用户名: 密码: 验证码:
琼北第四纪火山活动与岩浆演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火山活动是地球上最为壮观的地质现象之一。对于火山,尤其是具有潜在喷发危险的活动火山的研究,不仅具有重大的地学意义,更重要的是为了保护资源环境,实现社会的可持续发展。本论文在琼北新生代火山野外地质考察基础上,运用构造地质学、岩石学、年代学、火山学、地球化学及地球动力学的理论和方法,对火山岩形成的大地构造背景、喷发期次的划分、岩浆的源区特征、演化过程及射气岩浆喷发的动力学机制进行了探讨,取的若干重要进展。
     琼北地区是指海南岛北部近东西向的王五—文教断裂以北的陆域部分,在大地构造上属于雷琼坳陷的一部分。区内新生代火山活动十分频繁,表现为多期、多次的活动,并一直持续到全新世。归纳起来,琼北共有近东西向、北东向、北东东向和北西向四组活动断裂。东西向断裂在地壳运动中起主要控制作用,其中的王五—文教断裂是琼北新生代地层和火山活动的主控断裂。第四纪以来,北西向断裂的活动性增强,控制着石山—永兴一带的第四纪火山活动,全新世火山锥清晰地呈北西方向排列。断裂带的走向和性质是由区域构造应力场的发展与演变决定的。本区自中生代以来就受控于近南北向的构造应力场,此时的东西向构造以压性为特征,并由此派生了北东向和北西向构造。新生代期间,由于南海海盆的扩张,近东西向断裂由压性转化为张性,并由此派生东西向的压应力,使北西向的压性和压扭性构造得以加强,成为琼北新生代火山喷发的主要通道。
     琼北新生代火山具有多期多次喷发的特点,不同期次喷发的构造背景、喷发强度、岩流的分布及岩浆的性质均有差异。根据地层的接触关系、年代学、火山岩风化程度、地貌特征和岩性特征,将区内的新生代火山岩由老到新分成早第三纪的流沙港期和涠洲期,晚第三纪的下洋期、角尾期、蓬莱期和金牛岭期,第四纪的多文岭期、东英期、道堂期和雷虎岭期。通过石山—永兴全新世火山区野外填图和对航片的判读,发现全新世火山锥往往围绕更新世射气岩浆喷发成因的低平火山口的边缘分布,如围绕儒黄岭低平火山口缘分布的火山锥,浩昌岭等火山锥也是位于早期低平火山口缘上。依据不同的岩性和喷发时序,将琼北全新世火山区划分出4个火山系统,分别是:美社岭—昌道岭—春藏岭—国群岭火山系统、浩昌—儒群火山、雷虎岭火山系统、马鞍岭火山系统系统。位于马鞍岭东南的美社岭—昌道岭—春藏岭—国群岭为弧形分布的火山系统,我们获得美社岭、春藏岭和昌道岭的K-Ar年龄分别为0.94Ma、0.21Ma和0.06Ma,属更新世火山活动,其岩性为碱性橄榄玄武岩,区别于马鞍岭系统的橄榄拉斑玄武岩。其他三个火山系统形成于全新世,本次研究获得两个雷虎岭火山岩中砂岩捕虏体的热释光年龄为1万年左右(分别为9.91ka和10.27ka),说明雷虎岭火山至少在距今10000年前后有过两次喷发活动。另外在雷虎岭火山锥之下发现更新世射气成因基浪堆积物,以及马鞍岭西侧的两个早期火山口(称眼镜),表明琼北石山—永兴全新世火山区火山活动具有继承性,多期火山活动造就了石山-永兴全新世现代火山地貌。
     琼北更新世火山活动以溢流式岩浆喷发与射气岩浆喷发交替进行为特征。大规模溢流式岩浆喷发主要发生在早—中更新世,形成大面积分布是熔岩被,而射气岩浆喷发主要发生在中—晚更新世,形成区域内众多的大小不一的低平火山口,主要包括:罗经盘、龙凤—龙吉、双池岭、双池岭东、美玉南、雷虎岭—永茂岭和杨花等。另外,在琼西北海边的峨蔓等地也见到典型的低平火山口。火山
    
    口的规模大小不一,直径可以从数十米变化到ZKm以上。这次研究发现,琼北大
    规模分布的射气岩浆喷发的基浪堆积物被误作“沉凝灰岩”。事实上,是玄武岩
    浆上升遇到地下水发生蒸汽爆炸,并伴随出现基浪,形成基浪堆积物围绕低平火
    山口分布。基浪堆积物的特点是具有大型低角度板状层理或交错层理,以及在远
    源相基浪堆积物中常见的球粒状或鲡粒状增生火山砾,区别于传统的“沉凝灰
    岩’,。为了深入探讨射气岩浆喷发的动力学机制,本文从弹性力学理论出发,设
    计了两个简单的力学模型,模拟了射气岩浆喷发过程中各物理量之间的变化关
    系,即:发生射气岩浆喷发前洼地的半径越大,形成低平火山口所需的爆破冲击
    力越小:当低平火山口的半径和爆炸点的深度一定时,岩浆与地下水的接触面积
    越大,则爆炸时产生的爆破冲击力也越大;在给定爆破冲击力和爆炸点面积的条
    件下,火山口的半径越大,所对应的爆炸点的深度也越深;当爆破冲击力和火山
    口的半径为定值时,爆炸点的深度是随岩浆与水接触面面积的增加而减小的。
     全新世雷虎岭亚期碱性橄榄玄武岩和马鞍岭亚期橄榄拉斑玄武岩构成两个
    不同的岩区,其主要氧化物5102和MgO存在明显差别,51仇分别为47.50%和50.36
    %,MgO分别为9.91%和6.81%。两类玄武岩具有极为相似的同位素、REE和不
    相容元素分布模式,且不出现明显的Eu、Sr、Ba负异常,,表明岩浆上升过程中
    未发生过明显的斜长石分离结晶作用和地壳混染,即岩浆直接来自同一地慢源区
     (>26一3OKm),没有经历地壳岩浆房结晶分异过程。碱性橄榄玄武岩是较为原始
    的岩浆,在地慢条件下,碱性橄榄玄
