用户名: 密码: 验证码:
UV-B辐射增强对花生的生理生态影响及其分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量氯氟烃类(Chlorofluorocarbons,CFCs)气体由于人类的工业活动被释放到空气中,致使大气臭氧层变薄,从而引起太阳辐射中到达地面的中波紫外线(Ultraviolet-B,UV-B,280-320nm)辐射增强,UV-B辐射增强对陆生植物个体、种群及生态系统都产生了较为明显的影响。花生(Arachis hypogaea L.)为豆科落花生属一年生草本植物,富含脂肪和蛋白质,为主要食用植物油来源,目前,有关UV-B辐射增强对花生的生理生态影响报道较少,其影响的分子机制也鲜有探索。本研究以“小京生”花生为试验材料,分析UV-B辐射增强对其幼苗形态、气体交换参数、叶绿体超微结构、活性氧水平、抗氧化酶活性和抗氧化剂含量等的影响;并通过蛋白质组学方法研究UV-B辐射增强对花生蛋白表达的影响;在此基础上,克隆受UV-B辐射增强影响表达下调的果糖-1,6-二磷酸醛缩酶(fructose-1,6-bisphosphate aldolase,FBA)基因AhFBA,明确其生物信息学特征及受UV-B影响的转录情况;将AhFBA基因导入大肠杆菌BL21(DE3)并进行诱导表达,观察宿主菌在UV-B增强处理下的生长情况,旨在回答以下几个问题:(1)UV-B辐射增强如何在生理生态水平对花生造成影响?(2)花生在蛋白质水平如何响应UV-B辐射增强处理?(3)FBA蛋白在抵御UV-B辐射增强中是否有作用?研究结果如下:
     在补增在强度为54μW/cm2的UV-B辐射处理3d后(每天处理8h),花生叶绿素a和叶绿素(a+b)含量均显著下降(P<0.05),同时,气体交换参数也受到显著影响(P<0.05),表现出净光合速率(Pn)降低了35.42%,气孔导度(Gs)、蒸腾速率(Tr)和气孔限制值(Ls)分别下降了28.12%、26.37%和20.25%,然而,胞间CO2浓度(Ci)上升了16.22%,较对照有显著性差异(P<0.05),表明非气孔限制因素是Pn下降的主要原因。同样,荧光参数Fv/Fm和Fv/Fo均显著降低(P<0.05)。但UV-B处理1d和2d后,以上各指标的变化与对照差异不显著(P>0.05)。透射电子显微镜(TEM)图像显示,处理3d的花生叶片叶绿体膜肿胀、基质类囊体解体,光同化产物淀粉粒数目和大小减少。
     补增UV-B辐射处理下,花生叶片相对电导率、超氧阴离子(O2·-)、类黄酮和可溶性蛋白质的含量,以及过氧化氢酶(CAT)、过氧化物酶(POD)活性较对照显著升高(P<0.05);超氧化物歧化酶(SOD)活性先显著升高后降低;过氧化氢(H202)、丙二醛(MDA)、抗坏血酸(AsA)和谷胱甘肽(GSH)含量,以及抗坏血酸过氧化物酶(APX)活性没有显著变化(P>0.05)。可见增强的UV-B能显著提高花生叶片内的活性氧(ROS),而且O2·-是对花生产生氧化胁迫的主要因素,花生幼苗主要通过提高类黄酮含量以及SOD、CAT和POD活性来抵制ROS的胁迫,AsA-GSH循环系统在花生清除ROS中效果不明显。
     补增UV-B辐射处理下,花生叶片中共检测到丰度变化在2.5倍以上差异表达蛋白点39个(其中22个蛋白质表达上调,17个表达下调),经过MALD1-TOF-TOF分析及数据库检索,成功鉴定出其中的27个蛋白质。被鉴定的27个蛋白质按其功能大致可归为八大类,第Ⅰ类:光合作用相关的蛋白,包括质体蓝素(plastocyanin,PC)、1,5-二磷酸核酮糖羧化酶(Rubisco)小亚基、放氧复合物增强子蛋白1、PsbP结构域蛋白6;第Ⅱ类:糖代谢相关蛋白,包括苹果酸脱氢酶(malate dehydrogenase,MDH)和FBA;第Ⅲ类:能量合成相关蛋白,包括ATP合酶;第Ⅳ类:氨基酸代谢相关蛋白,包括半胱氨酸合成酶;第Ⅴ类:蛋白质加工相关蛋白,包括热激蛋白(heat shock protein, HSP);第Ⅵ类:蛋白质翻译相关蛋白,包括核糖体循环因子(ribosome recycling factor, RRF);第Ⅶ类:防御相关蛋白,包括几丁质酶、过氧化物酶、Cu-Zn超氧化物歧化酶、二羟肉桂酸3-O-转甲基酶(caffeic acid3-O-methyltransferase, COMT),类萌发素蛋白(Germin-like protein, GLPs)和病程相关蛋白(pathogenesis-related protein, PR);第Ⅷ类,未知功能蛋白。表明增强的UV-B辐射可能会通过下调PsbP和RRF的表达破坏花生叶绿体类囊体结构、下调PC表达降低光合电子传递速率、下调Rubisco和光合放氧增强蛋白的表达降低光合速率、下调MDH和FBA的量降低糖代谢速率和下调ATP合酶降低能量产生速率等方式影响花生的生理代谢水平;同时,花生也可能通过上调HSP促进新生蛋白质的折叠,包装及跨膜运输、上调COMT促进木质素的合成、上调GLP表达令细胞壁更为致密,抵抗病毒、细菌感染或采食天敌的侵袭、上调PR表达抵御真菌侵染和上调半胱氨酸合成酶促进GSH的合成,维持细胞内的还原态。
     以大豆(Glycine max)果糖-1,6-二磷酸醛缩酶基因(GmFBA,GenBank登录号:AY492006.1)作为查询探针,在NCBI网站花生EST数据库中进行BLAST检索,选取与之高同源的花生EST序列,通过EST序列拼接获得一条重叠群(contig),再以拼接后的contig作为新的查询探针,继续搜索花生EST数据库,直至无新的EST序列拼接为止。以最终拼接的contig作为花生的FBA基因,并以该序列为模板设计上下游引物。提取花生总mRNA,后转录得cDNA。以cDNA为模板,加入上下游引物,在55℃退火条件下,PCR扩增得到花生果糖-1,6-二磷酸醛缩酶基囚,长度为1077bp,命名为AhFBA,(?)该序列提交NCBI网站,GenBank登录号为KF470788。
     AhFBA基因编码蛋白分子式为C1706H2725N469O524S6,由358个氨基酸组成,所含氨基酸组成以Ala最多,酸性氨基酸(Asp和Glu)和碱性氨基酸(Lys和Arg)个数均为40,相对分子质量分别为38.38kD,等电点分别为6.73,不稳定指数分别为30.03,属于稳定蛋白质,无信号肽序列。
     AhFBA蛋白定位于细胞质中的可能性最大,分值为0.65,定位于线粒体基质、叶绿体内囊体膜的分值均为0.1,而定位于内质网的分值为O。AhFBA蛋白中有2个酰胺化位点(36和285位),1个cAMP依赖的蛋白激酶磷酸化位点(41位),3个蛋白激酶Ⅱ磷酸化位点(114、270和309位),7个蛋白激酶C磷酸化位点(50、201、235、247、304、309和336位),7个N-豆蔻酰化位点(25、97、127、137、232、335和346位),1个醛缩酶活性中心(217-227位,序列为VLLEGTLLKPN),AhFBA属于Ⅰ型细胞质FBA基因。AhFBA蛋白与同属豆科的豌豆、鹰嘴豆、蒺藜苜蓿、菜豆和花生的同源性很高。
     实时荧光定量PCR结果显示,在自然光照生长条件下,AhFBA基因在根、叶、花和幼果中均有表达,且表达量无显著差异(P>0.05)。但是在受到UV-B辐射增强处理后,该基因的表达发生了变化,照射4h后,AhFBA基因在叶中表达上调了10倍以上,接着表达量开始下调,照射8h、16h和24h后,表达量下调了0.75、0.86和0.29倍。表明AhFBA基因属于UV-B诱导型基因,该基因参与了对UV-B胁迫的应答。
     根据PCR获得的AhFBA序列设计引物(上下游引物分别引入BamHⅠ和HindⅢ酶位点)扩增其编码区序列,用BamH1和Hind Ⅲ分别双酶切花生AhFBA基因和原核表达载体pET28a,双酶切产物通过胶回收试剂盒进行纯化,连接两种胶回收产物,菌液PCR验证和测序结果表明已经成功构建含有目的基因的重组表达载体pET28a-AhFBA。采用热激法将重组表达载体转化大肠杆菌表达菌BL21(DE3)感受态细胞,异丙基硫代半乳糖苷(IPTG)诱导表达,十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)检测发现在40kD附近出现一条明显的蛋白条带,表明目的蛋白AhFBA诱导表达成功。
     IPTG诱导宿主菌2h后开始接受一定时间的UV-B照射,照射后的菌液接种到新的LB培养基中(含卡那霉素),每隔1h测定一次OD600值,绘制12h内的生长曲线。结果显示,转化pET28a-AhFBA和pET28a的宿主菌BL21(DE3)在接受UV-B照射3min后与对照(转化pET28a的宿主菌BL21(DE3)未照射UV-B)的生长并无明显差别,可见短时间的UV-B照射并未对宿主菌的生长产生不利影响,同时,外源蛋白AhFBA的表达也并未影响到BL21(DE3)的生长;而接受9minUV-B照射后,转化pET28a-AhFBA和pET28a的宿主菌BL21(DE3)生长速率均低于对照,但前者却高于后者,表明外源重组蛋白AhFBA可能有助于宿主菌减轻UV-B照射的不利影响。当UV-B照射12mmin后,转化pET28a-AhFBA和pET28a的宿主菌BL21(DE3)生长速率均低于对照,且两者之间没有差别,表明外源重组蛋白AhFBA能在一定照射时间范围内缓解UV-B辐射对BL21(DE3)的伤害。
A large number of chlorofluorocarbons (CFCs) discharged into the air due to human industrial activity lead to thinning of the ozone layer. As a result, ultraviolet-B (UV-B,280-320nm) in the solar radiation reach to the ground is enhanced. Many researches have pointed out that elevated UV-B radiation had significant impact on individuals, populations of terrestrial plants and total ecosystems. Peanut (Arachis hypogaea L.) is an annual legume crop, which is rich in fat and protein. At present, the effects of enhanced UV-B radiation on physio-ecological of peanut is seldom reported, as well as the molecular mechanisms. In this study, cultivar "Xiaojingsheng" peanuts was chosen as test materials, the effects of enhanced UV-B radiation on factors including seedling morphology, gas exchange parameters, changes in chloroplast ultrastructure, ROS levels, antioxidant enzyme activity, antioxidant content, and proteome expression profiling have been analyzed. Fructose-1,6-bisphosphate aldolase (FBA) gene AhFBA which was down-regulated by enhanced UV-B radiation, were cloned and analyzed the transcription level of gene AhFBA treaed under enhanced UV-B by real-time quantitative reverse transcription polymerase chain reaction. AhFBA gene in E. coli BL21(DE3) were also expressed and observed the growth curve of the host cell contained recombinant vector pET28a-AhFBA treated with UV-B. The main purpose of this paper is to answer the following questions:(1) What are the effects of enhanced UV-B radiation on peanut in physio-ecology level?(2) How does peanut proteome respond to enhanced UV-B radiation?(3) Whether FBA proteins play a role in resisting enhanced UV-B radiation? The results are as follows:
     The impact of UV-B radiation on photosynthetic related parameters and chloroplast ultrastructure of A. hypogaea were studied, after an enhanced UV-B irradiation performed8h per day for3days with ultraviolet light (280-320nm) that maintained about54uW/cm2radiations. Contents of chlorophyll a and chlorophyll (a+b) declined significantly after radiation for3days (P<0.05), concomitantly, gas exchange parameters were significantly affected (P<0.05), showing a35.42%reduction in net photosynthesis (Pn),28.12%in stomatal conductance (Gs),26.37%in transpiration rate (Tr) and20.25%in stomata limitation(Ls), however, intercellular CO2concentration (Ci) was increased by16.22%, showing significant difference with that in control (P<0.05), at the end of3days UV-B treatment. Similarly, the fluorescence parameters of Fv/Fm and Fv/Fo were also significantly reduced (P<0.05). However, the differences of above indexes were not significant compareed with the control treated with UV-B after1and2days (P>0.05). Transmission electron microscope (TEM) images revealed that the peanut treated for3d whose chloroplast membranes were swelled and disintegrated, and stromal thylakoids were relaxed and parallel to each other, which might be responsible for worse performance of the photosynthesis. As a result, the size and number of starch grains decreased.
