicine, 1972, 130(4):574-583.
    [54] Norlin M, Wikvall K. Enzymes in the Conversion of Cholesterol into Bile Acids[J]. Current Molecular Medicine, 2007, 7(2):199-218.
    [55] Hofmann A F. The Enterohepatic Circulation of Bile Acids in Mammals: Form and Functions[J]. Frontiers in Bioscience, 2009, 14:2584-2598.
    [56] Dawson P A, Lan T, Rao A. Bile Acid Transporters[J]. Journal of Lipid Research, 2009, 50(12):2340-2357.
    [57] Ridlon J M, Kang D J, Hylemon P B. Bile Salt Biotransformations by Human Intestinal Bacteria[J]. Journal of Lipid Research, 2006, 47(2):241-259.
    [58] Stein E, Kreisberg R, Miller V, et al. Effects of Simvastatin and Cholestyramine in Familial and Nonfamilial Hypercholesterolemia[J]. Archives of Internal Medicine, 1990, 150(2):341-345.
    [59] Suckling K E, Benson G M, Bond B, et al. Cholesterol Lowering and Bile Acid Excretion in the Hamster with Cholestyramine Treatment[J]. Atherosclerosis, 1991, 89(2-3):183-190.
    [60]李翠莲,方北曙,黄小玲.大米抗性淀粉压热处理制备工艺的研究[J].中国粮油学报, 2010, 25(5):30-33.
    [61] Fuentes-Zaragoza E, Riquelme-Navarrete M J, Sánchez-Zapata E, et al. Resistant Starch as Functional Ingredient: A Review[J]. Food Research International, 2010, 43(4):931-942.
    [62] Chezem J, Furumoto E, Story J. Effects of Resistant Potato Starch on Cholesterol and Bile Acid Metabolism in the Rat[J]. Nutrition Research, 1997, 17(11-12):1671-1682.
    [63] Lopez H W, Levrat-Verny M-A, Coudray C, et al. Class 2 Resistant Starches Lower Plasma and Liver Lipids and Improve Mineral Retention in Rats[J]. The Journal of Nutrition, 2001, 131(4):1283-1289.
    [64] Liu X, Ogawa H, Kishida T, et al. Hypolipidaemic Effect of Maize Starch with Different Amylose Content in Ovariectomized Rats Depends on Intake Amount of Resistant Starch[J]. British Journal of Nutrition, 2009, 101 (3):328-339.
    [65] Kishida T, Nogami H, Ogawa H, et al. The Hypocholesterolemic Effect of High Amylose Cornstarch in Rats Is Mediated by an Enlarged Bile Acid Pool and Increased Fecal Bile Acid Excretion, Not by Cecal Fermented Products[J]. The Journal of Nutrition, 2002, 132(9):2519-2524.
    [66] Shaper A G, Kyobe J, Jones K W, et al. Serum Lipids in 3 Nomadic Tribes of Northern Kenya[J]. American Journal of Clinical Nutrition, 1963, 13(3): 135-146.
    [67] Mann G V, Spoerry A. Studies of a Surfactant and Cholesteremia in the Maasai[J]. American Journal of Clinical Nutrition, 1974, 27(5):464-469.
    [68] Harrison V C, Peat G. Serum-Cholesterol and Bowel Flora in Newborn[J]. American Journal of Clinical Nutrition, 1975, 28(12):1351-1355.
    [69] de Roos N M, Schouten G, Katan M B. Yoghurt Enriched with Lactobacillus acidophilus Does Not Lower Blood Lipids in Healthy Men and Women with Normal to Borderline High Serum Cholesterol Levels[J]. European Journal of Clinical Nutrition, 1999, 53(4):277-280.
    [70] Lewis S J, Burmeister S. A Double-Blind Placebo-Controlled Study of the Effects of Lactobacillus acidophilus on Plasma Lipids[J]. European Journal of Clinical Nutrition, 2005, 59(6):776-780.
    [71] Agerholm-Larsen L, Bell M L, Grunwald G K, et al. The Effect of a Probiotic Milk Product on Plasma Cholesterol: A Meta-Analysis of Short-Term Intervention Studies[J]. European Journal of Clinical Nutrition, 2000, 54(11):856-860.
    [72] Agerbaek M, Gerdes L U, Richelsen B. Hypocholesterolemic Effect of a New Fermented Milk Product in Healthy Middle-Aged Men[J]. European Journal of Clinical Nutrition, 1995, 49(5):346-352.
    [73] Richelsen B, Kristensen K, Pedersen S B. Long-Term (6 Months) Effect of a New Fermented Milk Product on the Level of Plasma Lipoproteins-a Placebo-Controlled and Double Blind Study[J]. European Journal of Clinical Nutrition, 1996, 50(12):811-815.
    [74] Bertolami M C, Faludi A A, Batlouni M. Evaluation of the Effects of a New Fermented Milk Product (Gaio) on Primary Hypercholesterolemia[J]. European Journal of Clinical Nutrition, 1999, 53(2):97-101.
    [75] Agerholm-Larsen L, Raben A, Haulrik N, et al. Effect of 8 Week Intake of Probiotic Milk Products on Risk Factors for Cardiovascular Diseases[J]. European Journal of Clinical Nutrition, 2000, 54(4):288-297.
    [76] Vinderola C G, Reinheimer J A. Lactic Acid Starter and Probiotic Bacteria: A Comparative "In Vitro" Study of Probiotic Characteristics and Biological Barrier Resistance[J]. Food Research International, 2003, 36(9-10):895-904.
    [77] Andrade S, Borges N. Effect of Fermented Milk Containing Lactobacillus acidophilus and Bifidobacterium longum on Plasma Lipids of Women with Normal or Moderately Elevated Cholesterol[J]. Journal of Dairy Research, 2009, 76(4):469-474.
    [78] Xiao J Z, Kondo S, Takahashi N, et al. Effects of Milk Products Fermented by Bifidobacterium longum on Blood Lipids in Rats and Healthy Adult Male Volunteers[J]. Journal of Dairy Science, 2003, 86(7):2452-2461.
    [79] Ataie-Jafari A, Larijani B, Majd H A, et al. Cholesterol-Lowering Effect of Probiotic Yogurt in Comparison with Ordinary Yogurt in Mildly to Moderately Hypercholesterolemic Subjects[J]. Annals of Nutrition and Metabolism, 2009, 54(1):22-27.
    [80] De Smet I, De Boever P, Verstraete W. Cholesterol Lowering in Pigs through Enhanced Bacterial Bile Salt Hydrolase Activity[J]. British Journal of Nutrition, 1998, 79(2):185-194.
