用户名: 密码: 验证码:
外源NO对UV-B胁迫下红松幼苗生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平流层臭氧的减少会导致到达地球表面的UV-B(280-320 nm)辐射显著增强,增强的UV-B辐射对生物体有明显的生物学效应。一氧化氮(NO)作为UV辐射的第二信使,已成为当前植物逆境生理和信号转导领域的研究热点。本文分别研究了增强UV-B辐射、施加外源NO供体及二者复合作用对红松(Pinus koraiensis)幼苗光合作用、自由基含量、抗氧化酶活性、类黄酮含量等生理生化指标的影响,以此在不同层次探讨红松幼苗对环境UV-B辐射增强、NO浓度升高的生态适应机制,探明外源NO对UV-B胁迫下红松幼苗生理特性的影响。主要结果如下:
     UV-B辐射增强显著提高红松针叶内羟基自由基(·OH)、过氧化氢自由基(H202)和MDA含量;UV-B辐射增强诱导过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和超氧化物歧化酶(SOD)活性升高,显著降低过氧化物酶(POD)活性(P<0.05);抗氧化物质中可溶性蛋白含量随UV-B胁迫程度加强而显著增加,而UV-B处理均降低了类胡萝卜素和UV-B吸收物质(总酚、黄酮、缩合单宁)的含量。经过40天UV-B辐射后红松幼苗针叶蜡质条纹状隆起断裂,破碎,条纹状隆起数量减少,蜡质颗粒增多。与对照相比,UV-B处理组红松针叶蜡质含量均降低,高剂量的UV-B辐射长期处理抑制了红松针叶蜡质的积累。红松幼苗针叶蜡质化学成分中烷类是主要成分,比重占50%以上,UV-B处理导致烷类和酚类比重随着UV-B辐射处理强度的加强而降低;酯类的比重随着UV-B辐射处理强度的加强而增加。
     通过喷施不同浓度外源NO对红松幼苗生理特性影响的研究中发现,SNP促进红松幼苗生长的最佳喷施浓度为0.01 mM。我们研究结果表明不同浓度外源NO对光合参数、光合色素含量、自由基含量、抗氧化酶活性影响显著不同。0.1 mM浓度SNP处理下红松光合作用的影响主要是通过气孔性限制因素引起的。光合色素含量、可溶性蛋白含量、类黄酮含量、CAT活性和POD活性的最大值都出现在0.01 mM浓度SNP处理,H202和MDA含量的最大值出现在0.1 mM浓度SNP处理,光合色素的最小值也出现在0.1 mM浓度SNP处理。本研究发现,高浓度外源NO也可能是一种胁迫因子。
     喷施适当浓度的外源NO能显著缓解UV-B胁迫对红松幼苗叶片的伤害,研究结果表明外源NO供体SNP通过提高4种抗氧化酶活性、降低H202和MDA含量、增加类黄酮含量等措施来抵抗UV-B胁迫引起的伤害。植物防卫反应信号分子NO广泛参与红松幼苗对UV-B胁迫的应答与防御,NO作为UV-B辐射的第二信使介导了紫外胁迫信号的转导,并诱发细胞产生抗性反应。外源NO诱导SOD、POD、CAT和APX活性增强,类黄酮含量增加,抗氧化物质和抗氧化酶类在红松幼苗体内协同作用,在胁迫条件下清除过量的活性氧,维持活性氧代谢的平衡,保护膜结构,从而使红松幼苗在一定程度上忍耐、减轻或抵御UV-B胁迫的伤害。对NO含量、NOS和NR活性测定结果表明红松幼苗体内的NO可能主要依靠NOS途径产生,而不是NR途径。
     综上所述,本研究证实UV-B辐射增强通过产生大量的自由基对红松幼苗的生理代谢产生影响,而红松幼苗通过提高抗氧化酶(CAT, APX, SOD)的活性和蛋白质的含量来抵抗UV-B辐射引起的损伤,但其防御机制并不能有效的缓解这个伤害。外源NO对红松幼苗生长生理的调控具有一定的剂量效应,0.01 mM SNP处理对红松幼苗生长生理的调控作用最明显。高浓度外源NO也可能是一种胁迫因子。而适当浓度的外源NO处理通过提高抗氧化酶活性、降低自由基含量、增加类黄酮含量等途径显著缓解UV-B胁迫对红松幼苗叶片的伤害。外源NO对红松幼苗在UV-B辐射胁迫下具有一定的缓解作用。红松幼苗体内的NO可能主要依靠NOS途径产生,而不是NR途径。
The principal ultraviolet radiation absorbance occurs in the stratospheric ozone layer in earth's atmosphere. The destruction of this layer, which is caused by ozone depletion, has lead to an increase in solar UV-B radiation (280-320 nm) reaching the Earth's surface and produced potentially biological effect for plants in the earth. Nitric oxide (NO) as the second messenger of the UV radiation, has been the most activity research hotspot in plant stress physiology and signal transduction fields.