     The contents of superoxide anion (O2-), flavonoids, and soluble proteins, the activities of catalase (CAT) and peroxidase (POD) in peanut leaves were increased significantly treated with supplementary ultraviolet-B (UV-B), as well as relative electrical conductivity (P<0.05). The activity of superoxide dismutase (SOD) increased at first and then decreased. Nevertheless, there were no significant changes in the contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), ascorbic acid (AsA) and Glutathione (GSH), the activities of ascorbate peroxidase (APX) in leaves (P>0.05). These results indicated that elevated UV-B could increase the content of reactive oxygen species (ROS) in peanut leaves, and O2-was the principal factor for oxidative stress. Peanut seedlings resisted the stress of ROS mainly through increasing the content flavonoid and the activities of SOD, CAT and POD. However, As A-GSH circulatory system had no unobvious effect on clearing ROS.
     A total of39protein spots were differentially expressed by at least2.5fold compared with the controls (22proteins were down-regulated and17were up-regulated) after treatment with supplementary UV-B radiation. Of those protein spots,27were successfully identified by MALDI TOF/TOF MS after a database search. Those27proteins could be classified into eight categories according to their functions:class1, photosynthesis (plastocyanin, ribulose-1,5-bisphosphate carboxylase small subunit, oxygen-evolving enhancer protein1, PsbP domain-containing protein6); class11, carbohydrate metabolism (malate dehydrogenase, and fructose-bisphosphate aldolase); class Ⅲ, energy synthesis (ATP synthase); class IV, amino acid biosynthesis (cysteine synthase); class V, protein biosynthesis (ribosome recycling factor); class VI, protein processing (heat shock proteins); class VII, defense responses (chitinase, peroxidase, Cu-Zn SOD, caffeic acid3-O-methyltransferase, and germin-like protein); class VIII, unknown proteins. In conclusion, we hypothesized that the enhanced UV-B radiation caused a decrease in the photosynthesis rate of peanut leaves mainly via three mechanisms. First, enhanced UV-B may down-regulate the expression of ribosome recycling factor, which caused a decrease in the expression of subunit PsbP in photosystem Ⅱ, thus destroying the thylakoid membrane structure. Second, the reduced plastocyanin expression may have induced a decrease in photosynthetic electron transport efficiency. Third, the down-regulation of ribulose-1,5-bisphosphate carboxylase and fructose-1,6-bisphosphate aldolase resulted in a decrease in carbon assimilation. At the same time, peanut may also enhance its resistance to UV-B stress by increasing the expressions of antioxidant enzymes and non-enzymatic antioxidants, germin-like proteins, pathogenesis-related proteins, and heat shock proteins.
     Using soybean(Glycine max) fructose-1,6-bisphosphate aldolase gene (GmFBA, GenBank accession number:AY492006.1) as queries, BLAST searches in peanut EST database on the NCBI website were performanced, peanut EST sequences with high homology to soybean FBA gene were selected, a contig named AhFBA was obtained by in silico cloning technology from the selected ESTs. AhFBA was confirmed by RT-PCR, molecular cloning and sequencing, the complete conding sequence (CDS) of AhFBA was1077bp in length, and the sequnence was submitted to NCBI database with an accession number KF470788.
     AhFBA gene encoding a protein AhFBA composed of358amino acids with the formula C1706H2725N469O524S6, in which Ala was the most abundant amino acid, the number of acidic amino acids (Asp and Glu) and basic amino acids (Lys and Arg) were all40, the relative molecular mass was38.38kD, isoelectric point was6.73, instability index was30.03, and it had no signal peptide sequence.
     Bio informatics forecast that AhFBA protein was in most cases located in the cytoplasm with the score of0.65, scores that located in the mitochondrial matrix and chloroplast thylakoid membrane were all0.1and localized in the endoplasmic reticulum was0. AhFBA protein has2amide sites (36and285), a cAMP-dependent protein kinase phosphorylation sites (41),3protein kinase II phosphorylation sites (114,270and309),7protein kinase C phosphorylation sites (50,201,235,247,304,309and336),7N-myristoylation sites (25,97,127,137,232,335and346), an aldolase activity center (217-227bit sequence VLLEGTLLKPN), AhFBA belongs to type I cytoplasmic fructose-bisphosphate aldolase gene.
     Real-time PCR results showed that:when the A. hypogaea was grew in natural lighting conditions, AhFBA gene was constitutively expressed in roots, leaves, flowers and young fruit, and there is no significant differences in expression levels among them (P>0.05). However, AhFBA gene's expression up-regulated in leaves more than10times when the plant treated with enhanced UV-B for4h, and then down-regulated after treated8h,16h and24h, reduced the expression of0.75,0.86and0.29times. It indicated AhFBA belongs to UV-B inducible gene, which participated in the UV-B stress response.
     Primers (forward and reverse primer was introduced BamH I and Hind III restriction enzyme site, respectively) were designed according to AhFBA gene, and the sequence was amplified by PCR. The fragment of vector pET28a and AhFBA was connected after digested with BamH1and Hind III enzymes. PCR and DN A sequencing results verified that the recombinant expression vector pET28a-AhFBA has been successfully constructed containing the target gene AhFBA. Heat shock method was employed to transforme pET28a-AhFBA into E. coli expression strain BL21(DE3), isopropyl thiogalactoside (1PTG) induced the expression of gene AhFBA and about40kD protein band was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
     The host bacteria were irradiated by UV-B for certain minutes after induced by IPTG, then, they were inoculated into new LB medium that contains Kanamycin, OD600value was measured every one hour. The results showed that:there are no significant differences in the growth anmong bacterial BL21(DE3) contain pET28a-AhFBA and pET28a with control (host strain BL21(DE3) contains pET28a unirradiated UV-B) after receiving UV-B irradiation for3min. Accepted9min UV-B irradiation, host strain BL21(DE3) contain pET28a-AhFBA and pET28a growth rates were lower than control, but the former is higher than the latter. The growth rates of BL21(DE3) contain pET28a and pET28a-AhFBA were both lower than control after12min UV-B irradiation, and there is no difference between them, indicating that exogenous recombinant protein AhFBA may help the host bacteria mitigate the adverse effects of UV-B radiation to some extent.
引文
[1]Madronich S, McKenzie R L, Bjorn L O, Caldwel M M. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B:Biology, 1998,46(1-3):5-19.
    [2]McKenzie R L, Bjorn L O, Bais A, Ilyasd M. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochemical and Photobiological Sciences,2003,2(1):5-15.
    [3]Paoletti E. UV-B and Mediterranean forest species:Direct effects and ecological consequences. Environmental Pollution,2005,137(3):372-379.
    [4]Day T A, Neale P J. Effects of UV-B radiation on terrestrial and aquatic primary producers. Annual Review of Ecology and Systematics,2002,33(1):371-396.
    [5]Jansen M A, Bornman J F. UV-B radiation:from generic stressor to specific regulator. Physiologia Plantarum,2012,145(4):501-504.
    [6]Xu C, Sullivan J H. Reviewing the Technical Designs for Experiments with Ultraviolet-B Radiation and Impact on Photosynthesis, DNA and Secondary Metabolism. Journal of integrative plant biology,2010,52(4):377-387.
    [7]Krupa S V, Kickert RN. The greenhouse effect:Impacts of Ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) onvegetation. Environmental Pollution,1989,61(4):263-393.
    [8]Caldwell M M, Bjorn L O, Bornman J F, S.D.Flint, Kulandaivelu G, A.H.Teramura, M.Tevini. Effects ofincreased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B:Biology,1998,46:40-152.
    [9]Rozema J, Jos van de Staaij Bjorn L O, Caldwell M. UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology and Evolution,1997,12(1):22-28.
    [10]Weih M, Johanson U, D.Gwynn-Jones. Growth and nitrogen utilization in seedlings of mountain birch(Betula pnbescens ssp. tortuosa) as affected by ultraviolet radiation(UV-A and UV-B) under laboratory and outdoor conditions. Trees,1998,12(4):201-204.
    [11]Middleton E M, A.H.Teramura. Understanding photosynthesis, pigment and growth responses induced by UV-B and UV-A irradiances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,1994,60(1):38-45.
    [12]Coleman R S, Day T A. Response of cotton and sorghum to several levels of subambient solar UV-B radiation:a test of the saturation hypothesis. Physiologia Plantarum,2004,122:362-372.
    [13]Jansen M A K, Cofffey A M, Prinsen E. UV-B induced morphogenesis. Plant Signaling and Behavior,2012,7(9):1185-1187.
    [14]何承刚,綦彤飞,邵建平,周冀衡,姜华.增强UV-B辐射对两个烤烟品种生长和叶片解剖结构的影响.中国烟草学报,2013,18(5):34-38.
    [15]Liu B, Liu X-b, Li Y-S, Herbert S. Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research,2013,154:158-163.
    [16]Flint S D, Caldwell M M. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation. Ecology,1984,65(3):792-795.
    [17]Tevini M, Steinmuller D. Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings. Journal of plant physiology,1987,131(1):111-121.
    [18]Barnes P W, Flint S D, Caldwell M M. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. American Journal of Botany,1990,77(10): 1354-1360.