Volcanic activity is one of the most splendid geological phenomenon on the earth. Studying on volcano, especially on active volcano that has potential danger of eruption, not only has great geological significance, but also has great importance to resource protection and persistent development of society. Based on the field work of Cenozoic volcano in North Hainan Island, this paper uses some new theories and methods, such as tectonics, petrology, chronology, volcanology, geochemistry and geodynamics, to solve several doubtful problems, including the structural background of volcanic rock formation, division of eruption periods, character of magma source and dynamic mechanism of phreatomagmatic eruption. Up to now, we have made some new progresses.
    North Hainan Island refers generally to the land area to the north of the EW-trending Wangwu-Wenjiao fault, belonging to tectonically part of Leiqiong depression. High frequency Cenozoic volcanic activity is vivid feature in this region. In this area four groups of active faults can be identified, they are nearly EW-trending, NE-trending, NEE-trending and NW-trending faults. EW- trending faults play an important role in the crustal movement. Furthermore, the EW-trending Wangwu-Wenjiao Fault controled Cenozoic deposition and volcanic activity of North Hainan Island. Since Quaternary, the activity of NW-trending faults has enhanced. They dominated Quaternary volcanic activity in Shishan-Yongxing area. In this area, the arrangement of Holocene volcanic cones is obviously NW-trending. Development and evolvement of regional tectonic stress field controlled the direction and character of faults. Since Mesozoic, North Hainan Island has long been controlled by SN-directing tectonic stress field. In this period, EW-s
    tructure was characterized by compressional feature, resulting in the NE-directing and NW- directiin structures. During the period of Cenozoic, the character of nearly EW-directing faults were transformed from compressional to tensional due to the expansion of Nanhai basin. This variation has resulted in EW-directing compressional stress, which strengthened the compressional feature of NW- directing structures. These structures become the main channels of Cenozoic volcanic eruption.