    [81] Taranto M P, Medici M, Perdigon G, et al. Effect of Lactobacillus reuteri on the Prevention of Hypercholesterolemia in Mice[J]. Journal of Dairy Scence, 2000, 83(3):401-403.
    [82] Chiu C H, Lu T Y, Tseng Y Y, et al. The Effects of Lactobacillus fermented Milk on Lipid Metabolism in Hamsters Fed on High-Cholesterol Diet[J]. Applied Microbiology and Biotechnology, 2006, 71(2):238-245.
    [83] Ha C G, Cho J K, Lee C H, et al. Cholesterol Lowering Effect of Lactobacillus plantarum Isolated from Human Feces[J]. Journal of Microbiology and Biotechnology, 2006, 16(8):1201-1209.
    [84] Gilliland S E, Nelson C R, Maxwell C. Assimilation of Cholesterol by Lactobacillus acidophilus[J]. Applied and Environmental Microbiology, 1985, 49(2):377-381.
    [85] Park Y H, Kim J G, Shin Y W, et al. Effect of Dietary Inclusion of Lactobacillus acidophilus ATCC 43121 on Cholesterol Metabolism in Rats[J]. Journal of Microbiology and Biotechnology, 2007, 17(4):655-662.
    [86] De Rodas B Z, Gilliland S E, Maxwell C V. Hypocholesterolemic Action of Lactobacillus acidophilus ATCC 43121 and Calcium in Swine with Hypercholesterolemia Induced by Diet[J]. Journal of Dairy Science, 1996, 79(12):2121-2128.
    [87] Nguyen T D T, Kang J H, Lee M S. Characterization of Lactobacillus plantarum PH04, a Potential Probiotic Bacterium with Cholesterol-Lowering Effects[J]. International Journal of Food Microbiology, 2007, 113(3): 358-361.
    [88] Wang Y P, Xu N, Xi A D, et al. Effects of Lactobacillus plantarum MA2Isolated from Tibet Kefir on Lipid Metabolism and Intestinal Microflora of Rats Fed on High-Cholesterol Diet[J]. Applied Microbiology and Biotechnology, 2009, 84(2):341-347.
    [89] Usman, Hosono A. Effect of Administration of Lactobacillus gasseri on Serum Lipids and Fecal Steroids in Hypercholesterolemic Rats[J]. Journal of Dairy Science, 2000, 83(8):1705-1711.
    [90] Bhathena J, Martoni C, Kulamarva A, et al. Orally Delivered Microencapsulated Live Probiotic Formulation Lowers Serum Lipids in Hypercholesterolemic Hamsters[J]. Journal of Medicinal Food, 2009, 12(2):310-319.
    [91] Lee D K, Jang S, Baek E H, et al. Lactic Acid Bacteria Affect Serum Cholesterol Levels, Harmful Fecal Enzyme Activity, and Fecal Water Content[J]. Lipids in Health and Disease, 2009, 8:21.
    [92] Abd El-Gawad I A, El-Sayed E M, Hafez S A, et al. The Hypocholesterolaemic Effect of Milk Yoghurt and Soy-Yoghurt Containing Bifidobacteria in Rats Fed on a Cholesterol-Enriched Diet[J]. International Dairy Journal, 2005, 15(1):37-44.
    [93] Cavallini D C U, Bedani R, Bomdespacho L Q, et al. Effects of Probiotic Bacteria, Isoflavones and Simvastatin on Lipid Profile and Atherosclerosis in Cholesterol-Fed Rabbits: A Randomized Double-Blind Study[J]. Lipids in Health and Disease, 2009, 8.
    [94] Tanaka H, Doesburg K, Iwasaki T, et al. Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity[J]. Journal of Dairy Science, 1999, 82 (12):2530-2535.
    [95] Hofmann A, Mysels K. Bile Acid Solubility and Precipitation in Vitro and in Vivo: The Role of Conjugation, Ph, and Ca2+ Ions[J]. Journal of Lipid Research, 1992, 33(5):617-626.
    [96] Klaver F A M, van der Meer R. The Assumed Assimilation of Cholesterol by Lactobacilli and Bifidobacterium bifidum Is Due to Their Bile Salt- Deconjugating Activity[J]. Applied and Environmental Microbiology, 1993, 59(4):1120-1124.
    [97] Tahri K, Grill J P, Schneider F. Bifidobacteria Strain Behavior toward Cholesterol: Coprecipitation with Bile Salts and Assimilation[J]. Current Microbiology, 1996, 33(3):187-193.
    [98] Tahri K, Crociani J, Ballongue J, et al. Effects of Three Strains of Bifidobacteria on Cholesterol[J]. Letters in Applied Microbiology, 1995, 21(3):149-151.
    [99] Liong M T, Shah N P. Bile Salt Deconjugation Ability, Bile Salt HydrolaseActivity and Cholesterol Co-Precipitation Ability of Lactobacilli Strains[J]. International Dairy Journal, 2005, 15(4):391-398.
    [100] Grill J P, Cayuela C, Antoine J M, et al. Effects of Lactobacillus amylovorus and Bifidobacterium Breve on Cholesterol[J]. Letters in Applied Microbiology, 2000, 31(2):154-156.
    [101] Parvez S, Kim H Y, Lee H C, et al. Bile Salt Hydrolase and Cholesterol Removal Effect by Bifidobacterium bifidum NRRL 1976[J]. World Journal of Microbiology & Biotechnology, 2006, 22(5):455-459.
    [102] McConnell E L, Fadda H M, Basit A W. Gut Instincts: Explorations in Intestinal Physiology and Drug Delivery[J]. International Journal of Pharmaceutics, 2008, 364(2):213-226.
    [103] Northfie T C, McColl I. Postprandial Concentrations of Free and Conjugated Bile-Acids Down Length of Normal Human Small-Intestine[J]. Gut, 1973, 14(7):513-518.
    [104] Li T, Chiang J Y L. Regulation of Bile Acid and Cholesterol Metabolism by Ppars[J]. PPAR Research, 2009, 2009:501739.
    [105] Chikai T, Nakao H, Uchida K. Deconjugation of Bile Acids by Human Intestinal Bacteria Implanted in Germ-Free Rats[J]. Lipids, 1987, 22 (9):669-671.
    [106] De Rodas B Z, Gilliland S E, Maxwell C V. Hypocholesterolemic Action of Lactobacillus acidophilus AtTCC 43121 and Calcium in Swine with Hypercholesterolemia Induced by Diet[J]. Journal of Dairy Science, 1996, 79 (12):2121-2128.
    [107] Taranto M P, Medici M, Perdigon G, et al. Evidence for Hypocholesterolemic Effect of Lactobacillus reuteri in Hypercholesterolemic Mice[J]. Journal of Dairy Science, 1998, 81(9):2336-2340.