    [19]Ballare C L, Scopel A L, Stapleton A E, Yanovsky M J. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiology,1996,112(1):161-170.
    [20]Semerdjieva S, Phoenix G, Hares D, Gwynn-Jones D, Callaghan T, Sheffield E. Surface morphology, leaf and cuticle thickness of four dwarf shrubs from a sub-Arctic heath following long-term exposure to enhanced levels of UV-B. Physiologia Plantarum,2003,117(2):289-294.
    [21]Searles P S, Flint S D, Diaz S B, Rousseaux M C, Ballare C L, Caldwell M M. Plant response to solar ultraviolet-B radiation in a southern South American Sphagnum peatland. Journal of Ecology, 2002,90(4):704-713.
    [22]Li F R, Peng S L, Chen B M, Hou Y P. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica,2010,36(1):1-9.
    [23]Basiouny F M, Van T, Biggs R. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B. Physiologia Plantarum,1978,42(1):29-32.
    [24]Weih M, Johanson U, Gwynn-Jones D. Growth and nitrogen utilization in seedlings of mountain birch (Betula pubescens ssp. tortuosa) as affected by ultraviolet radiation (UV-A and UV-B) under laboratory and outdoor conditions. Trees,1998,12(4):201-207.
    [25]Kakani V, Reddy G, Zhao K R, Mohammed A R. Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Annals of Botany,2003,91(7):817-826.
    [26]Gao W, Zheng Y, Slusser J R, Heisler G M, Grant R H, Xu J, He. D. Effects of supplementary Ultraviolet-B irradiance on maize yield and qualities:a field experiment. Photochem. Photobiol., 2004,80:127-131.
    [27]Zu Y G, Wei X X, Yu J H, Li D W, Pang H H, Tong L. Responses in the physiology and biochemistry of Korean pine(Pinus koraiensis) under supplementary UV-B radiation. Photosynthetica,2011,49(3):448-458.
    [28]Zuk-Golaszewska K, Upadhyaya M K, Golaszewski J. The effect of UV-B radiation on plant growth and development. Plant, Soil and Environment 2003,49(3):135-140.
    [29]Hectors K, Prinsen E, De Coen W, Jansen M A, Guisez Y. Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytologist,2007,175(2):255-270.
    [30]Li Y, Zu Y, Chen H, Chen J, Yang J, Hu Z. Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Field Crops Research, 2000,67(1):25-33.
    [31]Farooq M, Shankar U, Ray R, Misra R, Agrawal N, Verma K, Hans R. Morphological and metabolic alterations in duckweed (Spirodela polyrhiza) on long-term low-level chronic UV-B exposure. Ecotoxicology and Environmental Safety,2005,62(3):408-414.
    [32]Kumari R, Agrawal S. Supplemental UV-B induced changes in leaf morphology, physiology and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (DC) Staph under natural field conditions. International Journal of Environmental Studies,2010,67(5):655-675.
    [33]Zagoskina N, Dubravina G, Alyavina A, Goncharuk E. Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russian Journal of Plant Physiology,2003,50(2):270-275.
    [34]Ruhland C T, Fogal M J, Buyarski C R, Krna M A. Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa. Molecules,2007,12(6):1220-1232.
    [35]Bassman J H, Edwards G E, Robberecht R. Photosynthesis and growth in seedlings of five forest tree species with contrasting leaf anatomy subjected to supplemental UV-B radiation. Forest science,2003,49(2):176-187.
    [36]Ren J, Yao Y, Yang Y, Korpelainen H, Junttila O, Li C. Growth and physiological responses to supplemental UV-B radiation of two contrasting poplar species. Tree Physiology,2006,26(5): 665-672.
    [37]Mohammed AR, Tarpley L. Morphological and physiological responses of nine southern US rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation. Environmental and Experimental Botany,2011,70(2):174-184.
    [38]Rousseaux M C, Flint S D, Searles P S, Caldwell M M. Plant responses to current solar ultraviolet-B radiation and to supplemented solar Ultraviolet-B radiation simulating ozone depletion:an experimental comparison. Photochemistry and Photobiology,2004,80(2):224-230.
    [39]Hofmann R, Campbell B. Response of Trifolium repens to UV-B radiation:morphological links to plant productivity and water availability. Plant Biology,2011,13(6):896-901.
    [40]Reddy K R, Kakani V G, Zhao D, Mohammeda A R, Gao W. Cotton responses to ultraviolet-B radiation:experimentation and algorithm development. Agricultural and Forest Meteorology,2003, 120(1):249-265.
    [41]Lidon F C. Micronutrients'accumulation in rice after supplemental UV-B irradiation. Journal of Plant Interactions,2012,7(1):19-28.
    [42]Yao X, Liu Q. Changes in morphological, photosynthetic and physiological responses of Mono Maple seedlingsto enhanced UV-B and to nitrogen addition. Plant Growth Regulation,2006, 50(2-3):165-177.
    [43]Keiller D R, Mackerness S A H, Holmes M G. The action of a range of supplementary ultraviolet (UV) wavelengths on photosynthesis in Brassica napus L. in the natural environment:effects on PS II, CO2 assimilation and level of chloroplast proteins. Photosynthesis Research,2003,75(2): 139-150.
    [44]Tevini M, Teramura A H. UV-B effects on terrestrial plants. Photochemistry and Photobiology, 1989,50(4):479-487.
    [45]Tian J, Yu J. Changes in ultrastructure and responses of antioxidant systems of algae{Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. Journal of Photochemistry and Photobiology B:Biology,2009,97(3):152-160.
    [46]Jenkins G I. Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 2009,60:407-431.
    [47]Yu G, Li W, Yuan Z, Cui H, Lv C, Gao Z, Han B, Gong Y, Chen G. The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica,2013,51(1):33-44.
    [48]Friso G, Barbato R, Giacometti G M, Barber J. Degradation of the D2 protein due to UV-B irradiation of the reaction center of photosystem II. FEBS Letters,1994,339(3):217-221.
    [49]Vass I, Kirilovsky D, Etienne A-L. UV-B Radiation-induced donor-and acceptor-side modifications of photosystem II in the Cyanobacterium Synechocystis sp.PCC 6803. Biochemistry, 1999,38(39):12786-12794.
    [50]Mattoo A K, Giardi M-T, Raskind A, Edelman M. Dynamic metabolism of photosystem II reaction center proteins andpigments. Physiologia Plantarum,1999,107(4):454-461.
    [51]Jansen M A K, Gaba V, Greenberg B M, Mattoo A K, Edelman M. Low threshold levels of ultraviolet-B in a background of photosynthetically active radiation trigger rapid degradation of the D2 protein of photosystem-II. The Plant Journal,1996,9(5):693-699.
    [52]Kulandaivelu G, Neduchezhian N, Annamalainathan K. Ultraviolet-B (280-320 nm) radiation induced changes in photochemical activities and polypeptide components of C3 and C4 chloroplasts. Photosynthetica 199125:333-339.
    [53]Lidon F C. UV-B irradiation in rice:interaction between micronutrients accumulation and the photosynthetic performance. J. Plant Interactions,2012,7(1):19-28.
    [54]Savitch L V, Pocock T, Krol M, Wilson K E, Greenberg B M, Huner N P A. Effects of growth under UV-A radiation on CO2 assimilation, carbon partitioning, PSII photochemistry and resistance to UV-B radiation in Brassica napus cv. Topas. Australian Journal of Plant Physiology,2001,28(3): 203-212.
    [55]Fedina I, Hidema J, Velitchkova M, Georgieva K, Nedeva D. UV-B induced stress responses in three rice cultivars. Biologia Plantarum,2010,54(3):571-574.
    [56]Lidon F C, Ramalho J C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza saliva L. Journal of Photochemistry and Photobiology B:Biology,2011,104(3):457-466.
    [57]Lidon F C, Teixeira M, Ramalho J C. Decay of the chloroplast pool of ascorbate switches on the oxidative burst in UV-B irradiated rice. Journal of Agronomy and Crop Science,2012,198(2): 130-144.
    [58]Caldwell C R. Ultraviolet-induced photodegradation of cucumber(Cucumissativus L.) microsomal and soluble protein tryptophanyl residues in vitro. Plant Physiology,1993,101(3):947-953.
    [59]Jordan B R, He J, Chow W S, Anderson J M. Changes in mRNA levels and polypeptide subunits of ribulose-l,5-bisphophate carboxylase in response to supplementary ultraviolet-B radiation. Plant, Cell and Environment,1992,15(1):91-98.
    [60]Brosche M, Strid A. Molecular events following perception of ultraviolet-B radiation by plants. Physiologia Plantarum,2003,117(1):1-10.
    [61]强维亚,蔡龙华,韩瑜,杨晖.增强UV-B辐射对高山植物歪头菜生长及内源激素变化的影响.西北植物学报,2013,33(11):2241-2248.
    [62]Jansen M A. Ultraviolet-B radiation effects on plants:induction of morphogenic responses. Physiologia Plantarum,2002,116(3):423-429.
    [63]Bhaskaran J, Panneerselvam R. Accelerated Reactive Oxygen Scavenging System and Membrane Integrity of Two Panicum Species Varying in Salt Tolerance. Cell Biochemistry and Biophysics, 2013,67(3):885-892.
    [64]Yao X, Chu J, He X, Ba C. Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation. Russian Journal of Plant Physiology,2011,58(2):283-289.
    [65]Liu M, Cao B, Zhou S, Liu Y. Responses of the flavonoid pathway to UV-B radiation stress and the correlation with the lipid antioxidant characteristics in the desert plant Caryopteris mongolica. Acta Ecologica Sinica,2012,32(3):150-155.
    [66]Zlatev Z S, J. C. Lidon F, Kaimakanova M. Plant physiological responses to UV-B radiation. Emirates Journal of Food and Agriculture,2012,24(6):481-501.
    [67]Takahashi M, Teranishi M, Ishida H, Kawasaki J, Takeuchi A, Yamaya T, Watanabe M, Makino A. Hidema J. Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. The Plant Journal,2011,66(3):433-442.
    [68]Mesa R, Bassnett S. UV-B-induced DNA damage and repair in the mouselens. Investigative Ophthalmology and Visual Science,2013,54(10):6789-6797.
    [69]Emiliani J, Grotewold E, Ferreyra M L F, Casati P. Flavonols protect Arabidopsis plants against UV-B deleterious effects. Molecular plant,2013,6(4):1376-1379.
    [70]Hidema J, Taguchi T, Ono T, Teranishi M, Yamamoto K, Kumagai T. UV-B resistance and CPD photolyase activity in rice. The Plant Journal,2007,50:70-79.
    [71]Yoshihara R, Imaki T, Hori M, Watanabe C, Yamamoto K, Takimoto K. CPD photolyase gene from Spinacia oleracea:repair of UV-damaged DNA and expression in plant organs. Journal of Radiation Research,2005,46(2):157-164.
    [72]Krasylenko Y A, Yemets A I, Sheremet Y A, Blume Y B. Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiologia Plantarum,2012, 145(4):505-515.