    The eruption of Cenozoic volcanoes in North Hainan Island is characterized by multiple activities and periods. Different eruptive period has different tectonic background, eruptive intensity, distribution of lava flow and character of magma. According to several principles, such as stratigraphic relationship, chronology, weathering degree of volcanic rock, landform and lithology, the Cenozoic volcanic rock in this region can be divided into several groups. From old to young, they are Liushagang period and Weizhou period (Eogene), Xiayang period, Jiaowei period, Penglai period and Jinniuling period (Neogene),
    
    
    Duowenling period, Dongying period, Daotang period and Leihuling period (Quaternary). Field observation reveals that most Holocene volcanic cones are located on the margin of Pleistocene maars. For example, some volcanic cones are distributed around the margin of Ruhuangling maar, and Haochangling volcanic cone is located on the margin of earlier maar. According to different lithology and eruptive sequence, four volcanic systems can be recognized in the Holocene volcanic region, they are Meishe-Changdao-Chuncang-Guoqun, Haochang-Ruqun, Leihuling and Ma' anling volcanic system. Meishe-Changdao-Chuncang-Guoqun volcanic system is located in the southeast of Ma' anling, being an arcuate volcanic system. The K-Ar age of Meisheling, Chuncangling and Changdaoling are dated to be 0. 94Ma, 0.21Ma and 0. 06Ma respectively. It is undoubtful that this volcanic system belongs to Pleistocene according to its K-Ar age, and belongs to alkaline olivine basalt according to its lithology. It is different from olivine tholeiite of Ma' anling volcanic system. The rest volcanic systems were formed in Holocene. The ages of sandstone xenolith from the Leihuling basalt have been dated by TL method to be
引文
边兆祥.海南岛第四纪火山.中国第四纪研究,1958,1(1):250~253
    蔡福祥.雷州半岛第四纪火山活动的特征及强度(摘要).桂林冶金地质学院学报,1989,9(1):12
    陈文寄,李齐,李大明等.中、新生代火山岩年龄测定中的几个值得重视的问题.地质评论,1999,(45):72~80
    陈文寄,葛同明,李大明等.雷琼新生代玄武岩的K-Ar—磁性地层年代学.见刘若新主编:中国新生代火山岩年代学与地球化学,地震出版社,1992,239-245
    陈上福等.从卫星影像上分析海南岛第四纪玄武岩的分期.地震地质,1985,5(2):65~70
    从柏林.岩浆活动与火成岩组合.1979,北京:地质出版社
    丁国瑜等.海南岛第四纪地质的几个问题.207~233,1964,北京:科学出版社
    樊祺诚,刘若新.中国东部新生代玄武岩稀土元素地球化学.见刘若新主编:中国新生代火山岩年代学与地球化学,1992,北京:地震出版社,339~363
    樊祺诚,孙建中.琼北第四纪玄武岩的岩石学和地球化学.科学通报,1987,4:287~291
    樊祺诚,胡久常.海南岛雷虎岭—马鞍岭全新世火山.见刘若新主编:中国的活火山,北京:地震出版社,2000,75~81
    樊祺诚,隋建立,刘若新.五大连池火山、天池火山和腾冲火山岩Sr、Nd同位素地球化学与岩浆演化.矿物岩石学杂志,2001,20(3):233~238
    樊祺诚,刘若新,隋建立.五大连池裂谷型富钾火山岩带的岩石学与地球化学.地质评论,1999,(45):358~368
    樊祺诚,刘若新,魏海泉等.腾冲活火山的岩浆演化.地质评论,1999,(45):895~904
    樊祺诚,刘若新,魏海泉等.长白山天池火山全新世喷发与岩石地球化学特征.地质评论,1999,(45):263~271
    樊祺诚,刘若新,张国辉等.长白山望天鹅火山双峰式火山岩的成因演化.岩石学报,1998,14(3):305~317
    范蔚茗,M.A.Menzies.张裂环境火山作用的岩石圈地幔组分:雷琼地区新生代玄武质火山
    岩的地球化学证据.见刘若新主编:中国新生代火山岩年代学与地球化学.1992,北京:地震出版社,320~327
    傅秀银.海南岛第四纪火山及火山岩的航空像片判读.海南岛航空像片判读文集,1981,北京:测绘出版社,44~50
    葛同明,陈文寄,徐行等.雷琼地区第四纪地磁极性年表—火山岩钾-氩年龄及古地磁学证据.地球物理学报,1989,32(3):550~558
    广东省地质局海南地质大队.应用重力点算资料探讨海南岛深部构造格架,1982
    郭丙奎.对雷州半岛火山岩的一些认识.中国第四纪研究,1959,2(1):37~38
    郭旭东.我国海南岛第四纪玄武岩风化壳的地球化学特征.地理学报,1980,35(2):161~173