    [108] Sridevi N, Vishwe P, Prabhune A. Hypocholesteremic Effect of Bile Salt Hydrolase from Lactobacillus buchneri ATCC 4005[J]. Food Research International, 2009, 42(4):516-520.
    [109] Dambekodi P C, Gilliland S E. Incorporation of Cholesterol into the Cellular Membrane of Bifidobacterium longum[J]. Journal of Dairy Science, 1998, 81(7):1818-1824.
    [110] Tok E, Aslim B. Cholesterol Removal by Some Lactic Acid Bacteria That Can Be Used as Probiotic[J]. Microbiology and Immunology, 2010, 54 (5): 257-264.
    [111] Lye H S, Rahmat-Ali G R, Liong M T. Mechanisms of Cholesterol Removal by Lactobacilli under Conditions That Mimic the Human Gastrointestinal Tract[J]. International Dairy Journal, 2010, 20(3):169-175.
    [112] Taranto M P, Sesma F, Holgado A P D, et al. Bile Salts Hydrolase Plays a Key Role on Cholesterol Removal by Lactobacillus reuteri[J]. Biotechnology Letters, 1997, 19(9):845-847.
    [113] Kimoto H, Ohmomo S, Okamoto T. Cholesterol Removal from Media by Lactococci[J]. Journal of Dairy Science, 2002, 85(12):3182-3188.
    [114] Pereira D I A, McCartney A L, Gibson G R. An in Vitro Study of the Probiotic Potential of a Bile-Salt-Hydrolyzing Lactobacillus fermentum Strain, and Determination of Its Cholesterol-Lowering Properties[J]. Applied and Environmental Microbiology, 2003, 69(8):4743-4752.
    [115] Pigeon R M, Cuesta E P, Gilliland S E. Binding of Free Bile Acids by Cells of Yogurt Starter Culture Bacteria[J]. Journal of Dairy Science, 2002, 85 (11): 2705-2710.
    [116] Kurdi P, Tanaka H, van Veen H W, et al. Cholic Acid Accumulation and Its Diminution by Short-Chain Fatty Acids in Bifidobacteria[J]. Microbiology, 2003, 149(8):2031-2037.
    [117] Huang Y, Zheng Y. The Probiotic Lactobacillus acidophilus Reduces Cholesterol Absorption through the Down-Regulation of Niemann-Pick C1-Like 1 in Caco-2 Cells[J]. British Journal of Nutrition, 2010, 103 (04): 473-478.
    [118] Bhardwaj A, Gupta H, Kapila S, et al. Safety Assessment and Evaluation of Probiotic Potential of Bacteriocinogenic Enterococcus faecium KH 24 Strain under in Vitro and in Vivo Conditions[J]. International Journal of Food Microbiology, 2010, 141(3):156-164.
    [119] Chen L S, Ma Y, Maubois J L, et al. Screening for the Potential Probiotic Yeast Strains from Raw Milk to Assimilate Cholesterol[J]. Dairy Science & Technology, 2010, 90(5):537-548.
    [120] Brashears M M, Gilliland S E, Buck L M. Bile Salt Deconjugation and Cholesterol Removal from Media by Lactobacillus casei[J]. Journal of Dairy Science, 1998, 81(8):2103-2110.
    [121] Zhang F, Hang X, Fan X, et al. Selection and Optimization Procedure of Synbiotic for Cholesterol Removal[J]. Anaerobe, 2007, 13(5-6):185-192.
    [122] Liong M T, Shah N P. Optimization of Cholesterol Removal by Probiotics in the Presence of Prebiotics by Using a Response Surface Method[J]. Applied and Environmental Microbiology, 2005, 71(4):1745-1753.
    [123] Zhang F, Hang X M, Fan X B, et al. Selection and Optimization Procedure of Synbiotic for Cholesterol Removal[J]. Anaerobe, 2007, 13(5-6):185-192.
    [124] Lim H J, Kim S Y, Lee W K. Isolation of Cholesterol-Lowering Lactic Acid Bacteria from Human Intestine for Probiotic Use[J]. Journal of VeterinaryScience, 2004, 5(4):391-395.
    [125] Dashkevicz M P, Feighner S D. Development of a Differential Medium for Bile-Salt Hydrolase-Active Lactobacillus Spp[J]. Applied and Environmental Microbiology, 1989, 55(1):11-16.
    [126] Fini A, Roda A. Chemical Properties of Bile Acids. IV. Acidity Constants of Glycine-Conjugated Bile Acids[J]. Journal of Lipid Research, 1987, 28(7): 755-759.
    [127] du Toit M, Franz C, Dicks L M T, et al. Characterisation and Selection of Probiotic Lactobacilli for a Preliminary Minipig Feeding Trial and Their Effect on Serum Cholesterol Levels, Faeces pH and Faeces Moisture Content[J]. International Journal of Food Microbiology, 1998, 40 (1-2): 93-104.
    [128] Mathara J M, Schillinger U, Guigas C, et al. Functional Characteristics of Lactobacillus Spp. from Traditional Maasai Fermented Milk Products in Kenya[J]. International Journal of Food Microbiology, 2008, 126(1-2):57-64.
    [129] Schillinger U, Guigas C, Holzapfel W H. In Vitro Adherence and Other Properties of Lactobacilli Used in Probiotic Yoghurt-Like Products[J]. International Dairy Journal, 2005, 15(12):1289-1297.
    [130] Corzo G, Gilliland S E. Measurement of Bile Salt Hydrolase Activity from Lactobacillus acidophilus Based on Disappearance of Conjugated Bile Salts[J]. Journal of Dairy Science, 1999, 82(3):466-471.
    [131] Hartemink R, Domenech V R, Rombouts F M. LAMVAB-a New Selective Medium for the Isolation of Lactobacilli from Faeces[J]. Journal of Microbiological Methods, 1997, 29(2):77-84.
    [132] Man J C D, Rogosa M, Sharpe M E. A Medium for the Cultivation of Lactobacilli[J]. Journal of Applied Microbiology, 1960, 23(1):130-135.
    [133] Devriese L A, Hommez J, Pot B, et al. Identification and Composition of the Streptococcal and Enterococcal Flora of Tonsils, Intestines and Faeces of Pigs[J]. Journal of Applied Microbiology, 1994, 77(1):31-36.
    [134] Hartemink R, Kok B J, Weenk G H, et al. Raffinose-Bifidobacterium (RB) Agar, a New Selective Medium for Bifidobacteria[J]. Journal of Microbiological Methods, 1996, 27(1):33-43.