    [73]Pontin M A, Piccoli P N, Francisco R, Bottini R, Martinez-Zapater J M, Lijavetzky D. Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation BMC Plant Biology,2010,10(1):224.
    [74]Rizzini L, Favory J-J, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins G I. Perception of UV-B by the Arabidopsis UVR8 protein. Science,2011, 332(6025):103-106.
    [75]Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends in Plant Science, 2012,17(4):230-237.
    [76]Favory J J, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins G I, Oakeley E J. Interaction of COP 1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. The EMBO Journal,2009,28(5):591-601.
    [77]Wargent J J, Moore J P, Roland Ennos A, Paul N D. Ultraviolet radiation as a limiting factor in leaf expansion and development Photochemistry and Photobiology,2009,85(1):279-286.
    [78]Adamse P, Britz S J. Rapid fluence-dependent responses to ultraviolet-B radiation in cucumber leaves:the role of UV absorbing pigments in damage protection. Journal of Plant Physiology,1996, 148(1):57-62.
    [79]Kim B C, Tennessen D J, Last R L. UV-B-induced photomorphogenesis in Arabidopsis thaliana. The Plant Journal,1998,15(5):667-674.
    [80]Teramura A H. Effects of UV-B radiation on the growth and yield of crop plants. Physiologia Plantarum,1983,58(3):415-427.
    [81]Musil C F. Accumulated effect of elevated ultraviolet-B radiation over multiple generations of the arid-environment annual Dimorphotheca sinuata DC.(Asteraceae). Plant, Cell and Environment, 1996,19(9):1017-1027.
    [82]Drilias P, Karabourniotis G, Levizou E, Nikolopoulos D, Petropoulou Y, Manetas Y. The effects of enhanced UV-B radiation on the mediterranean evergreen sclerophyll Nerium oleander depend on the extent of summer precipitation. Australian Journal of Plant Physiology,1997,24(3):301-306.
    [83]Cen Y, Bornman J F. The response of bean plants to UV-B radiation under different irradiances of background visible light Journal of Experimental Botany,1990,41(11):1489-1495.
    [84]Van de Staaij J W M, Ernst W H O, Hakvort H W J, Rozema J. Ultraviolet-B (280-320 nm) absorbing pigments in the leaves of Silene vulgaris:their role in UV-B tolerance. Journal of Plant Physiology,1995,147:75-80.
    [85]Takeuchi Y, Ikeda S, Kasahara H. Dependence on wavelength and temperature of growth inhibition induced by UV-B radiation. Plant and Cell Physiology,1993,34(6):913-917.
    [86]Taulavuori E, Backman M, Taulavuori K, Gwynn-Jones D, Johanson U, Laine K, Callaghan T, Sonesson M, Bjorn L. Long-term exposure to enhanced ultraviolet-B radiation in the sub-arctic does not cause oxidative stress in Vaccinium myrtillus. New Phytologist,1998,140(4):691-697.
    [87]Wang S, Xie B, Yin L, Duan L, Li Z, Egrinya Eneji A, Tsuji W, Tsunekawa A. Increased UV-B radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in Maize (Zea mays L.) pollen. Photochemistry and photobiology,2010,86(1):110-116.
    [88]Li J-T, Qiu Z-B, Zhang X-W, Wang L-S. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiologiae Plantarum,2011,33(3):835-842.
    [89]Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology,1996,110(1):125-136.
    [90]Tekchandani S, Guruprasad K N. Modulation of a guaiacol peroxidase inhibitor by UV-B in cucumber cotyledons. Plant science,1998,136(2):131-137.
    [91]Sharma P K, Anand P, Sankhalkar S. Oxidative damage and changes in activities of antioxidant enzymes in wheat seedlings exposed to ultraviolet-B radiation. Current Science,1998,75(4): 359-366.
    [92]Mahdavian K, Ghorbanli M, Kalantari K M. The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turkish Journal of Botany, 2008,32(1):25-33.
    [93]Landry L G, Chapple C C S, Last R L. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology,1995,109(4):1159-1166.
    [94]Agarwal S B. Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biologia Plantarum,2007,51(1):157-160.
    [95]Santos I, Fidalgo F, Almeida J M. Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Science,2004,167(4):925-935.
    [96]Mackerness S A H, Jordan B R, Thomas B. Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B:280-320 nm) in green and etiolated buds of pea (Pisum sativum L.). Journal of Photochemistry and Photobiology B:Biology,1999,48(2): 180-188.
    [97]Kondo N, Kawashima M. Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.). Journal of Plant Research,2000,113(3):311-317.
    [98]Prasad S M, Zeeshan M. UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum. Biologia Plantarum,2005, 49(2):229-236.
    [99]Agarwal S B, Pandey V. Stimulation of stress-related antioxidative enzymes in combating oxidative stress in Cassia seedlings. Indian Journal of Plant Physiology,2003,8(3):264-269.
    [100]Jain K, Kataria S, Guruprasad K N. Effect of UV-B radiation on antioxidant enzymes and its modulation by benzoquinone and a-tocopherol in cucumber cotyledons. Current Science,2004, 87(1):87-90.
    [101]Panagopoulos L, Bornman J F, Bjorn. L O. Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultra weak luminescence and peroxidase activity in sugar beet plants. Journal of Photochemistry and Photobiology B:Biology,1990,8(1):73-87.
    [102]Costa H, Gallego S M, Tomaro M a L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science,2002,162(6):939-945.
    [103]Yannarelli G G, Gallego S M, Tomaro M L. Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environmental and Experimental Botany,2006,56(2):174-181.
    [104]Xu C, Natarajan S, Sullivan J H. Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environmental and Experimental Botany, 2008,63(1):39-48.
    [105]Kumari R, Singh S, Agrawal S. Response of ultraviolet-B induced antioxidant defense system in a medicinal plant, Acorus calamus. Journal of Environmental Biology,2010,31(6):907-911.
    [106]Selvakumar V. Ultraviolet-B radiation (280-315 nm) invoked antioxidant defence systems in Vigna unguiculata (L.)Walp. and Crotalaria juncea L. Photosynthetica,2008,46(1):98-106.
    [107]Kakani V G, Reddy K. R, Zhao D, Sailaja K. Field crop responses to ultraviolet-B radiation:a review. Agricultural and Forest Meteorology,2003,120(1-4):191-218.
    [108]Agrawal S B, Rathore D. Changes in oxidative stress defense in wheat(Triticum aestivuw L.) and mung bean (Vigna radiataL.) cultivars grown with or without mineral nutrients and irradiated by supplemental ultraviolet-B. Environmental and Experimental Botany,2007,59(1):21-27.
    [109]Singh R, Singh S, Tripathi R, Agrawal S B. Supplemental UV-B radiation induced changes in growth, pigments and antioxidant pool of bean (Dolichos lablab) under field conditions. Journal of Environmental Biology,2011,32(2):139-145.
    [110]Bolink E M, van-Schalkwijk I, Posthumus F, van-Hasselt P R. Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants. Plant Ecology,2001,154(1-2): 149-156.
    [111]Fiscus E L, Booker F L. Is increased UV-B a threat to crop photosynthesis and productivity. Photosynthesis Research,1995,43(2):81-92.
    [112]Jansen M A K, Gaba V, Greenberg B M. Higher plants and UV-B radiation:balancing damage, repair and acclimation. Trends in Plant Science,1998,3(4):131-135.
    [113]Gonzalez A, Steffen K L, Lynch J. Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiology,1998,118(2):493-504.
    [114]Booij-James I S, Shyam K D, Jansen M A K, Edelman M, Mattoo A K. Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiology,2000,124(3):1275-1283.
    [115]Jenkins G I, Christie J M, Fuglevand G, Long J C, Jackson J A. Plant responses to UV and blue light:biochemical and genetic approaches. Plant Science,1995,112(2):117-138.
    [116]Murali N S, Teramura A H. Effect of UV-B irradiance on soybean. VI. Influence of phosphorus nutrition of growth and flavonoid content. Physiologia Plantarum,1985,63(4):413-416.
    [117]Gwynn-Jones D. Short-term impacts of enhanced UV-B radiation on photoassimilate allocation and metabolism:a possible interpretation for time-dependent inhibition of growth. Plant Ecology, 2001,154(1-2):67-73.
    [118]Tevini M, Braun J, Fieser G. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochemistry and Photobiology,1991,53(3):329-333.
    [119]Wilson M I, Greenberg B M. Protection of the D1 photosystem II reaction center protein from degradation in ultraviolet radiation following adaptation of Brassica napus L. to growth in ultraviolet-B. Photochemistry and Photobiology,1993,57(3):556-563.
    [120]Lee D W, Lowry J B. Young-leaf anthocyanin and solar ultraviolet. Biotropica,1980,12(1):75-76.
    [121]Burger J, Edwards G E. Photosynthetic efficiency and photodamage by UV and visible radiation, in red versus green leaf Coleus varieties. Plant and Cell Physiology,1996,37(3):395-399.
    [122]Stapleton A E, Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiology,1994,105(3):881-889.
    [123]Salama H M H, Watban A A A, Al-Fughom A T. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. Saudi Journal of Biological Sciences,2011,18(1):79-86.
    [124]Berli F J, Alonso R, Bressan-Smith R, Bottini R. UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiologia Plantarum,2013,149(1):127-140.
    [125]Rogers S, Girolami M, Kolch W, Waters K M, Liu T, Thrall B, Wiley H S. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics,2008,24(24):2894-2900.
    [126]Champagne A, Boutry M. Proteomics of nonmodel plant species. Proteomics,2013,13(3-4): 663-673.
    [127]喻娟娟,戴绍军.植物蛋白质组学研究若干重要进展.植物学报,2009,44(4):410-425.
    [128]Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics,2004,4(12):3665-3685.
    [129]Wu X C, Fang C X, Chen J Y, Wang Q S, Chen T, Lin W X, Huang Z L. A proteomic analysis of leaf responses to enhanced ultraviolet-B radiation in two rice (Oryza sativa L.) cultivars differing in UV sensitivity. Journal of Plant Biology,2011,54(4):251-261.
    [130]Casati P, Zhang X, Burlingame A L, Walbot V. Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity. Molecular & Cellular Proteomics,2005,4(11):1673-1685.
    [131]Du H, Liang Y, Pei K, Ma K. UV radiation-responsive proteins in rice leaves:a proteomic analysis. Plant and Cell Physiology,2011,52(2):306-316.
    [132]Kaspar S, Matros A, Mock H-P. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B Radiation of barley(Hordeum vulgare L.) seedlings. Journal of Proteome Research,2010,9(5):2402-2411.
    [133]Rai S, Singh S, Shrivastava A K, Rai L. Salt and UV-B induced changes in Anabaena PCC 7120: physiological, proteomic and bioinformatic perspectives. Photosynthesis Research,2013,118(1-2): 105-114.
    [134]Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics,2009, 9(11):3100-3114.
    [135]Wang M C, Peng Z Y, Li C L, Li F, Liu C, Xia G M. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivumlThinopyrum ponticum. Proteomics,2008,8(7): 1470-1489.