    海南省地质矿产勘察开发局.中华人民共和国区域地质调查报告.1989,长流幅海口市幅白莲市幅灵山市幅(1:50000)
    韩中元.海南岛北部火山地貌.热带地理,1987,7(1):43-53
    何铭文.琼山县志,1999,北京:中华书局
    华东水利学院.岩石力学.1980,北京:水利出版社
    环文林等.中国东部及邻区中新生代构造演化与太平洋板块运动.地质科学,1982,(2):179~189
    黄坤荣.华南沿海的新生代火山.华南地震,1986,6(1):33~41
    
    
    黄玉昆 邹和平.雷琼新生代断陷盆地构造特征及其演化.中山大学学报(自然科学版),1989,28(3):1~11
    黄镇国,蔡福祥,韩中元等.雷琼第四纪火山.1993,北京:科学出版社
    李坪,杨美娥,刘行松等.琼北地区活动性断裂的研究,见丁原章主编:海南岛北部地震研究文集,1988,北京:地震出版社,41~52
    刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学(II)Sr、Nd、Ce同位素组成.地球化学,1995,24(3):203~213
    刘嘉麒.中国火山活动及其潜在的危险.见刘若新主编:火山作用与人类环境,北京:地震出版社,1995,182~187
    刘嘉麒,王文远,郭正府等.2000,中国玛珥湖的时空分布与地质特征.第四纪研究,20(1):78~86
    刘瑞新,李树东,王卫东.Visual Basic程序设计教程.2000,北京:电子工业出版社
    刘若新,陈文寄,孙建中等.中国新生代火山岩的K-Ar年代与构造环境.见刘若新主编:中国新生代火山岩年代学与地球化学,北京:地震出版社,1992,1~37
    刘运生,毛春长等,1996,地球物理学简明教程,北京:地震出版社
    刘祥,向天元.中国东北地区新生代火山和火山碎屑堆积物资源与灾害.1997,长春:吉林大学出版社
    刘祥,王锡魁.吉林省辉南县大龙湾火山基浪(base-surge)堆积物的发现.地质评论,1987,33(6):577~582
    马文蔚.物理学(上册).1999,北京:高等教育出版社
    木晓东等.再论琼州海峡成因.热带地理,1987,7(4):338~345
    潘兆橹.结晶学及矿物学(上、下册).1990,北京:地质出版社
    邱家骧.应用岩浆岩石学.1991,武汉:中国地质大学出版社
    任锦章,魏海泉.黑龙江二克山火山喷发序列特点和喷发期次的考察研究.见刘若新主编:火山作用与人类环境,1995,北京:地震出版社,63~70
    孙嘉诗.南海北部及广东沿海新生代火山活动.海洋地质与第四纪地质,1991,11(3):45~65
    孙建中,樊祺诚,陈文寄.琼北地区第四纪火山活动的研究.见丁原章主编:海南岛北部地震研究文集,26~33,地震出版社
    孙建中,严富华,王庆隆,1988,琼北地区第四纪地层年代学研究.见丁原章主编:海南岛北部地震研究文集,1988,北京:地震出版社,17~25
    孙谦,樊祺诚,魏海泉等.琼北地区晚更新世射气岩浆喷发初步研究.地震地质,2003,25(2):289~297
    涂勘,解广轰,Martin F.J等.南海海盆新生代玄武岩的地球化学特征与Dupal型同位素异常区的成因讨论.见刘若新主编:中国新生代火山岩年代学与地球化学,1992,北京:地震出版社,269~282
    汪集炀.中国晚新生代火山分布和产生的地热背景.见刘若新主编:火山作用与人类环境,北京:地震出版社,1995,191~192
    汗啸风,马大铨,蒋大海.海南岛地质(一)地层古生物.1992,北京:地质出版社。218~281
    汗啸风,马大铨,蒋大海.海南岛地质(二)岩浆岩.1992,北京:地质出版社,167~169
    汗啸风,马大铨,蒋大海.海南岛地质(三)构造地质.1992,北京:地质出版社,78~120
    汪一鹏,范福田,孙建中等.干冲—木棠断裂活动性的初步研究.见丁原章主编:海南岛北部地震研究文集,1988,北京:地震出版社,53~62
    网冠科技.Visual Basic 6.0控件时尚编程百例.2002,北京:机械工业出版社
    魏海泉.火山灾害的类型及预测与防治.地质灾害与防治—中国地质灾害研究会学报,1991,
    
    2(2):94~96
    魏海泉,刘若新.火山灾害减轻与预报.地震地质译丛,1991,13(6):4~10
    魏海泉,刘若新,樊祺诚等.中国的活火山及有关灾害.自然杂志,1998,20(4):196~200
    徐芝纶.弹性力学(上、下册).2002,北京:高等教育出版社
    徐志刚,盛继福,孙善平.关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论.地质评论,1999,(45):43~60
    薛万俊.北海组的地质时代及其沉积环境.海洋地质与第四纪地质,1983,3(3):31~48
    严正.海南岛玻璃陨石和第四纪玄武岩氧同位素特征.地质科学,1983,(4):387~391
    杨桂通.弹性力学.2002,北京:高等教育出版社
    杨美娥,李坪,窦毅强.琼北地区第四纪火山活动与断裂活动关系的探讨.见丁原章主编:海南岛北部地震研究文集,1988,北京:地震出版社,63~71
    姚清尹,对琼州海峡成因的探讨,热带地理,1980,试(1):21~25
    袁宝印.海南岛北部第四纪玄武岩分期问题.中国地理学会第一次构造地貌学术讨论会论文选集,1984,北京:科学出版社,182~187
    曾广策.海南岛北部第四纪玄武岩岩石学.地球科学—武汉地质学院学报,1984,1:63~71
    张虎男等.雷琼地区新构造运动特征.地质科学,1984,3:276~287
    张虎男等.海南岛的地震活动与地震构造.1985,中国地震,3
    张虎男.火山.1986,北京:地震出版社
    张虎男,陈伟光,李子权等.琼北地区中、新生代地质构造背景.见丁原章主编:海南岛北部地震研究文集,1988,北京:地震出版社,34~30
    张虎男.火山活动、地震活动、水热活动关系—以华南沿海地区为例.见刘若新主编:火山作用与人类环境,北京:地震出版社,1995,101~107
    张明,涂勘,解广轰.海南岛新生代玄武岩微量元素和同位素地球化学.见刘若新主编:中国新生代火山岩年代学与地球化学,1992,北京:地震出版社,246~264
    张汝藩,杨主恩等.扫描电镜与微观地质研究.1999,北京:学苑出版社
    张世良,张瑞禾.应用遥感技术对琼北地区断裂构造的分析,见丁原章主编:海南岛北部地震研究文集,1988,北京:地震出版社,1~9
    张业明,张仁杰,胡宁等.海南岛格林威尔期大地构造格局.地质评论,1999,(45):836~837
    张仲英等.海南岛第四纪火山岩的分期.地质科学,1989,1:69~76
    赵海玲,邓晋福,李凯明等.东南沿海及南海新生代火山作用与南海的形成演化.地质评论,1999,(45):809~814