    [135] Bao Y, Zhang Y, Zhang Y, et al. Screening of Potential Probiotic Properties of Lactobacillus fermentum Isolated from Traditional Dairy Products[J]. Food Control, 2010, 21(5):695-701.
    [136] Rossi S S, Converse J L, Hofmann A F. High Pressure Liquid Chromatographic Analysis of Conjugated Bile Acids in Human Bile: Simultaneous Resolution of Sulfated and Unsulfated Lithocholyl Amidates and the CommonConjugated Bile Acids[J]. Journal of Lipid Research, 1987, 28(5):589-595.
    [137] Staggers J E, Hernell O, Stafford R J, et al. Physical-Chemical Behavior of Dietary and Biliary Lipids During Intestinal Digestion and Absorption.1. Phase-Behavior and Aggregation States of Model Lipid Systems Patterned after Aqueous Duodenal Contents of Healthy Adult Human-Beings[J]. Biochemistry, 1990, 29(8):2028-2040.
    [138] Walker D K, Gilliland S E. Relationships among Bile Tolerance, Bile Salt Deconjugation, and Assimilation of Cholesterol by Lactobacillus acidophilus [J]. Journal of Dairy Science, 1993, 76(4):956-961.
    [139] Mingrone G, Greco A V, Passi S. Reversed-Phase High-Performance Liquid Chromatographic Separation and Quantification of Individual Human Bile Acids[J]. Journal of Chromatography B, 1980, 183(3):277-286.
    [140] Kim S-J, Cho S Y, Kim S H, et al. Effect of Microencapsulation on Viability and Other Characteristics in Lactobacillus acidophilus ATCC 43121[J]. LWT -Food Science and Technology, 2008, 41(3):493-500.
    [141] Kumura H, Tanoue Y, Tsukahara M, et al. Screening of Dairy Yeast Strains for Probiotic Applications[J]. Journal of Dairy Science, 2004, 87(12): 4050-4056.
    [142] Swain S, Singh C, Arul V. Inhibitory Activity of Probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against Vibriosis in Shrimp Penaeus Monodon[J]. World Journal of Microbiology and Biotechnology, 2009, 25(4):697-703.
    [143] Wang Y, Zhang H, Zhang L, et al. In Vitro Assessment of Probiotic Properties of Bacillus Isolated from Naturally Fermented Congee from Inner Mongolia of China[J]. World Journal of Microbiology and Biotechnology, 2010, 26 (8):1369-1377.
    [144] Tuo Y F, Zhang L W, Yi H X, et al. Short Communication: Antiproliferative Effect of Wild Lactobacillus Strains Isolated from Fermented Foods on HT-29 Cells[J]. Journal of Dairy Science, 2010, 93(6):2362-2366.
    [145]凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999:171-176.
    [146] Smittle R B, Gilliland S E, Speck M L, et al. Relationship of Cellular Fatty Acid Composition to Survival of Lactobacillus bulgaricus in Liquid Nitrogen[J]. Applied Microbiolology, 1974, 27(4):738-743.
    [147] Allain C C, Poon L S, Chan C S G, et al. Enzymatic Determination of Total Serum Cholesterol[J]. Clinical Chemistry, 1974, 20(4):470-475.
    [148]金宗濂,文镜,唐粉芳.功能食品评价原理及方法[M].北京:北京大学出版社. 1995, 56-78.
    [149] Fletouris D J, Botsoglou N A, Psomas I E, et al. Rapid Determination of Cholesterol in Milk and Milk Products by Direct Saponification and Capillary Gas Chromatography[J]. Journal of Dairy Science, 1998, 81(11): 2833-2840.
    [150] Hartemink R, Domenech V R, Rombouts F M. LAMVAB-a New Selective Medium for the Isolation of Lactobacilli from Faeces[J]. Journal of Microbiological Methods, 1997, 29(2):77-84.
    [151] Nueno-Palop C, Narbad A. Probiotic Assessment of Enterococcus faecalis CP58 Isolated from Human Gut[J]. International Journal of Food Microbiology, 2011, 145(2-3):390-394.
    [152] Mitsou E K, Kirtzalidou E, Oikonomou I, et al. Fecal Microflora of Greek Healthy Neonates[J]. Anaerobe, 2008, 14(2):94-101.
    [153] Nieto-Arribas P, Poveda J M, Sese?a S, et al. Technological Characterization of Lactobacillus Isolates from Traditional Manchego Cheese for Potential Use as Adjunct Starter Cultures[J]. Food Control, 2009, 20(12):1092-1098.
    [154] Otto R, Lageveen R G, Veldkamp H, et al. Lactate Efflux-Induced Electrical Potential in Membrane Vesicles of Streptococcus cremoris[J]. Journal of Bacteriology, 1982, 149(2):733-738.
    [155] Corzo G, Gilliland S E. Bile Salt Hydrolase Activity of Three Strains of Lactobacillus acidophilus[J]. Journal of Dairy Science, 1999, 82(3):472-480.
    [156] Konstantinov S R, Smidt H, de Vos W M, et al. S Layer Protein a of Lactobacillus acidophilus NCFM Regulates Immature Dendritic Cell and T Cell Functions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49):19474-19479.
    [157] Anthony E E, Jr. A Note on Capsule Staining[J]. Science, 1931, 73 (1890): 319-320.
    [158] Gerbino E, Mobili P, Tymczyszyn E, et al. FTIR Spectroscopy Structural Analysis of the Interaction between Lactobacillus kefir S-Layers and Metal Ions[J]. Journal of Molecular Structure, 2011, 987(1-3):186-192.
    [159] Noh D O, Gilliland S E. Influence of Bile on Cellular Integrity and [Beta]-Galactosidase Activity of Lactobacillus acidophilus[J]. Journal of Dairy Science, 1993, 76(5):1253-1259.
    [160] Zavaglia A G, Kociubinski G, Perez P, et al. Effect of Bile on the Lipid Composition and Surface Properties of Bifidobacteria[J]. Journal of Applied Microbiology, 2002, 93(5):794-799.
    [161] Nair L M, Stephens N V, Vincent S, et al. Determination of Polysorbate 80 in Parenteral Formulations by High-Performance Liquid Chromatography and Evaporative Light Scattering Detection[J]. Journal of Chromatography A,2003, 1012(1):81-86.
    [162] Ames S K, Gorham B M, Abrams S A. Effects of High Compared with Low Calcium Intake on Calcium Absorption and Incorporation of Iron by Red Blood Cells in Small Children[J]. The American Journal of Clinical Nutrition, 1999, 70(1):44-48.
    [163] Reeves P G. Components of the Ain-93 Diets as Improvements in the AIN-76a Diet[J]. Journal of Nutrion, 1997, 127(5):838s-841s.