    [136]Wang X, Fan P, Song H, Chen X, Li X, Li Y. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research,2009,8(7):3331-3345.
    [137]Tada Y, Kashimura T. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant and Cell Physiology,2009,50(3):439-446.
    [138]Sobhanian H, Motamed N, Jazii F R, Nakamura T, Komatsu S. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. Journal of Proteome Research,2010,9(6):2882-2897.
    [139]Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh G H. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics,2006,6(8):2542-2554.
    [140]Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research,2010,9(5): 2584-2599.
    [141]Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiology,2009,150(2):889-903.
    [142]Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. Journal of Experimental Botany,2009,60(12):3595-3609.
    [143]Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,2005,5(12):3162-3172.
    [144]Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular and Cellular Proteomics,2006,5(3): 484-496.
    [145]Degand H, Faber AM, Dauchot N, Mingeot D, Watillon B, Cutsem P V, Morsomme P. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics, 2009,9(10):2903-2907.
    [146]Imin N, Kerim T, Rolfe B G, Weinman J J. Effect of early cold stress on the maturation of rice anthers. Proteomics,2004,4(7):1873-1882.
    [147]Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Molecular & Cellular Proteomics,2005,4(8):1122-1133.
    [148]Skylas D, Cordwell S, Hains P, Larsen M, Basseal D, Walsh B, Blumenthal C, Rathmell W, Copeland L, Wrigley C. Heat shock of wheat during grain filling:proteins associated with heat-tolerance. Journal of Cereal Science,2002,35(2):175-188.
    [149]Lee D G, Ahsan N, Lee S H, Kang K Y, Bahk J D, Lee I J, Lee B H. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics,2007,7(18):3369-3383.
    [150]Bogeat-Triboulot M-B, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiology,2007,143(2):876-892.
    [151]Bonhomme L, Monclus R, Vincent D, Carpin S, Lomenech A M, Plomion C, Brignolas F, Morabito D. Leaf proteome analysis of eight Populus×euramericana genotypes:Genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics,2009,9(17):4121-4142.
    [152]Zhu J, Alvarez S, Marsh E L, LeNoble M E, Cho I J, Sivaguru M, Chen S, Nguyen H T, Wu Y, Schachtman D P. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiology,2007,145(4):1533-1548.
    [153]Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L). Molecular & Cellular Proteomics, 2008,7(1):88-107.
    [154]Ahsan N, Lee D G, Lee S H, Kang K Y, Bahk J D, Choi M S, Lee I J, Renaut J, Lee B H. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiologia Plantarum,2007,131(4):555-570.
    [155]Alam I, Lee D G, Kim K H, Park C H, Sharmin S A, Lee H, Oh K W, Yun B W, Lee B H. Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of biosciences,2010,35(1):49-62.
    [156]施美芬,曾波,申建红,类淑桐,朱智,刘建辉.植物水淹适应与碳水化合物的相关性.植物生态学报,2010,34(7):855-866.
    [157]Hajduch M, Rakwal R, Agrawal G K, Yonekura M, Pretova A. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves:Drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis,2001,22(13):2824-2831.
    [158]Giacomelli L, Rudella A, van Wijk K J. High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiology,2006,141(2):685-701.
    [159]Bohler S, Sergeant K, Lefevre I, Jolivet Y, Hoffmann L, Renaut J, Dizengremel P, Hausman J-F. Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiology,2010,30(11):1415-1432.
    [160]Teramura A H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiologia Plantarum,1983,58(3):415-427.
    [161]王勋陵.增强紫外B辐射对植物及生态系统影响研究的发展趋势.西北植物学报,2002,22(3):670-681.
    [162]冯虎元,安黎哲,徐世健,强维亚,陈拓,王勋陵.紫外线-B辐射增强对大豆生长、发育、色素和产量的影响.作物学报,2001,27(3):319-323.
    [163]薛慧君,王勋陵,岳明.增强紫外-B对反枝苋形态、生理及异速生长的影响.西北植物学报,2003,23(5):783-787.
    [164]李元,王勋陵.增强的UV-B辐射对春小麦植株化学成分、真菌定殖和分解的影响.应用生态学报,2001,12(2):223-225.
    [165]师生波,李惠梅,王学英,岳同国,徐文华,陈桂琛.青藏高原儿种典型高山植物的光合特性比较.2006,30(1):40-46.
    [166]左园园,刘庆,林波,何海.短期增强UV-B辐射对青榨槭幼苗生理特性的影响.应用生态学报,2005,16(9).
    [167]林文雄.水稻对UV-B辐射增强的生理响应及其分子机制研究.中国生态农业学报,2013,21(1):119-126.
    [168]刘芸,钟章成,J.A.WergerM,操国兴,尹克林,龙云α-NAA和UV-B辐射对栝楼幼苗光合色素及保护酶活性的影响.生态学报,2003,23(1):8-13.
    [169]梁婵娟,黄晓华,陶文沂,周青.稀十对UV-B辐射伤害植物的影响Ⅰ.Ce(Ⅲ)对UV-B胁迫下油菜幼苗生长及光合作用影响.中国稀土学报,2005,23(3):351-356.
    [170]韩榕,王勋陵He-Ne激光对小麦幼苗增强UV-B辐射损伤修复的影响.光子学报,2001,30(10):1182-1187.
    [171]温泉,张楠,曹瑞霞,周心渝,唐娟,吴能表.增强UV-B对黄连代谢及小檗碱含量的影响.中国中药杂志,2012,36(22):3063-3069.
    [172]Dai Q, Peng S, Chavez A Q, Vergara B S. Effects of UV-B radiation on stomata density and opening in rice (Oryza sativa L.). Annals of Botany,1995,76:65-70.
    [173]Casati P, Campi M, Morrow D J, Fernandes J, Walbot V. Transcriptomic, proteomic and metabolomic analysis of maize responses to UV-B:Comparison of greenhouse and field growth conditions. Plant Signaling and Behavior,2011,6(8):1146-1153.
    [174]Mackerness S A H, Thomas B, Jordan B R. The effect of supplementary ultraviolet-B radiation on mRNA transcripts, translation and stability of chloroplast proteins and pigment formation in Pisum sativum L. Journal of Experimental Botany,1997,48(3):729-738.
    [175]Lee D G, Ahsan N, Lee S H, Lee J J, Bahk J D, Kang K Y, Lee B H. Chilling stress-induced proteomic changes in rice roots. Journal of Plant Physiology,2009,166(1):1-11.
    [176]Duan J, Tian X, Jia Z. Proteomics Uncovers a Role for Enhanced Ultraviolet-B Radiation on Wheat Leaves. American Journal of Plant Sciences,2013,4(6):1227-1232.
    [177]Cline M G, Salisbury F B. Effects of ultraviolet radiation on the leaves of higher plants. Radiation Botany,1966,6(2):151-163.
    [178]杨毓峰,袁红旭.紫外线UV-B辐照花生的生物效应.西南农业大学学报,2001,23(4):356-359.
    [1]Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes:chlorine atom-catalysed destruction of ozone. Nature,1974,249:810-812.
    [2]McKenzie R L, Bjorn L O, Bais A, Ilyasd M. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochemical and Photobiological Sciences,2003,2(1):5-15.
    [3]Blumthaler M, Amback W. Indication of increasing solar UV-B radiation flux in alpine regions. Science,1990,248:206-208.
    [4]Yannarelli G G, Noriega G O, Batlle A, Tomaro M L. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta,2006,224(5): 1154-1162.
    [5]Lidon F C, Ramalho J C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza saliva L. Journal of Photochemistry and Photobiology B:Biology,2011,104(3):457-466.
    [6]Lidon F C, Teixeira M, Ramalho J C. Decay of the chloroplast pool of ascorbate switches on the oxidative burst in UV-B irradiated rice. Journal of Agronomy and Crop Science,2012,198(2): 130-144.
    [7]Lidon F C. UV-B irradiation in rice:interaction between micronutrients accumulation and the photosynthetic performance. Journal of Plant Interactions,2012,7(1):19-28.
    [8]Jenkins G I. Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 2009,60:407-431.
    [9]Cline M G, Salisbury F B. Effects of ultraviolet radiation on the leaves of higher plants. Radiation Botany,1966,6(2):151-163.
    [10]Krupa S V, Kickert RN. The Greenhouse effect:Impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation. Environmental Pollution,1989,61(4):263-393.
    [11]Xiong F S, Day T A. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiology,2001, 125(2):738-751.
    [12]Li F R, Peng S L, Chen B M, Hou Y P. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica,2010,36(1):1-9.
    [13]杨毓峰,袁红旭.紫外线UV-B辐照花生的生物效应.西南农业大学学报,2001,23(4):356-359.
    [14]高俊凤,植物生理学实验指导.2006,北京:高等教育出版社.74-75.
    [15]李昌晓,钟章成.模拟三峡库区消落带土壤水分变化条件下水松幼苗的光合生理响应.北京林业大学学报,2007,29(3):23-28.
    [16]李月灵,金则新.玉兰叶片光合速率和叶绿素荧光参数的日变化.江苏农业科学,2012,40(9):164-168.
    [17]郭素枝,电子显微镜技术与应用.2008,厦门:厦门大学出版社.86-104.
    [18]Liang C, Zhang G, Zhou Q. Effect of cerium on photosynthetic pigments and photochemical reaction activity in soybean seedling under ultraviolet-B radiation stress. Biological Trace Element Research,2011,142(3):796-806.
    [19]罗南书,刘芸,钟章成,周永洪,张彭跃.田间增加UV-B辐射对丝瓜光合作用日变化及水分利用效率的影响.西南师范大学学报(自然科学版),2003,28(3):436-439.
    [20]訾先能,强继业,陈宗瑜,郭世昌.UV-B辐射对云南报春花叶绿素含量变化的影响.农业环境科学学报,2006,25(3):587-591.
    [21]Vu C, Allen L, Garrard L. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants. Physiologia Plantarum,1982,55(1):11-16.
    [22]Brandle J R, Campbell W F, Sisson W B, Caldwell M M. Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiology,1977,60(1):165-169.
    [23]Okada M, Kitajima M, Buder W. Inhibition of photosystem I and photosystem II in chloroplasts by UV radiation. Plant and Cell Physiology,1976,17(1):35-43.
    [24]许大全.光合作用气孔限制分析中的一些问题植物生理学通讯,1997,33(4):241-244.
    [25]Liang C J, Huang X H, Tao W Y, Zhou Q. Effects of cerium on growth and physiological mechanism in plants under enhanced ultraviolet-B radiation. Journal of Environmental Sciences, 2006,18(1):125-129.
    [26]贺军民,佘小平,刘成,赵文明.增强UV-B辐射和NaCl复合胁迫下绿豆光合作用的气孔和非气孔限制.植物生理与分子生物学学报,2004,30(1):53-58.
    [27]梁文斌,薛生国,沈吉红,王萍.锰胁迫对垂序商陆光合特性及叶绿素荧光参数的影响.生态学报,2010,30(3):619-625.