    赵伦山,张本仁.地球化学.1987,北京:地质出版社
    赵振华.微量元素地球化学原理,1997,北京:科学出版社
    中国科学院南海海洋研究所海洋地质构造研究室.南海地质构造与陆缘扩张.1988,北京:科学出版社
    朱炳泉,王慧芬.雷琼地区MORB—IOB过渡型地幔源火山作用的Sr-Nd-Pb同位素证据.地球化学,1989,3:193~201
    D.L.特科特,G舒伯特.地球动力学—连续介质物理在地质问题上的应用.1986,北京:地震出版社
    A Briais, P Tapponnier, R Paatriat and K Wang. 1989, The Tertiary opening of the South China Sea: a consequence of the collision between India and Asia, Terra Abstr., 1:210
    Aubele J C, Crumpler L S, Loeber K. N et al. 1878. Maars and tuff rings of New Mexico. New Mexico. Geol Soc Spec, 6:109~114
    Basu A R, Wang J.W, Huang W K et al. 1991. Major element, REE, and Pb, Nd and Sr isotopic
    
    geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoir. Earth Planet. Sci. Lett., 105:149~169
    B Taylor and D E Hayes. 1983. Origin and history of the South China Basin, in: The Tectonic and Geology Evolution of Southeast Asian Seas and Island. D E Hays ed, AGU Gelophys, Monogr. Ser., 27:25~56
    Barr S Met al. 1981. Geochemistry and Geochronology of the late Cenozoic basalts of southeast Asia: summary. Geol. Soc. Am. Bull., 92:508~512
    Briais A et al. The Tertiary opening of the South China Sea: a consequence of the collision between India and Asia. Terra abstr. I, 210, 1989
    Chen C-Y et al. 1985. Trace element and isotopic geochemistry of lavas from Haleakala Volcano, East Maui, Hawaii: implications for the origin of Hawaii basalts. J Geophys Res, 90:8743~8768
    Chough S K, Sohn Y K. 1990. Depositional mechanics and sequences of base surge, Songaksan tuff ring, Cheju Island, Korea. Sendimentology 37:1115~1135
    Cohen R Set al. 1982. Identification of recycled continental material in the mantle from Sr, Nd and Pb isotope continental gations. Earth Planet. Sci. Lett. 61:73~84
    Cox K G. 1980. A modal for flood basalt volcanism..J Petrol, 21:629~650
    Crawford E, Herbert C, Taylor G et al.,1980. Diatremes of the Sydney basin. N S W Geol Surv Bull 26:294~323
    Dullforee T A, Buchanan D J, Peckover R S. 1976. Self-triggering of small-scale fuel-coolant interactions: I. Experiments. J Phys D: Appl Phys 9:1295~1303
    Falloon T J, Green D H. 1988. Anhydrous partial melting of peridotite from 8 to 35 kbar and the
    petrogenesis of MORB. In: M. A. Menzies and K. G.Cox (Editors), Oceanic and Continental Lithosphere: Similarities and Differences. J. Petrol., Spec. Vol., pp. 379~414
    Fan Q C and Hooper P R. 1991. The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. J Petrology, 32:765-810
    Fan W M and Menzies M A. 1991. Geochemistry of volcanic rocks and ultramafic xenoliths from eastern China: Implications for the structure of the lower lithosphere, Jour. Geol. Soc. Lond.
    Fisher R V, Waters A C. 1970. Base surge bed forms in maar volcanoes. Am. J. Sci. 268:157~180
    Flower M F J, Zhang M, Chen C et al. Magmatism in the South China Basin: 2. Post-spreading Quaternary basalts from Hainan Island, South China. Chem Geol, 1992, 97:65~87
    Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: a study Of quartz tholeiites to olivine melilites from south eastern Australia utilizing geochemical petrological-data.J Petrology, 1987, 19:463~513