    [164] Jeon S M, Kim H K, Kim H J, et al. Hypocholesterolemic and Antioxidative Effects of Naringenin and Its Two Metabolites in High-Cholesterol Fed Rats[J]. Translational Research, 2007, 149(1):15-21.
    [165] Reeves P G, Nielsen F H, Fahey G C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet[J]. The Journal of Nutrition, 1993, 123(11):1939-1951.
    [166] Gao L, Niu Y, Liu W, et al. The Antilipolytic Action of Bis (α-Furancarboxylato) Oxovanadium(IV) in Adipocytes[J]. Clinica Chimica Acta, 2008, 388(1-2): 89-94.
    [167] Liu J, Zhang J, Xia W. Hypocholesterolaemic Effects of Different Chitosan Samples in Vitro and in Vivo[J]. Food Chemistry, 2008, 107(1):419-425.
    [168] Tong Z C, Dong L P, Zhou L, et al. Nisin Inhibits Dental Caries-Associated Microorganism in Vitro[J]. Peptides, 2010, 31(11):2003-2008.
    [169] Yu L Q. The Structure and Function of Niemann-Pick C1-Like 1 Protein[J]. Current Opinion in Lipidology, 2008, 19(3):263-269.
    [170] Marteau P, Minekus M, Havenaar R, et al. Survival of Lactic Acid Bacteria in a Dynamic Model of the Stomach and Small Intestine: Validation and the Effects of Bile[J]. Journal of Dairy Science, 1997, 80(6):1031-1037.
    [171] Lin H C. Small Intestinal Bacterial Overgrowth-a Framework for Understanding Irritable Bowel Syndrome[J]. Journal of the American Medical Association, 2004, 292(7):852-858.
    [172] Fine K D, Schiller L R. Aga Technical Review on the Evaluation and Management of Chronic Diarrhea[J]. Gastroenterology, 1999, 116(6): 1464-1486.
    [173] Gorbach S L, Nahas L, Lerner P I, et al. Studies of Intestinal Microflora .I. Effects of Diet Age and Periodic Sampling on Numbers of Fecal Microorganisms in Man[J]. Gastroenterology, 1967, 53(6):845-855.
    [174] Hamilton J P, Xie G, Raufman J P, et al. Human Cecal Bile Acids: Concentration and Spectrum[J]. Gastrointest Liver Physiol, 2007, 293(1): G256-263.
    [175] Martinez-Augustin O, de Medina F S. Intestinal Bile Acid Physiology and Pathophysiology[J]. World Journal of Gastroenterology, 2008, 14(37): 5630-5640.
    [176] Samuel P, Saypol G M, Meilman E, et al. Absorption of Bile Acids from the Large Bowel in Man[J]. The Journal of Clinical Investigation, 1968, 47(9): 2070-2078.
    [177] Andoh A, Benno Y, Kanauchi O, et al. Recent Advances in Molecular Approaches to Gut Microbiota in Inflammatory Bowel Disease[J]. Current Pharmaceutical Design, 2009, 15(18):2066-2073.
    [178] Rogosa M, Mitchell J A, Wiseman R F. A Selective Medium for the Isolation and Enumeration of Oral and Fecal Lactobacilli[J]. Journal of Bacteriology, 1951, 62(1):132-133.
    [179] Pacher B, Kneifel W. Development of a Culture Medium for the Detection and Enumeration of Bifidobacteria in Fermented Milk Products[J]. International Dairy Journal, 1996, 6(1):43-64.
    [180] Yu H, Zhou T, Gong J H, et al. Isolation of Deoxynivalenol-Transforming Bacteria from the Chicken Intestines Using the Approach of PCR-DGGE Guided Microbial Selection[J]. BMC Microbiology, 2010, 10.
    [181] Li Y, Mills J, Jacobson L H, et al. Effect of Abomasal Prebiotic Supplementation on Sheep Faecal Microbiota[J]. New Zealand Journal of Agricultural Research, 2010, 53(2):99-108.
    [182] Biagi G, Cipollini I, Grandi M, et al. Influence of Some Potential Prebiotics and Fibre-Rich Foodstuffs on Composition and Activity of Canine Intestinal Microbiota[J]. Animal Feed Science and Technology, 2010, 159(1-2):50-58.
    [183] Domig K J, Mayer H K, Kneifel W. Methods Used for the Isolation, Enumeration, Characterisation and Identification of Enterococcus Spp.: 1. Media for Isolation and Enumeration[J]. International Journal of Food Microbiology, 2003, 88(2-3):147-164.
    [184] Gilliland S E, Nelson C R, Maxwell C. Assimilation of Cholesterol by Lactobacillus acidophilus[J]. Applied and Environmental Microbiology, 1985, 49(2):377-381.
    [185] Guo C F, Zhang L W, Han X, et al. Short Communication: A Sensitive Method for Qualitative Screening of Bile Salt Hydrolase-Active Lactobacilli Based on Thin-Layer Chromatography[J]. Journal of Dairy Science, 2011, 94(4):1732-1737.
    [186] Ibekwe V C, Fadda H M, McConnell E L, et al. Interplay between Intestinal pH, Transit Time and Feed Status on the in Vivo Performance of pHResponsive Ileo-Colonic Release Systems[J]. Pharmaceutical Research, 2008, 25(8):1828-1835.
    [187] Tanaka H, Hashiba H, Kok J, et al. Bile Salt Hydrolase of Bifidobacterium longum-Biochemical and Genetic Characterization[J]. Applied and Environmental Microbiology, 2000, 66(6):2502-2512.
    [188] Tanaka H, Doesburg K, Iwasaki T, et al. Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity[J]. Journal of Dairy Science, 1999, 82(12):2530-2535.
    [189] Tuomola E, Crittenden R, Playne M, et al. Quality Assurance Criteria for Probiotic Bacteria[J]. American Journal of Clinical Nutrition, 2001, 73(2): 393S-398S.
    [190] Jordan N J, Kolios G, Abbot S E, et al. Expression of Functional CXCR4 Chemokine Receptors on Human Colonic Epithelial Cells[J]. The Journal of Clinical Investigation, 1999, 104(8):1061-1069.
    [191] Verdenelli M C, Ghelfi F, Silvi S, et al. Probiotic Properties of Lactobacillus rhamnosus and Lactobacillus paracasei Isolated from Human Faeces[J]. European Journal of Nutrition, 2009, 48(6):355-363.
    [192] Wang B, Wei H, Yuan J, et al. Identification of a Surface Protein from Lactobacillus reuteri JCM1081 That Adheres to Porcine Gastric Mucin and Human Enterocyte-Like Ht-29 Cells[J]. Current Microbiology, 2008, 57(1): 33-38.