    [28]Ranjbarfordoei A, Samson R, Van Damme P. Photosynthesis performance in sweet almond [Prunus dulcis (Mill) D. Webb] exposed to supplemental UV-B radiation. Photosynthetica,2011, 49(1):107-111.
    [29]张红霞,吴能表,胡丽涛,洪鸿.不同强度UV-B辐射胁迫对蚕豆幼苗生长及叶绿素荧光特性的影响.西南师范大学学报(自然科学版),2010,35(1):105-110.
    [30]Skorska E. Responses of pea and triticale photosynthesis and growth to long-wave UV-B radiation. Biologia Plantarum,2000,43(1):129-131.
    [31]余小龙,余树全,伊力塔,殷秀敏,张华柳.UV-B辐射胁迫对细叶青冈幼苗叶绿素荧光特性的影响.东北农业大学学报,2011,42(10):114-119.
    [32]Bjorkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta,1987,170(4):489-504.
    [33]唐茜,施嘉.川西茶区主栽品种光合强度与叶片结构相关关系的研究.四川农业大学学报,1997,15(2):193-198.
    [34]吴能表,马红群,胡丽涛,洪鸿,孙金春,张扬欢,戴大临.增强UV-B辐射对胡椒薄荷叶片光合机构和光合特性的影响.中国中药杂志,2009,34(23):2995-2998.
    [35]Valkama E, Kivimaenpaa M, Hartikainen H, Wulff A. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria ananassa) and barley (Hordeum vulgare) treated in the field. Agricultural and Forest Meteorology,2003,120(1):267-278.
    [1]Madronich S, McKenzie R L, Bjorn L O, Caldwel M M. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B:Biology, 1998,46(1-3):5-19.
    [2]Rybus-Zajac M, Kubis J. Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons. Acta Biologica Cracoviensia Series Botanica,2010,52(2):97-102.
    [3]Yannarelli G G, Noriega G O, Batlle A, Tomaro M L. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta,2006,224(5): 1154-1162.
    [4]Radyukina N L, Shashukova A V, Makarova S S, Kuznetsov V V. Exogenous proline modifies differential expression of superoxide dismutase genes in UV-B-irradiated Salvia officinalis plants. Russian Journal of Plant Physiology,2011,58(1):51-59.
    [5]Tang K, Zhan J C, Yang H R, Huang W D. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. Journal of Plant Physiology,2010,167(2): 95-102.
    [6]Li J Y, Jiang A L, Zhang W. Salt Stress-induced Programmed Cell Death in Rice Root Tip Cells. Journal of Integrative Plant Biology,2007,49(4):481-486.
    [7]Shi S, Wang G, Wang Y, Zhang L, Zhang L. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide,2005,13(1):1-9.
    [8]Luo Q, Yu B, Liu Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology,2005,162(9):1003-1012.
    [9]Qu Y, Zhou Q, Yu B. Effects of Zn2+ and niflumic acid on photosynthesis in Glycine soja and Glycine max seedlings under NaCl stress. Environmental and Experimental Botany,2009,65(2): 304-309.
    [10]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72(1): 248-254.
    [11]Giannopolitis C N, Ries S K. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology,1977,59(2):309-314.
    [12]Aebi H. Catalase in vitro. Methods in Enzymology,1984,105:121-126.
    [13]Beffa R, Martin H V, Pilet P-E. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiology,1990,94(2):485-491.
    [14]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology,1981,22(5):867-880.
    [15]Law M, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochemical Journal,1983,210:899-903.
    [16]Ellman G L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics,1959,82(1): 70-77.
    [17]Lois R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. Planta,1994,194(4):498-503.
    [18]Bolwell G, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defence-a broad perspective. Physiological and Molecular Plant Pathology,1997,51(6):347-366.
    [19]Elstner E F. Oxygen activation and oxygen toxicity. Annual Review of Plant Physiology,1982, 33(1):73-96.
    [20]Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science,2011,5:709-725.
    [21]An L, Liu G, Zhang M, Chen T, Liu Y, Feng H, Xu S, Qiang W, Wang X. Effect of enhanced UV-B radiation on polyamine content and membrane permeability in cucumber leaves. Russian Journal of Plant Physiology,2004,51(5):658-662.
    [22]Nasser L E-A A. Effects of UV-B radiation on some physiological and biochemical aspects in two cultivars of barley (Hordeum vulgare L.). Egyptian Journal of Biology,2001,3(1):97-105.
    [23]Dai Q, Yan B, Huang S, Liu X, Peng S, Miranda M L L, Chavez A Q, Vergara B S, Olszyk D M. Response of oxidative stress defense systems in rice (Oiyza saliva) leaves with supplemental UV-B radiation. Physiologia Plantarum,1997,101(2):301-308.
    [24]Jovanovic Z S, Milosevic J D, Radovic S R. Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench) to ultraviolet B radiation. Journal of Agricultural and Food Chemistry,2006,54(25):9472-9478.
    [25]Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment,2001,24(12): 1337-1344.
    [26]Rao M V, Ormrod D. Impact of UVB and O3 on the oxygen free radical scavenging system in Arabidopsis thaliana genotypes differing in flavonoid biosynthesis. Photochemistry and Photobiology,1995,62(4):719-726.
    [27]Prasad S, Dwivedi R, Zeeshan M. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica,2005,43(2):177-185.
    [28]Ren J, Dai W, Xuan Z, Yao Y, Korpelainen H, Li C. The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. Forest Ecology and Management,2007,239(1):112-119.
    [29]Malanga G, Kozak R G, Puntarulo S. N-Acetylcysteine-dependent protection against UV-B damage in two photosynthetic organisms. Plant Science,1999,141(2):129-137.
    [30]刘芸,钟章成,Werger M J,操国兴,尹克林,龙云.α-NAA和UV-B辐射对栝楼幼苗光合色素及保护酶活性的影响.生态学报,2003,23(1):8-13.
    [31]Costa H, Gallego S M, Tomaro M a L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science,2002,162(6):939-945.
    [32]Willekens H, Van Camp W, Van Montagu M, Inze D, Langebartels C, Sandermann Jr H. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiology,1994,106(3):1007-1014.
    [33]Strid A. Alteration in expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation. Plant Cell Physiology,1993,34:949-953.
    [34]Agrawal S B, Rathore D. Changes in oxidative stress defense in wheat (Triticum aestivum L.) and mung bean (Vigna radiataL.) cultivars grown with or without mineral nutrients and irradiated by supplemental ultraviolet-B. Environmental and Experimental Botany,2007,59(1):21-27.
    [35]Yao X, Liu Q. Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply. Physiologia Plantarum,2007,129(2):364-374.
    [36]Mazza C, Battista D, Zima A, Szwarcberg-Bracchitta M, Giordano C, Acevedo A, Scopel A, Ballare C. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant, Cell and Environment, 1999,22(1):61-70.
    [37]Zu Y, Li Y, Chen H, Chen J. Intraspecific differences in physiological response of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Environmental and Experimental Botany,2003,50(1):87-97.
    [38]Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O. Induction and repair of damage to DNA in cucumber cotyledons irradiated with UV-B. Plant and Cell Physiology,1996,37(2): 181-187.
    [39]Krizek D T, Kramer G F, Upadhyaya A, Mirecki R M. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Plant Physiology,1993,88(2): 350-358.
    [40]Zheng R, Yang Z. Lipid peroxidation and antioxidative defense systems in early leaf growth. Journal of Plant Growth Regulation,1991,10(1-4):187-189.
    [41]Dhindsa R S, Matowe W. Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany,1981,32(1):79-91.
    [42]Prochazkova D, Sairam R, Srivastava G, Singh D. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science,2001,161(4):765-771.
    [43]Aquino-Bolanos E N, Mercado-Silva E. Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama. Postharvest Biology and Technology, 2004,33(3):275-283.
    [44]Balakumar T, Gayathri B, Anbudurai P. Oxidative stress injury in tomato plants induced by supplemental UV-B radiation. Biologia Plantarum,1997,39(2):215-221.
    [45]Yannarelli G G, Gallego S M, Tomaro M L. Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environmental and Experimental Botany,2006,56(2):174-181.
    [46]Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research,2008,121(1):69-79.
    [47]Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology,1996,110(1):125-136.
    [48]Gillham D, Dodge A. Hydrogen-peroxide-scavenging systems within pea chloroplasts. Planta, 1986,167(2):246-251.
    [49]Costa L B, Rangel D E N, Morandi M A B, Bettiol W. Impact of UV-B radiation on Clonostachys rosea germination and growth. World Journal of Microbiology and Biotechnology,2012,28(7): 2497-2504.
    [50]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annual Review of Plant Biology,1998,49(1):249-279.
    [51]Galatro A, Simontacchi M, Puntarulo S. Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiologia Plantarum,2001,113(4): 564-570.
    [52]Kalbin G, Ohlsson A B, Berglund T, Rydstrom J, Strid A. Ultraviolet-B Radiation Induced Changes in Nicotinamide and Glutathione Metabolism and Gene Expression in Plants. European Journal of Biochemistry,1997,249(2):465-472.
    [53]Laakso K, Kinnunen H, Huttunen S. The glutathione status of mature Scots pines during the third season of UV-B radiation exposure. Environmental Pollution,2001,111(2):349-354.
    [54]Taulavuori E, Backman M, Taulavuori K, Gwynn-Jones D, Johanson U, Laine K, Callaghan T, Sonesson M, Bjorn L. Long-term exposure to enhanced ultraviolet-B radiation in the sub-arctic does not cause oxidative stress in Vaccinium myrtillus. New Phytologist,1998,140(4):691-697.
    [55]Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferrerti M. Changes in antioxidant and pigment pool dimensions in UV-B irradiation maize seedlings. Environmental and Experimental Botany, 2003,50:149-157.
    [56]Cockell C S, Knowland J. Ultraviolet radiation screening compounds. Biological Reviews of the Cambridge Philosophical Society,1999,74(3):311-345.
    [57]师生波,贲桂英,韩发.不同海拔地区紫外线B辐射状况及植物叶片紫外线吸收物质含量的分析.植物生态学报,1999,23(6):529-535.
    [58]Peng Z F, Strack D, Baumert A, Subramaniam R, Goh N K, Chia T F, Ngin Tan S, Chia L S. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry,2003,62(2): 219-228.
    [59]Gonzalez R, Paul N D, Percy K, Ambrose M, McLaughlin C K, Barnes J D, Areses M, Wellburn A R. Responses to ultraviolet-B radiation (280-315 nm) of pea (Pisum sativum L.) lines differing in leaf surface wax. Physiologia Plantarum,1996,98:852-860.
    [60]Bieza K, Lois R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology,2001,126:1105-1115.
    [61]Reuber S, Bornman J F, Weissenbock G. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf Plant, Cell and Environment, 1996,19(5):593-601.
    [62]Li H J, Zhou X M, Zhang W Q. Effect of Enhanced Ultraviolet-B Radiation on Photosynthetic Pigments and Flavonoids in the Leaves of Grapevine. Agricultural Science and Technology,2011, 12(12):1849-1852.