    G Pautot, C. Rantin, A Briais, et al. 1986. Spreading direction in the South China Sea. Nature, 321:15~35
    Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies.Earth Planet. Sci. Lett. 90:273~296
    Hawkesworth C Jet al. 1979. ~(143)Nd/~(144)Nd and ~(87)Sr/~(86)Sr ratios from the Azores and their significance in LIL-elements enriched mantle. Nature, 280:28~31
    Henry R E, Miyazaki K. 1978. Effects of system pressure on the bubble growth from highly superheated water droplets. In: Bankoff SG (ed) Topics in two-phase heat transfer and flow. Am Soc Mech Eng, New York, pp1~10
    Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90:297~314
    
    
    Jochum K P et al. 1989. Compositional constraints on the continental lithosphere mantle from trace elements in spirei peridotite xenoliths. Nature, 340:548~550
    L A Haskin, F A Frey, R A Schmitt and R H Smith. 1968. Meteorite, solar, and terrestrial rare-earth distributions, in Physics Chemistry of the Earth L. H. Ahrens, ep., Pergamon, New York, 7:167~321
    Lin L et al. 1985. Preliminary Phanerozoic polar wander paths for the North and South China blocks. Nature, 313:444~449
    Lorenz V. 1975. Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth, 9:17~27
    Lorenz V. 1979. phreatomagmatic origin of the olivine melilitite diatremes of the Swabian Alb, Germany. In: Boyd F. R., Myer H. O. (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. Proc Sec Int Kimberlite Conf. Amer Geophys Union Washington 1:354~363
    Lorenz V. 1986. On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanal. 48:265~274
    Loubet M et al. 1988. Mantle heterogeneities: a comoined isotope and trace element approach and evidence for recycled continental crust materials in some OIB sources. Earth Planet. Sci. Lett, 89:299~315
    Lower D R. 1988. Suspended-load fallout rate as an independent variable in the analysis of current structures. Sedimentology, 35:765~776
    Martin F C Flower, Zhang M et al. 1992. Magmatism in the South Basin 2. Post-spreading Quaternary basalts from Hainan Island, South China. Chemical Geology, 97:65~87
    Ma X and Wu D., 1987. Cenozoic extensional tectonics in China. Tectonophysics, 133:243~255
    McDonough W F.1990. Constraints on the composition of the continental lithospheric mantle.Earth Planet. Sci. Lett., 101:1~18
    McKenzie D and Bickle M J. 1988. The Volume and composition of melt generated by extension of the lithosphere. Jour. Petrol., 29:625~679
    McKenzie D and O' Nions R K. 1983. Mantle reservoirs and ocean island basalts, Nature, 301:229~231
    Menzies M A. 1990. Petrology and geochemistry of the continental mantle: an history perspective. In: Continental Mantle, Qxford Science Publications: 31~45
    Moore J G. 1967. Base surge in recent volcanic eruption. Bull Volcano130:337~363
    Moyer T C, Wanson D A. 1987. Secondary hydroeruptions in pyroclastic-flow deposits: examples from Mount St. Helens. J. Volcanol. Geotherm. Res., 32:299~319
    P Castillo. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667~670