    [193] MarcinákováM, Klingberg T D, LaukováA, et al. The Effect of pH, Bile and Calcium on the Adhesion Ability of Probiotic Enterococci of Animal Origin to the Porcine Jejunal Epithelial Cell Line IPEC-J2[J]. Anaerobe, 2010, 16(2):120-124.
    [194] Musikasang H, Tani A, H-kittikun A, et al. Probiotic Potential of Lactic Acid Bacteria Isolated from Chicken Gastrointestinal Digestive Tract[J]. World Journal of Microbiology and Biotechnology, 2009, 25(8):1337-1345.
    [195] Gilliland S E, Staley T E, Bush L J. Importance of Bile Tolerance of Lactobacillus acidophilus Used as a Dietary Adjunct[J]. Journal of Dairy Science, 1984, 67(12):3045-3051.
    [196] Scalia S, Cova U, Fogagnolo M, et al. Determination of Free Bile-Acids in Raw-Materials and Bulk Products by HPLC and GC[J]. Analytical Letters, 1994, 27(9):1789-1804.
    [197] Smet I, Hoorde L, Woestyne M, et al. Significance of Bile Salt Hydrolytic Activities of Lactobacilli[J]. Journal of Applied Microbiology, 1995, 79(3): 292-301.
    [198] Holzapfel W H, Haberer P, Snel J, et al. Overview of Gut Flora and Probiotics[J]. International Journal of Food Microbiology, 1998, 41(2): 85-101.
    [199] Ruiz-Moyano S, Martín A, Benito M J, et al. Screening of Lactic Acid Bacteria and Bifidobacteria for Potential Probiotic Use in Iberian Dry Fermented Sausages[J]. Meat Science, 2008, 80(3):715-721.
    [200] Thirabunyanon M, Boonprasom P, Niamsup P. Probiotic Potential of Lactic Acid Bacteria Isolated from Fermented Dairy Milks on Antiproliferation of Colon Cancer Cells[J]. Biotechnology Letters, 2009, 31(4):571-576.
    [201] Pennacchia C, Ercolini D, Blaiotta G, et al. Selection of Lactobacillus Strains from Fermented Sausages for Their Potential Use as Probiotics[J]. Meat Science, 2004, 67(2):309-317.
    [202] Kurdi P, Kawanishi K, Mizutani K, et al. Mechanism of Growth Inhibition by Free Bile Acids in Lactobacilli and Bifidobacteria[J]. Journal of Bacteriology, 2006, 188(5):1979-1986.
    [203]张艳国.乳酸菌的耐酸性机制[J].饲料工业, 2007, 28(4):62-64.
    [204] Bajaj P R, Survase S A, Bule M V, et al. Studies on Viability of Lactobacillus fermentum by Microencapsulation Using Extrusion Spheronization[J]. Food Biotechnology, 2010, 24(2):150-164.
    [205] Collado M C, Sanz Y. Induction of Acid Resistance in Bifidobacterium: A Mechanism for Improving Desirable Traits of Potentially Probiotic Strains[J]. Journal of Applied Microbiology, 2007, 103:1147-1157.
    [206] Kilic G B, Karahan A G. Identification of Lactic Acid Bacteria Isolated from the Fecal Samples of Healthy Humans and Patients with Dyspepsia, and Determination of Their pH, Bile, and Antibiotic Tolerance Properties[J]. Journal of Molecular Microbiology and Biotechnology, 2010, 18(4):220-229.
    [207] Matsuda K, Tsuji H, Asahara T, et al. Establishment of an Analytical System for the Human Fecal Microbiota, Based on Reverse Transcription- Quantitative Pcr Targeting of Multicopy Rrna Molecules[J]. Applied and Environmental Microbiology, 2009, 75(7):1961-1969.
    [208] Oozeer R, Leplingard A, Mater D D, et al. Survival of Lactobacillus casei in the Human Digestive Tract after Consumption of Fermented Milk[J]. Applied and Environmental Microbiology, 2006, 72(8):5615-5617.
    [209] Fang F, Li Y, Bumann M, et al. Allelic Variation of Bile Salt Hydrolase Genes in Lactobacillus salivarius Does Not Determine Bile Resistance Levels[J]. Journal of Bacteriology, 2009, 191(18):5743-5757.
    [210] McAuliffe O, Cano R J, Klaenhammer T R. Genetic Analysis of Two Bile Salt Hydrolase Activities in Lactobacillus acidophilus NCFM[J]. Appliedand Environmental Microbiology, 2005, 71(8):4925-4929.
    [211] Pridmore R D, Berger B, Desiere F, et al. The Genome Sequence of the Probiotic Intestinal Bacterium Lactobacillus johnsonii NCC 533[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(8):2512-2517.
    [212] Lambert J M, Bongers R S, de Vos W M, et al. Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in Lactobacillus plantarum WCFS1[J]. Applied and Environmental Microbiology, 2008, 74 (15):4719-4726.
    [213] Takahashi T, Morotomi M. Absence of Cholic Acid 7α-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium[J]. Journal of Dairy Science, 1994, 77(11):3275-3286.
    [214] Mukai T, Toba T, Itoh T, et al. Structural Investigation of the Capsular Polysaccharide from Lactobacillus kefiranofaciens K1[J]. Carbohydrate Research, 1990, 204:227-232.
    [215] Lortal S, Van heijenoort J, Gruber K, et al. S-Layer of Lactobacillus helveticus ATCC 12046: Isolation, Chemical Characterization and Re- Formation after Extraction with Lithium Chloride[J]. Journal of General Microbiology, 1992, 138(3):611-618.
    [216] Cerquetti M, Molinari A, Sebastianelli A, et al. Characterization of Surface Layer Proteins from Different Clostridium difficile Clinical Isolates[J]. Microbial Pathogenesis, 2000, 28(6):363-372.
    [217] Sanchez-Hurtado K, Poxton I R. Enhancement of the Cytotoxic Activity of Clostridium difficile Toxin a by Surface-Associated Antigens[J]. Journal of Medical Microbiology, 2008, 57(6):739-744.
    [218] Hollmann A, Delfederico L, De Antoni G, et al. Interaction of Bacterial Surface Layer Proteins with Lipid Membranes: Synergysm between Surface Charge Density and Chain Packing[J]. Colloids and Surfaces B: Biointerfaces, 2010, 79(1):191-197.
    [219] Smit E, Jager D, Martinez B, et al. Structural and Functional Analysis of the S-Layer Protein Crystallisation Domain of Lactobacillus acidophilus ATCC4356: Evidence for Protein-Protein Interaction of Two Subdomains[J]. Journal of Molecular Biology, 2002, 324(5):953-964.