    [63]郑有飞,徐卫民,吴荣军,张金恩,刘瑞娜,姚娟,胡会芳.地表臭氧浓度增加和UV-B辐射增强及其复合处理对大豆光合特性的影响.生态学报,2012,32(8):2515-2524.
    [64]祖艳群,李元,高召华,杨翠琼.UV-B辐射对仙客来的生理效应.武汉植物学研究,2007,25(2):209-212.
    [65]董新纯,赵世杰,郭珊珊,孟庆伟.增强UV-B条件下类黄酮与苦荞逆境伤害和抗氧化酶的关系.山东农业大学学报(自然科学版),2006,37(2):157-162.
    [66]魏晓雪,于景华,李德文,佟璐,庞海河,祖元刚.UV-B辐射增强对红松幼苗针叶脂质过氧化及抗氧化系统的影响.林业科学,2011,47(5):54-59.
    [67]Strid A, Chow W S, Anderson J M. UV-B damage and protection at the molecular level in plants. Photosynthesis Research 1994,39(3):475-489.
    [68]He J, Huang L, Chow W, Whitecross M, Anderson J. Effects of supplementary ultraviolet-B radiation on rice and pea plants. Functional Plant Biology,1993,20(2):129-142.
    [69]Jordan B, He J, Chow W, Anderson J. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant, Cell and Environment,1996,15(1):91-98.
    [70]Wittenbach V A. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence. Plant Physiology,1979,64(5):884-887.
    [71]Cao R, Huang X H, Zhou Q, Cheng X Y. Effects of lanthanum (Ⅲ) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation. Journal of Environmental Sciences,2007, 19(11):1361-1366.
    [72]Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta,1981,153(4):388-394.
    [1]Blumthaler M, Ambach W. Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science,1990,248(4952):206-208.
    [2]Xu C, Sullivan J H, Garrett W M, Caperna T J, Natarajan S. Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry,2008,69(1):38-48.
    [3]Piri E, Babaeian M, Tavassoli A, Esmaeilian Y. Effects of UV irradiation on plants. African Journal of Microbiology Research,2011,5(14):1710-1716.
    [4]Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology,2011,168(3):204-212.
    [5]Li X, Zhang L, Li Y, Ma L, Bu N, Ma C. Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant and Soil,2011, 352(1-2):377-387.
    [6]Singh A, Sarkar A, Singh S, Agrawal S. Investigation of supplemental ultraviolet-B-induced changes in antioxidative defense system and leaf proteome in radish(Raphanus sativus L. cv Truthful):an insight to plant response under high oxidative stress. Protoplasma,2010,245(1): 75-83.
    [7]Tohge T, Kusano M, Fukushima A, Saito K, Fernie A R. Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. Plant Signaling and Behavior,2011,6(12): 1987-1992.
    [8]Jordan B, He J, Chow W, Anderson J. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant, Cell and Environment,1996,15(1):91-98.
    [9]Tossi V, Ameta M, Lamattina L, Cassia R. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant, Cell and Environment,2011,34(6):909-921.
    [10]Willekens H, Van Camp W, Van Montagu M, Inze D, Langebartels C, Sandermann Jr H. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiology,1994,106(3):1007-1014.
    [11]Krizek D T. Influence of PAR and UV-A in determining plant sensitivity and photomorphogenic responses to UV-B radiation. Photochemistry and Photobiology,2004,79(4):307-315.
    [12]Casati P, Campi M, Morrow D J, Fernandes J, Walbot V. Transcriptomic, proteomic and metabolomic analysis of maize responses to UV-B:Comparison of greenhouse and field growth conditions. Plant Signaling and Behavior,2011,6(8):1146-1153.
    [13]Mackerness S A H, Thomas B, Jordan B R. The effect of supplementary ultraviolet-B radiation on mRNA transcripts, translation and stability of chloroplast proteins and pigment formation in Pisum sativum L. Journal of Experimental Botany,1997,48(3):729-738.
    [14]Lee D G, Ahsan N, Lee S H, Lee J J, Bahk J D, Kang K Y, Lee B H. Chilling stress-induced proteomic changes in rice roots. Journal of Plant Physiology,2009,166(1):1-11.
    [15]Aranjuelo I, Molero G, Erice G, Avice J C, Nogues S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago saliva L.). Journal of Experimental Botany,2011, 62(1):111-123.
    [16]Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X, Yang G, He G. Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Molecular Breeding, 2010,26(1):1-17.
    [17]Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour A A, Jazii F R, Motamed N, Komatsu S. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Science, 2010,8(1):19-33.
    [18]Galant A, Koester R P, Ainsworth E A, Hicks L M, Jez J M. From climate change to molecular response:redox proteomics of ozone-induced responses in soybean. New Phytologist,2012, 194(1):220-229.
    [19]Zhao L, Sun Y L, Cui S X, Chen M, Yang H M, Liu H M, Chai T Y, Huang F. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere,2011,85(1): 56-66.
    [20]杨毓峰,袁红旭.紫外线UV-B辐照花生的生物效应.西南农业大学学报,2001,23(4):356-359.
    [21]Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analytical Chemistry,1996,68(5):850-858.
    [22]Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics,2004,4(12):3665-3685.
    [23]Melo-Braga M N, Braga T V, Leon I R, Antonacci D, Nogueira F C S, Thelen J J, Larsen M R, Palmisano G. Modulation of protein phosphorylation, glycosylation and acetylation in grape (Vitis vinifera) mesocarp and exocarp due to Lobesia botrana infection. Molecular and Cellular Proteomics,2012(11):945-956.
    [24]邵彩虹,钱银飞,唐秀英,刘光荣,谢金水,彭春瑞,邱才飞.养分胁迫对水稻籽粒灌浆充实影响的蛋白质组学研究中国水稻科学,2012,26(3):267-274.
    [25]吴能表,马红群,胡丽涛,洪鸿,孙金春,张扬欢,戴大临.增强UV-B辐射对胡椒薄荷叶片光合机构和光合特性的影响.中国中药杂志,2009,34(23):2995-2998.
    [26]Schmidt E C, Santos R W, Faveri C, Horta P A, de Paula Martins R, Latini A, Ramlov F, Maraschin M, Bouzon Z L. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B:changes in ultrastructure, pigments, and antioxidant systems. Journal of Applied Phycology,2012,24(6):1341-1352.
    [27]Ranjbarfordoei A, Samson R, Damme P. Photosynthesis performance in sweet almond [Prunus dulcis (Mill) D. Webb] exposed to supplemental UV-B radiation. Photosynthetica,2011,49(1): 107-111.
    [28]Roose J L, Frankel L K, Bricker T M. Documentation of significant electron transport defects on the reducing side of photosystem II upon removal of the PsbP and PsbQ extrinsic proteins. Biochemistry,2009,49(1):36-41.
    [29]Yi X, Hargett S R, Frankel L K, Bricker T M. The PsbP protein, but not the PsbQ protein, is required for normal thylakoid architecture in Arabidopsis thaliana. FEBS Letters,2009,583(12): 2142-2147.
    [30]Jordan B, He J, Chow W, Anderson J. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant, Cell and Environment,2006,15(1):91-98.
    [31]Lai Y, Xu B, He L, Lin M, Cao L, Mou S, Wu Y, He S. Differential gene expression in pepper (Capsicum annuum) exposed to UV-B. Indian Journal of Experimental Biology,2011,49(6): 429-437.
    [32]Schwarte S, Tiedemann R. A Gene Duplication/Loss Event in the Ribulose-1,5-Bisphosphate-Carboxylase/Oxygenase (Rubisco) Small Subunit Gene Family among Accessions of Arabidopsis thaliana. Molecular Biology and Evolution,2011,28(6):1861-1876.
    [33]Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. Journal of Experimental Botany, 2012,63(8):3001-3009.
    [34]Hatano-Iwasaki A, Ogawa K. Biomass production is promoted by increasing an aldolase undergoing glutathionylation in Arabidopsis thaliana. International Journal of Plant Developmental Biology,2012,7:1-8.
    [35]Hirokawa G, Nijman R M, Raj V S, Kaji H, Igarashi K, Kaji A. The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA,2005,11(8):1317-1328.
    [36]Rolland N, Janosi L, Block M A, Shuda M, Teyssier E, Miege C, Cheniclet C, Carde J P, Kaji A, Joyard J. Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in Escherichia coli carrying temperature-sensitive ribosome recycling factor. Proceedings of the National Academy of Sciences,1999,96(10):5464-5469.
    [37]胡欣,胡昊,洪国藩,韩斌.水稻两个frr基因的结构、转录特性及同源性分析.植物生理与分子生物学学报,2004,30(1):105-114.
    [38]Wang L, Ouyang M, Li Q, Zou M, Guo J, Ma J, Lu C, Zhang L. The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. Plant Molecular Biology,2010,74(1-2):47-59.
    [39]Schulze J, Tesfaye M, Litjens R, Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance C. Malate plays a central role in plant nutrition. Plant and Soil,2002,247(1):133-139.
    [40]Kumari R, Singh S, Agrawal S. Response of ultraviolet-B induced antioxidant defense system in a medicinal plant, Acorus calamus. Journal of Environmental Biology,2010,31(6):907-931.
    [41]Richter K, Haslbeck M, Buchner J. The heat shock response:life on the verge of death. Molecular Cell,2010,40(2):253-266.
    [42]Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding,2004,13:165-175.
    [43]Mooney B, Harmey M. The occurrence of hsp70 in the outer membrane of plant mitochondria. Biochemical and Biophysical Research Communications,1996,218(1):309-313.
    [44]Du H, Liang Y, Pei K, Ma K. UV radiation-responsive proteins in rice leaves:a proteomic analysis. Plant and Cell Physiology,2011,52(2):306-316.
    [45]Singh R, Rastogi S, Dwivedi U N. Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety,2010,9(4):398-416.
    [46]程春振,朱世平,吴波,阳佳位,贝学军,马岩岩,钟广炎.紫外线照射对梁平柚果皮基因表达的影响.园艺学报,2011,38(5):859-866.
    [47]Yamasaki S, Noguchi N, Mimaki K. Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. Journal of Radiation Research,2007,48(6):443-454.
    [48]李敏,王垠,牟晓飞,王洋,阎秀峰.拟南芥芥子酸酯对UV-B辐射的响应.生态学报,2012,32(7):1987-1994.
    [49]Banerjee J, Das N, Dey P, Maiti M K. Transgenically expressed rice germin-like protein 1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochemical and Biophysical Research Communications,2010,402(4):637-643.
    [50]Guevara-Olvera L, Ruiz-Nito M, Rangel-Cano R, Torres-Pacheco I, Rivera-Bustamante R, Munoz-Sanchez C, Gonzalez-Chavira M, Cruz-Hernandez A, Guevara-Gonzalez R. Expression of a germin-like protein gene (CchGLP) from a geminivirus-resistant pepper(Capsicum chinense Jacq.) enhances tolerance to geminivirus infection in transgenic tobacco. Physiological and Molecular Plant Pathology,2012,78:45-50.