     In this research we studied the effects of enhanced UV-B radiation, different concentrations of exogenous NO and increased exogenous NO under enhanced UV-B radiation on Pinus koraiensis seedlings, respectively. Gas exchange parameters, the concentrations of photosynthetic pigments, contents of free radicals, activities of antioxidant enzymes, concentrations of flavonoids and other physiological indicators were determined. We revealed the adapted mechanism of Pinus koraiensis to enhanced UV-B radiation, sprayed different concentrations of exogenous NO and optimized the best UV-B radiation dose and concentration of exogenous NO to promote the growth of Pinus koraiensis seedlings. The main results are as follows:
     The T1, T2, T3 UV-B treatments were increased UV-B radiation by 1.40,2.81 and 4.22 kJ-m-2·d-1 compared to the control treatment (CK), respectively. Gas exchange parameters, the concentrations of photosynthetic pigments, the contents of secondary metabolites, epicuticular wax, free radical, malondialdehyde (MDA), and the activities of antioxidant enzymes were determined after 40 days exposures. Our results showed that the contents of hydrogen peroxide (H2O2) and MDA were significantly increased by enhanced UV-B radiations (P<0.05). The supplemental UV-B radiation induced the activities of catalase (CAT), ascorbate peroxide (APX), and superoxide dismutase (SOD), but significantly decreased the activity of peroxidase (POD) (P<0.05). Compared to CK, the concentration of soluble protein was increased with the exposure of UV-B radiation. The contents of flavonoids and carotenoid were significantly decreased by all levels of supplemental UV-B radiations (P<0.05). After 40 days UV-B radiation the striped uplift of wax in needle of Pinus koraiensis seedlings was broken, the number of stripe-like uplift was reduced and wax particles were increased. Compared with the CK, the wax contents were significantly decreased with the exposure UV-B radiations. The long-term treatment of high doses of UV-B radiation was inhibited the accumulation of wax in needle of Pinus koraiensis. The most prominent substance of Pinus koraiensis was alkanes. The alkanes represented more than 50% of the compounds. The percentage of alkanes and phenols in Pinus koraiensis needles were decreased by enhanced UV-B radiation. In contrast, the percentage of long chain esters was increased by enhanced UV-B radiation.
     The Pinus koraiensis seedlings were treated with sodium nitroprusside (SNP), a NO donor, at 5 different concentrations ranging from 0 mM to 1 mM and 0.01 mM of SNP had the most satisfactory effect. The result showed that at different concentrations exogenous NO had different effects on the photo synthetic parameters, the concentrations of photosynthetic pigments, the contents of free radical and the activities of antioxidant enzymes and photosynthetic pigments. The content of chlorophyll was maximal in the treatment with SNP at 0.01 mM. The different concentrations of SNP treatment significantly increased the content of H2O2 and MDA. Moreover, the 0.1 mM SNP treatment had the maximal concents of H2O2 and MDA. Meanwhile, the different concentrations of SNP treatment had different effects on antioxidant activity. The activities of CAT, APX, POD were maximum in the concentration of 0.1 mM SNP. The different concentrations of SNP treatments significantly decreased the activity of SOD (P<0.05). Our results showed that high concentration of exogenous NO may be a stress factor for Pinus koraiensis seedlings.
     The appropriate concentration SNP treatment could significantly alleviate the damage of UV-B stress on Pinus koraiensis seedlings. The results showed that exogenous SNP, a NO donor, significantly increased activities of SOD,PQD,CAT and APX of Pinus koraiensis seedling, reduced the contents of H2O2 and MDA, and increased content of flavonoids. The results of NO content, nitric oxide synthase (NOS) and nitrate reductase (NR) activity assay showed that the NO production in vivo of Pinus koraiensis seedlings may was mainly dependent NOS pathway, but not relying on NR pathway.