    [220] Vidgren G, Palva I, Pakkanen R, et al. S-Layer Protein Gene of Lactobacillus brevis: Cloning by Polymerase Chain Reaction and Determination of the Nucleotide Sequence[J]. Journal of Bacteriology, 1992, 174(22):7419-7427.
    [221] Dohm N, Petri A, Schlander M, et al. Molecular and Biochemical Propertiesof the S-Layer Protein from the Wine Bacterium Lactobacillus hilgardii B706[J]. Archives of Microbiology, 2011, 193(4):251-261.
    [222] Henneke P, Dramsi S, Mancuso G, et al. Lipoproteins Are Critical TLR2 Activating Toxins in Group B Streptococcal Sepsis[J]. The Journal of Immunology, 2008, 180(9):6149-6158.
    [223] Hashimoto M, Furuyashiki M, Kaseya R, et al. Evidence of Immunostimulating Lipoprotein Existing in the Natural Lipoteichoic Acid Fraction[J]. Infection and Immunity, 2007, 75(4):1926-1932.
    [224] Sara M, Sleytr U B. S-Layer Proteins[J]. Journal of Bacteriology, 2000, 182(4):859-868.
    [225] Mobili P, Londero A, Maria T M R, et al. Characterization of S-Layer Proteins of Lactobacillus by FTIR Spectroscopy and Differential Scanning Calorimetry[J]. Vibrational Spectroscopy, 2009, 50(1):68-77.
    [226] Dooley J S, McCubbin W D, Kay C M, et al. Isolation and Biochemical Characterization of the S-Layer Protein from a Pathogenic Aeromonas hydrophila Strain[J]. Journal of Bacteriology, 1988, 170(6):2631-2638.
    [227] Sara M, Sleytr U B. Crystalline Bacterial Cell Surface Layers (S-Layers): from Cell Structure to Biomimetics[J]. Progress in Biophysics & Molecular Biology, 1996, 65(1-2):83-111.
    [228] Lamcharfi E, Cohen-Solal C, Parquet M, et al. Determination of Molecular Associations of Some Hydrophobic and Hydrophilic Bile Acids by Infrared and Raman Spectroscopy[J]. European Biophysics Journal, 1997, 25(4): 285-291.
    [229] Fahmy K, Merroun M, Pollmann K, et al. Secondary Structure and Pd(II) Coordination in S-Layer Proteins from Bacillus sphaericus Studied by Infrared and X-Ray Absorption Spectroscopy[J]. Biophysical Journal, 2006, 91(3):996-1007.
    [230] Kong J, Yu S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(8):549-559.
    [231] Jakava-Viljanen M, Palva A. Isolation of Surface (S) Layer Protein Carrying Lactobacillus Species from Porcine Intestine and Faeces and Characterization of Their Adhesion Properties to Different Host Tissues[J]. Veterinary Microbiology, 2007, 124(3-4):264-273.
    [232] Kongo-Dia-Moukala J U, Zhang H, Claver Irakoze P. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate[J]. International Journal of Molecular Sciences, 2011, 12(2):1066-1080.
    [233] Barbana C, Boucher A C, Boye J I. In Vitro Binding of Bile Salts by LentilFlours, Lentil Protein Concentrates and Lentil Protein Hydrolysates[J]. Food Research International, 2011, 44(1):174-180.
    [234] Kimoto H, Ohmomo S, Okamoto T. Enhancement of Bile Tolerance in Lactococci by Tween 80[J]. Journal of Applied Microbiology, 2002, 92(1): 41-46.
    [235] Ahmed S A, Ibrahim S A, Kim C, et al. Proceedings of the 2007 National Conference on Environmental Science and Technology:Part 1[C]. Germany: Springer publication, 2009:17-23.
    [236] Larsen N, Nissen P, Willats W G T. The Effect of Calcium Ions on Adhesion and Competitive Exclusion of Lactobacillus Ssp. and E. coli O138[J]. International Journal of Food Microbiology, 2007, 114(1):113-119.
    [237] Begley M, Gahan C G M, Hill C. The Interaction between Bacteria and Bile[J]. FEMS Microbiology Reviews, 2005, 29(4):625-651.
    [238] Bhattacharjee J, Verma G, Aswal V K, et al. Tween 80-Sodium Deoxycholate Mixed Micelles: Structural Characterization and Application in Doxorubicin Delivery[J]. The Journal of Physical Chemistry B, 2010, 114(49): 16414- 16421.
    [239] O'Leary W M. The Fatty Acids of Bacteria[J]. Microbiology and Molecular Biology Reviews, 1962, 26(4):421-447.
    [240] Rizzo A F, Korkeala H, Mononen I. Gas Chromatography Analysis of Cellular Fatty Acids and Neutral Monosaccharides in the Identification of Lactobacilli[J]. Appllied and Environmental Microbiology, 1987, 53(12): 2883-2888.
    [241] Taranto M P, Perez-Martinez G, Font de Valdez G. Effect of Bile Acid on the Cell Membrane Functionality of Lactic Acid Bacteria for Oral Administration[J]. Research in Microbiology, 2006, 157(8):720-725.
    [242] Taranto M P, Murga M L F, Lorca G, et al. Bile Salts and Cholesterol Induce Changes in the Lipid Cell Membrane of Lactobacillus reuteri[J]. Journal of Applied Microbiology, 2003, 95(1):86-91.
    [243] Ruiz L, Sanchez B, Ruas-Madiedo P, et al. Cell Envelope Changes in Bifidobacterium animalis Ssp lactis as a Response to Bile[J]. FEMS Microbiology Letters, 2007, 274(2):316-322.
    [244] Fernández Murga M L, Bernik D, Font de Valdez G, et al. Permeability and Stability Properties of Membranes Formed by Lipids Extracted from Lactobacillus acidophilus grown at Different Temperatures[J]. Archives of Biochemistry and Biophysics, 1999, 364(1):115-121.
    [245] Kimoto-Nira H, Kobayashi M, Nomura M, et al. Bile Resistance inLactococcus lactis Strains Varies with Cellular Fatty Acid Composition: Analysis by Using Different Growth Media[J]. International Journal of Food Microbiology, 2009, 131(2-3):183-188.
    [246] Hung B R, Lara L, Patrón M A, et al. Tween 80 and Proteose Peptone Effect on Cellulase Production[J]. Acta Biotechnologica, 1988, 8(5):461-464.