    P Taponnier, G Peltzer and R Armijo. 1986. On the mechanics of the collision between India and Asia. in: Collision Tectonics, M. P.Coward, A. C. Ries, ed., Geol. Soc. Lond. Spec. Publ.,115~157
    Peng Z C et al. 1986. Pb, Sr and Nd- isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chem, Geology, 59:3~33
    Peter K. 1986. Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275~289
    Postma G. 1986. Classification for sediment gravity-flow deposits based on flow conditions during
    
    sedimentation. Geology, 14:291~294
    Presnall D C and Hoover J D. 1987. High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts. In: B. O. Mysen (Editor), Magmatic Process: Physicochemical Priciples. Geochem. Soc., Spec. Publ., 1:75~90
    Raffaello C, Alessandro S, Raffaella V. 1992. Morphologic features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J. Vol. Geot. 51:61~78
    Ringwood A E. 1982. Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalts petrogenesis, and crustal evolution. J. Geol., 90:611~4543
    Roden M F, Frey F A, Clague.D A. 1984. Geochemistry of tholeiitie and alkaiic lavas from the Koolau range, Oahu, Hawaii: Implications for Hawaii volcanism. Earth Planet. Sci. Lett., 69:141~158
    Ru K et al. 1986. Episodic rifting and subsidence of the South China Sea. AAPG Bull., 70:1136~1155
    Salters J M et al. 1989. The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts. Nature, 342:420~422
    Sato H. 1977,.Nickel content of basaltic magma: identification of primary magmas and measure of the degree of olivine fraetionation. Lithos, 10:113~120
    S B Mukasa, R MeCabe and J B Gill. 1987. Pb isotopic compositions of volcanic rocks in the west and east Philipoines arcs: presence of the Dupal isotopic anomaly. Earth Planet. Sci. Lett., 48:153~164
    Self S, Sparks R J S. 1978. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull Volcanol, 41:1~17
    Silver P, Calson R W, Olson P. 1988. Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: investigation of an enduring paradox. Annu. Rev. Earth Planet. Sci., 16:477~542
    Song Yet al. 1990. Isotopic characteristics of Hannuoba basalts, eastern china: implications for their petrogenesis and the composition of subcontitental mantle. Chem. Geol., 85:35~52
    Sparks R J S. 1978. The Dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol Geotherm Res 3:1~37
    Sparks R J S, Huppert H E. 1984. Density changes during the fractional crystallization of basaltic magamas: implications for the evolution of layered intrusions. Contrib. Mineral. Petrtol., 85:300~309
    Sun S S et al. 1989. chemical and isotopic systematics of mid-ocean ridge basalts: implications for mantle composition and processes. In Saunders, A. D. and Norry M. J., eds, Magmatism in the Ocean Basins: Geological Society Special Publication No, 42:313~345
    Tapponnier P et al. 1986. On the mechanics of the collision between India and Asia. In Collision Tectonics. Ed. M. P. Coward. A. C. Ries, Geol. Soc. Lond. Spec. Publ. 19:115~157