     Our results demonstrate that Pinus koraiensis can increase of the CAT, APX and SOD activities to prevent oxidative stress by supplemental UV-B radiation, but the defense mechanism is not efficient enough to prevent the UV-B induced damage. The 0.1 mM SNP treatment significantly promoted the growth and regulated the physiology of Pinus koraiensis seedlings. The experiment proved that NO influenced the photosynthesis of Pinus koraiensis seedlings. Morevoer, the research showed that high concentrations of exogenous NO may be a stress factor for Pinus koraiensis seedlings. The appropriate concentration SNP treatment could significantly alleviate the damage of UV-B stress on Pinus koraiensis seedlings.
引文
[1]胡静.红松偏雄、偏雌性别型鉴定技术研究.中国林业科学研究院硕士学位论文.2008:1-2
    [2]Bornman J.F.. Target site of UV-B radiation in photosynthesis of higher plants. Journal of Photochemistry and Photobiology,1989,4(2):145-158
    [3]Carletti P., Masi A., Wonisch A., et al. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environmental and Experimental Botany,2003,50(2):149-157
    [4]曲颖.UV-B胁迫下一氧化氮信号传导对豌豆细胞壁的影响.兰州大学博士学位论文.2006:16-17
    [5]付士磊,周永斌,何兴元等.一氧化氮对不同耐旱性杨树幼苗抗旱性的影响.生态学杂志,2007,26(7):967-970
    [6]张满效,安黎哲,陈拓等.NO是植物应激反应的信号分子.西北植物学报,2004,24(6):1145-1153
    [7]陈世军,张明生.植物一氧化氮及其对活性氧代谢的影响.安徽农业科学,2008,36(17):7116-7118
    [8]郑万钧,傅立国.中国植物志(第七卷).北京:科学出版社,1978:211-213
    [9]吴刚,冯宗炜.中国主要五针松群落学特征及其生物量的研究.生态学报,1995,15(3):26-67
    [10]马建路,庄丽文,陈动等.红松的地理分布.东北林业大学学报,1992,20(5):41-47
    [11]李景文,葛建平,马建路等.红松混交林生态与经营.哈尔滨:东北林业大学出版社,1997
    [12]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响.生态学报,1999,19(6):850-854
    [13]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化.植物学报,2000,42(2):148-152
    [14]李晶,马书荣,阎秀峰等.干旱胁迫对红松幼苗针叶超微结构的影响.木本植物研究,2000,20(3):324-327
    [15]韩士杰,周玉梅,王琛瑞等.红松幼苗对CO2浓度升高的生理生态反应.应用生态学报,2001,12(1):27-30
    [16]郭建平,高素华,王连敏等.CO2浓度与土壤水分胁迫对红松和云杉苗木影响的试验研究.气象学报,2004,62(4):493-497
    [17]杨金艳,范晶.红松光合特性对C02浓度升高的响应.东北林业大学学报,2004,32(6):16-18
    [18]Frohnmeyer H., Staiger D.. Ultraviolet-B Radiation-Mediated Responses in Plants. Balancing Damage and Protection. Plant Physiology,2003,133:1420-1428
    [19]Maria V.. UV Effects on Aquatic and Coastal Ecosystems Introduction:Enhanced UV-B Radiation in Natural Ecosystems as an Added Perturbation Due to Ozone Depletion. Photochemistry and Photobiology,2006,82(4):831-833
    [20]Russel J.M., Lue M.Z., Cicerone R.J., et al. Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget. Nature,1996,379:526-529
    [21]Barnes P.W., Shinkle J.R., Flint S.D., et al. UV-B radiation photomorphogensis and plant-plant interaction. Progress in Biotany,2005,66:313-340
    [22]蔡锡安,夏汉平,彭少麟.增强UV-B辐射对植物的影响.生态环境,2007,16(3):1044-1052
    [23]Kostina E.,Wulff A., Tiitto R.J.. Growth, structure, stomatal response and secondary metabolites of birch seedlings (betula pendula) under elevated UV-B radiation in the field. Trees,2001,15: 483-491
    [24]Biggs R.H., Kouhtus S.V.. Effects of ultraviolet-B radiation enhancements under field condition. In:UV-B Biological and Climate Effects Rsearch (BACER),1978
    [25]Barnes P.W., Flint S.D., Caldwell M.M.. Morphological responses of crop and weel species of different growth from to ultraviolet-B radiation. American Journal of Botany,1990,77(10): 1354-1361
    [26]侯扶江,责桂英,颜景义.田间增加紫外线(UV)辐射对大豆幼苗生长和光合作用的影响.植物生态学报,1998,22(3):256-261
    [27]陈章和,朱素琴,李韶山等.UV-B辐射对南亚热带森林木本植物幼苗生长的影响.云南植物研究,2000,22:467-474