    [247] Kim W, Gamo Y, Sani Y M, et al. Effect of Tween 80 on Hydrolytic Activity and Substrate Accessibility of Carbohydrolase I (CBH I) from Trichoderma Viride[J]. Asian-Australasian Journal of Animal Sciences, 2006, 19(5): 684-689.
    [248] Lee C H, Sung H G, Eslami M, et al. Effects of Tween 80 Pretreatment on Dry Matter Disappearance of Rice Straw and Cellulolytic Bacterial Adhesion[J]. Asian-Australasian Journal of Animal Sciences, 2007, 20(9): 1397-1401.
    [249] Wang L-Q, Meng X-C, Zhang B-R, et al. Influence of Cell Surface Properties on Adhesion Ability of Bifidobacteria[J]. World Journal of Microbiology and Biotechnology, 2010, 26(11):1999-2007.
    [250] Pan W-H, Li P-L, Liu Z. The Correlation between Surface Hydrophobicity and Adherence of Bifidobacterium Strains from Centenarians' Faeces[J]. Anaerobe, 2006, 12(3):148-152.
    [251] Fourniat J, Colomban C, Linxe C, et al. Heat-Killed Lactobacillus Acidophilus Inhibits Adhesion of Escherichia coli B41 to Hela Cells[J]. Veterinary Research, 1992, 23(4):10.
    [252] Geesey G G, Wigglesworth-Cooksey B, Cooksey K E. Influence of Calcium and Other Cations on Surface Adhesion of Bacteria and Diatoms: A Review[J]. Biofouling: The Journal of Bioadhesion and Biofilm Research, 2000, 15(1):195 - 205.
    [253] Alp G, Aslim B, Suludere Z, et al. The Role of Hemagglutination and Effect of Exopolysaccharide Production on Bifidobacteria Adhesion to Caco-2 Cells in Vitro[J]. Microbiology and Immunology, 2010, 54(11):658-665.
    [254] Zhang Y C, Zhang L W, Tuo Y F, et al. Inhibition of Shigella Sonnei Adherence to HT-29 Cells by Lactobacilli from Chinese Fermented Food and Preliminary Characterization of S-Layer Protein Involvement[J]. Research in Microbiology, 2010, 161(8):667-672.
    [255] Jakava-Vijanen M, Palva A. Isolation of Surface (S) Layer Protein Carrying Lactobacillus Species from Porcine Intestine and Faeces and Characterization of Their Adhesion Properties to Different Host Tissues[J]. Veterinary Microbiology, 2007, 124:264-273.
    [256] Granato D, Perotti F, Masserey I, et al. Cell Surface-Associated Lipoteichoic Acid Acts as an Adhesion Factor for Attachment of Lactobacillus johnsonii La1 to Human Enterocyte-Like Caco-2 Cells[J]. Applied and Environmental Microbiology, 1999, 65(3):1071-1077.
    [257] Kim H G, Kim N-R, Gim M G, et al. Lipoteichoic Acid Isolated from Lactobacillus Plantarum Inhibits Lipopolysaccharide-Induced TNF-αProduction in THP-1 Cells and Endotoxin Shock in Mice[J]. The Journal of Immunology, 2008, 180(4):2553-2561.
    [258] Hyn?nen U. Structural and Functional Characterization of the Surface Layer Protein of Lactobacillus brevis ATCC 8287[D]. Helsinki:University of Helsinki, 2009:1-3.
    [259] Jankowski U, Merroun M L, Selenska-Pobell S, et al. S-Layer Protein from Lysinibacillus sphaericus JG-A12 as Matrix for AuIII Sorption and Au-Nanoparticle Formation[J]. Spectroscopy-an International Journal, 2010, 24(1-2):177-181.
    [260] McKean D L, Pesce A J. Determination of Polysorbate in Ascites-Fluid from a Premature-Infant[J]. Journal of Analytical Toxicology, 1985, 9(4):174-176.
    [261] OECD, SIDS Initial Assessment Report For SIAM 15[R/OL]. (2002-10-22) [2011-3-20]. http://www.inchem.org/documents/sids/sids/10043524.pdf.
    [262] Sharpe K, Ward L, Cichero J, et al. Thickened Fluids and Water Absorption in Rats and Humans[J]. Dysphagia, 2007, 22(3):193-203.
    [263] Gaffney-Stomberg E, Sun B H, Cucchi C E, et al. The Effect of Dietary Protein on Intestinal Calcium Absorption in Rats[J]. Endocrinology, 2010, 151(3):1071-1078.
    [264] Seeballuck F, Lawless E, Ashford M B, et al. Stimulation of Triglyceride-Rich Lipoprotein Secretion by Polysorbate 80: In Vitro and in Vivo Correlation Using Caco-2 Cells and a Cannulated Rat Intestinal Lymphatic Model[J]. Pharmaceutical Research, 2004, 21(12):2320-2326.
    [265] Gerard P, Lepercq P, Leclerc M, et al. Bacteroides Sp. Strain D8, the First Cholesterol-Reducing Bacterium Isolated from Human Feces[J]. Applied and Environmental Microbiology, 2007, 73(18):5742-5749.
    [266] McNamara D J, Proia A, Miettinen T A. Thin-Layer and Gas-Liquid Chromatographic Identification of Neutral Steroids in Human and Rat Feces[J]. Journal of Lipid Research, 1981, 22(3):474-484.
    [267] Gallaher D D, Gallaher C M, Mahrt G J, et al. A Glucomannan and Chitosan Fiber Supplement Decreases Plasma Cholesterol and Increases Cholesterol Excretion in Overweight Normocholesterolemic Humans[J]. Journal of the5American College of Nutrition, 2002, 21(5):428-433.
    [268] Miller E R, Ullrey D E. The Pig as a Model for Human Nutrition[J]. Annual Review of Nutrition, 1987, 7(1):361-382.
    [269] Black D D, Davidson N O. Intestinal Apolipoprotein Synthesis and Secretion in the Suckling Pig[J]. Journal of Lipid Research, 1989, 30(2):207-218.
    [270] Russell J C, Proctor S D. Small Animal Models of Cardiovascular Disease: Tools for the Study of the Roles of Metabolic Syndrome, Dyslipidemia, and Atherosclerosis[J]. Cardiovascular Pathology, 2006, 15(6):318-330.
    [271] McConnell E L, Basit A W, Murdan S. Measurements of Rat and Mouse Gastrointestinal pH Fluid and Lymphoid Tissue, and Implications for in-Vivo Experiments[J]. Journal of Pharmacy and Pharmacology, 2008, 60(1):63-70.
    [272]余焕玲,杨睿悦,王军波.甲鱼蛋粉调节大鼠血清胆固醇的基础研究[J].卫生研究, 2004, 33(5):581-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700