    [51]Rietz S, Bernsdorff F E M, Cai D. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Journal of Experimental Botany,2012,63(15):5507-5519.
    [52]Lou Y, Baldwin I T. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiology,2006,140(3):1126-1136.
    [53]Balasubramanian V, Vashisht D, Cletus J, Sakthivel N. Plant β-l,3-glucanases:their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology Letters,2012, 34(11):1983-1990.
    [54]Leimu R, Kloss L, Fischer M. Inbreeding Alters Activities of the Stress-Related Enzymes Chitinases and β-1,3-Glucanases. PloS one,2012,7(8):e42326.
    [55]Wirtz M, Droux M, Hell R. O-acetylserine (thiol) lyase:an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. Journal of Experimental Botany,2004,55(404): 1785-1798.
    [1]Iwaki T, Wadano A, Yokota A, Himeno M. Aldolase-an important enzyme in controlling the ribulose 1,5-bisphosphate regeneration rate in photosynthesis. Plant and Cell Physiology,1991, 32(7):1083-1091.
    [2]Haake V, Zrenner R, Sonnewald U, Stitt M. A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. The Plant Journal,1998,14(2):147-157.
    ①刘延武.不同钙培养条件下几种木本植物对酸雨的响应研究[硕十学位论文].厦门:厦门大学.2009.第39页.
    ②李入玲.地黄连作障碍的差异蛋白质组学研究[硕士学位论文].福州:福建农林大学.2009.第23页.
    [3]Purev M, Kim M K, Samdan N, Yang D-C. Isolation of a novel fructose-1,6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response of this gene to abiotic stresses. Molecular Biology,2008,42(2):179-186.
    [4]Konishi H, Yamane H, Maeshima M, Komatsu S. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Molecular Biology,2004,56(6): 839-848.
    [5]李莉,张改生,张龙雨,李亚鑫.小麦生理型与遗传型雄性不育相关基因锰超氧化物歧化酶(Mn-SOD),及果糖-1,6-二磷酸醛缩酶(FBA)的表达分析.农业生物技术学报,2012,20(3):225-234.
    [6]龙瑞才,杨青川,康俊梅,王凭青,秦智慧.紫花苜蓿果糖-1,6-二磷酸醛缩酶基因全长克隆及分析.西北植物学报,2010(6):1075-1082.
    [7]郭晋隆,李国印,苏亚春,王恒波,阙友雄,徐景升,许莉萍.甘蔗R2R3-MYB类似基因Sc2RMyb1的克隆及表达特性分析.农业生物技术学报,2012,20(9):1009-1017.
    [8]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,2001,25(4):402-408.
    [9]Harbers M. The current status of cDNA cloning. Genomics,2008,91(3):232-242.
    [10]Bonaldo M d F, Lennon G, Soares M B. Normalization and subtraction:two approaches to facilitate gene discovery. Genome Research,1996,6(9):791-806.
    [11]Gill R W, Hodgman T C, Littler C B, Oxer M D, Montgomery D S, Taylor S, Sanseau P. A new dynamic tool to perform assembly of expressed sequence tags (ESTs). Computer Applications in the Biosciences,1997,13(4):453-457.
    [12]李拴柱,万勇善,刘风珍.花生γ-生育酚甲基转移酶基因(γ-TMT)的克隆及序列分析.作物学报,2012,38(10):1856-1863.
    [13]郭安强,万勇善,刘风珍.花生2-甲基-6-植基-1,4-苯醌甲基转移酶基因VTE3的克降及多态性分析.中国农业科学,2012,45(9):1685-1695.
    [14]Hong L, Hu B, Liu X, He C, Yao Y, Li X, Li L. Molecular cloning and expression analysis of a new stress-related AREB gene from Arachis hypogaea. Biologia Plantarum,2013,57(1):56-62.
    [15]Marsh J J, Lebherz H G. Fructose-bisphosphate aldolases:an evolutionary history. Trends in Biochemical Sciences,1992,17(3):110-113.
    [16]Flechner A, Gross W, Martin W F, Schnarrenberger C. Chloroplast class I and class II aldolases are bifknctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. FEBS Letters,1999,447(2):200-202.
    [17]Lebherz H G, Rutter W J. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry,1969,8(1):109-121.
    [18]Zgiby S M, Thomson G J, Qamar S, Berry A. Exploring substrate binding and discrimination in fructosel,6-bisphosphate and tagatose 1,6-bisphosphate aldolases. European Journal of Biochemistry,2000,267(6):1858-1868.
    [19]Capodagli G C, Sedhom W G, Jackson M, Ahrendt K A, Pegan S D. A noncompetitive inhibitor for M. tuberculosis's class Ila fructose 1,6-bisphosphate aldolase. Biochemistry,2014,53(1): 202-213.
    [20]Ken-ichi T, Yasuaki K, Soh H, Jun-ichi S, Yasushi T, Takeshi H, Dong-liang H, Kiichi I, Shin-ichiro E. Structural analysis of the chloroplastic and cytoplasmic aldolase-encoding genes implicated the occurrence of multiple loci in rice. Gene,1994,141(2):215-220.
    [21]Pelzer-Reith B, Penger A, Schnarrenberger C. Plant aldolase:cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Molecular Biology,1993, 21(2):331-340.
    [22]Fan W, Zhang Z, Zhang Y. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Seswium portulacastrum. Plant Cell Reports,2009,28(6):975-984.
    [23]Qaisar U, Irfan M, Meqbool A, Zahoor M, Khan M Y, Rashid B, Riazuddin S, Husnain T. Identification, sequencing and characterization of a stress induced homologue of fructose bisphosphate aldolase from cotton. Canadian Journal of Plant Science,2010,90(1):41-48.
    [24]Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu C-a. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene,2012,503(1):65-74.
    [25]Sarry J-E, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet J B, Vailhen D. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics,2006,6(7):2180-2198.
    [26]Konishi H, Maeshima M, Komatsu S. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. Journal of Proteome Research,2005,4(5):1775-1780.
    [27]Du C-X, Fan H-F, Guo S-R, Tezuka T, Li J. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry,2010,71(13):1450-1459.
    [28]Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics,2002,2(8):947-959.
    [29]Jorge I, Navarro R M, Lenz C, Ariza D, Jorrin J. Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics,2006,6(S1):207-214.
    [30]杨猛,庄文锋,魏湜,顾万荣,杨哗,王萌,李晶.玉米苗期受低温胁迫蛋白表达差异研究.核农学报,2013,27(11):1742-1748.
    [1]Chen R. Bacterial expression systems for recombinant protein production:E. coli and beyond. Biotechnology Advances,2012,30(5):1102-1107.
    [2]Huang C-J, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology,2012,39(3): 383-399.
    [3]Papaneophytou C P, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli:A general review. Protein Expression and Purification,2014,94: 22-32.
    [4]Wang L-N, Yu B, Han G-Q, Chen D-W. Molecular cloning, expression in Escherichia coli of Attacin A gene from Drosophila and detection of biological activity. Molecular Biology Reports, 2010,37(5):2463-2469.
    [5]Paracuellos P, Ohman A, Elisabeth Sauer-Eriksson A, Uhlin B E. Expression and purification of SfaXn, a protein involved in regulating adhesion and motility genes in extraintestinal pathogenic Escherichia coli. Protein Expression and Purification,2012,86(2):127-134.
    [6]Gauci C, Jenkins D, Lightowlers M W. Strategies for optimal expression of vaccine antigens from Taeniid cestode parasites in Escherichia coli. Molecular Biotechnology,2011,48(3):277-289.
    [7]杜照奎,黄伟,谢和芳.热硫化氢高温厌氧杆菌的Ttx31基因克隆、表达与功能分析.农业生物技术学报,2010,18(2):356-361.
    [8]Fan W, Zhang Z, Zhang Y. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium porlulacastrum. Plant Cell Reports,2009,28(6):975-984.
    [9]Mishra Y, Chaurasia N, Rai L C. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses. Biochemical and Biophysical Research Communications,2009,381(4):606-611.
    10] Hou J, Liu Y, Li Q, Yang J. High activity expression of d-amino acid oxidase in Escherichia coli by the protein expression rate optimization. Protein Expression and Purification,2013,88(1): 120-126.
    11] McConnell M J, Pachon J. Expression, purification, and refolding of biologically active Acinetobacter baumannii OmpA from Escherichia coli inclusion bodies. Protein Expression and Purification,2011,77(1):98-103.
    12] Ikeda T, Motomura K, Agou Y, Ishida T, Hirota R, Kuroda A. The silica-binding Si-tag functions as an affinity tag even under denaturing conditions. Protein Expression and Purification,2011, 77(2):173-177.
    13] Voulgaridou G-P, Mantso T, Chlichlia K, Panayiotidis M I, Pappa A. Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. PloS one,2013,8(2):e56582.
    14] Zakalskiy A E, Zakalska O M, Rzhepetskyy Y A, Potocka N, Stasyk O V, Horak D, Gonchar M V. Overexpression of His6-tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography. Protein Expression and Purification,2012,81(1): 63-68.
    15] 曾瑞红,王卫华,房桂珍,龚伟,梅兴国,魏林.His-tag不影响RSV重组蛋白G1F/M2的免疫原性.中国免疫学杂志,2009,24(12):1066-1070.
    [16]Ralph E C, Xiang L, Cashman J R, Zhang J. His-tag truncated buryrylcholinesterase as a useful construct for in vitro characterization of wild-type and variant butyrylcholinesterases. Protein Expression and Purification,2011,80(1):22-27.
    [17]Zhu S, Gong C, Ren L, Li X, Song D, Zheng G. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology:His-tag deletions enhance soluble expression. Applied Microbiology and Biotechnology,2013,97(2):837-845.
    [18]Rukseree K, Thammarongtham C, Palittapongarnpim P. One-step purification and characterization of a fully active histidine-tagged Class II fructose-1,6-bisphosphate aldolase from Mycobacterium tuberculosis. Enzyme and Microbial Technology,2008,43(7):500-506.
    [19]何随彬,谭磊,包世俊,郭小琴,仇旭升,宋翠萍,费荣梅,丁铲.鸡毒支原体醛缩酶的原核表达及膜定位鉴定.中国兽医科学,2013,43(1):42-46.
    [20]Suleman A, Shakoori A R. Evaluation of physiological importance of metallothionein protein expressed by Tetrahymena cadmium metallothionein 1 (TMCdJ) gene in Escherichia coli. Journal of Cellular Biochemistry,2012,113(5):1616-1622.
    [21]樊佳,王毅,徐莺,陈放.麻疯树小热激蛋白基因JcHSP15.9的原核表达及耐热胁迫.应用与环境生物学报,2013,19(1):74-78.
    [22]石双群,苏小梅.ATP对超氧阴离子自由基的清除作用.河北师范大学学报:自然科学版,1996,20(1):56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700