    Taylor B et al. 1983. Origin and history of the South China Basin. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, (volume 2) ed. D. E. Hayes, Am. Geophys. Union Geophys. Monogr. Ser. 27:25~56
    Tu K et al. 1991. Magmatism in the South China Basin: I. Isotopic and trace element evidence for an endogenous Dupal Isotopic and trace element evidence for an endogenous Dupal mantle component. Chem. Geol., in press
    
    
    Tu K, Flower M F J. 1991. Sr, Nd and Pb isotopic compositions of Hainan basalts (South China):Implications for a su.hcontinental lithosphere Dupal souce. Geology, 19:567-569
    Turner J S. 1980. A fluid dynamical model of differentiation and layering in magma chambers. Nature, 285:213~215
    Vernon R H, Etheridge M A, Wall V J. 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22:1~11
    Walker G P L. 1984. Characteristics of dune-bedded pyroclastic surge bedsets. J. Volcanol. Geotherm. Res., 20:281~296
    White R et al. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94:7685~7729
    White W M. 1985. Sources of oceanic basalts: radiogenic isotope evidence. Geology, 13:115~118
    Wiebe R A. 1987. Evidence for stratification of basic, silicic, and hybrid magmas in the Newark Island layered intrusion, Nain, Labrador. Geology, 15:349~352
    Wiebe R A. 1991. The Pleasant Bay Composite Layered Intrusion (coastal Maine): Periodic emplacement of basaltic magma into a granitic magma chamber. Geol. Soc. Am., Abstr. With Programs, 23(1):149~152
    Wilkinson J F G and LeMaitre R W. 1987. Upper mantle amphiboles and micas and TiO_2, K_2O and P_2O_5 abundances and 100Mg/(Mg+Fe~(2+)) ratios of common basalts and andesites: implications for modal mantle metasomatism and undepleted mantle compositions. J. Petrology, 28:37~73
    W M White and B Dupre. 1986. Sediment Subduction and magma genesis in the Aesser Antilles:Isotopic and trace element constraints. J. Geophys. Res., 91:5927~5941
    Wohletz K H. 1986. Explosive magma-water interactions: thermodynamic, explosion mechanisms, and field studies. Bull Volcanol 48:245~264
    Wohletz K H, McQueen R G. 1984. Experimental studies of hydromagmatic volcanism. In:Geophysics Study Committee: Studies in Geophysics: Explosive volcanism: Inception, evolution,and hazards. National Academy Press, Washington 158~169
    Y A Sapozhinkov, A V Koloskov and V A Aramo. 1979. Ultramafic and basic xenoliths from alkali olivine basalts of the Ile Des Cendres submarine volcano, publ. S iaerian Inst. Geochim., 31:14~17
    Z A Palacz and A D Saunders. 1986. Coupled trace element and isotope enrichement in the Cook-Austral-Samoa Island, southwest pacific, Earth Planet. Sci. Lett., 79:270~280
    Zhi X C et al. 1990. Geochemistry of Hannooba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chem. Geology, 88:1~33
    Zindler A and Hart S R. 1986. Chemical geodynamics, Ann. Rev. Earth Planet. Sci. 14:493~507
    Zhou, X H et al. 1988, Cenozoic basaltic rocks in eastern China. In Macdougall, J. D. eds. Continental flood basalts, Kluwer Academic Pub. 311~330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700