    [28]师生波,责桂英,赵新全等.增强UV-B辐射对高山植物麻花芫净光合速率的影响.植物生态学报,2001,25(5):520-524
    [29]Sullivan J.H., Teramura A.H.. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae. American Journal.of Botany,1988,75:225-230
    [30]Pfundel E.E., Pan R.S., Dilley R.A.. Inhibition of violaxanthin deep oxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiology,1992,98:1372-1380
    [31]任健,李春阳.种子植物对中波紫外辐射胁迫的响应研究进展.生态学杂志,2005,24(3):315-320
    [32]孙谷畴,赵平,曾小平等.补增UV-B辐射对焕镛木(Woonyoungia septentrionalis)叶片光合参数的影响.应用与环境生物学报,2002,8(4):335-340
    [33]Strid A., Chow W.S., Anerson J.M.. Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochimica et Biophysica Acta-Bioenergetics,1990,1020: 260-268
    [34]Barbato R., Frizzo A., Friso G, et al. Degradation of the D1 protein of photosystem Ⅱ reaction center by ultraviolet-B radiation requires the presence of functional manganese on the donor side. European Journal of Biochemistry,1995,227:723-729
    [35]左园园,刘庆,林波等.短期增强UV-B辐射对青榨槭幼苗生理特性的影响.应用生态学报,2005,16(9):1682-1686
    [36]Allen. D.J., McKee I.F., Farage P.K.. et al Analysis of the limitation to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell and Environment,1997, 20:633-640
    [37]Richter M., Ruhle W., Wild A.. Studies on the mechanism of photosytemⅡPhotoinbition Ⅱ. The involvement of toxic oxygen species. Photosynthesis Research,1990,24:237
    [38]Pruvot G., Masimino J., Peltier G, et al. Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought-indueed proteins in Solanum tuberosum. Plant Physiology,1996,97:123-131
    [39]Asada K.. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    [40]巫继拓,沈允纳.菠菜叶绿体的光抑制部位.植物生理学报,1990,16(1):231-239
    [41]许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28:237
    [42]洪燕萍.植物高光胁迫与自由基代谢研究进展.龙岩师专学报,1999,17(3):61-65
    [43]Tevini M., Braum J., Fieser G.. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Journal Photochemistry and Photobiology B:Biology,1991,53: 329-333
    [44]Robbercht R., Caldwell M.M.. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenotherza strieta. Plant Cell and Environment,1983,6:477-485
    [45]Caldwell M.M., Robberecht R., Flint S.D.. Internal filters:Prospects for UV-acclimation in higher plants. Physiologia Plantarum,1983,58:445-450
    [46]蒋磊.UV-B诱导植物DNA损伤和紫外吸收化合物形成的研究.湖南师范大学硕士学位论文.2007:35-37
    [47]Steinmuller D., Tevini M.. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta,1985,164(4):557-564
    [48]Murali N.S., Teramura A.H.. Effectiveness of UV-B radiation on the growth and physiology of field-grown soybean modified by water stress. Photochemistry and Photobiology,1986,44: 215-219
    [49]Ballare C.L., Scopel A.L., Stapleton A.E., et al. Solar ultraviolet radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiology,1996,112:161-170
    [50]Laakso K.. Effects of the ultraviolet-B radiation (UV-B) on conifers:a review. Environmental Pollution,1998,99(3):319-328
    [51]Linda M.N., John H.B., Gerald E.E., et al Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation. Physiologia Plantarum,1998,104:385-396
    [52]Iolanda F., Josep P.. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecology,1999,145:157-165
    [53]Shepherd T., Griffiths D.W.. The effects of stress on plant cuticular waxes. New Phytologist,2006,171:469-499
    [54]周新明.UV-B辐射增强对葡萄叶片光合生理及总酚含量的影响.西北农林科技大学硕士学位论文.2007:7-8
    [55]聂磊,刘鸿先,彭少麟等.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响.植物资源与环境学报,2001,10(3):19-24
    [56]闫生荣,周青,张显等.镧对UV-B胁迫下大豆幼苗膜脂过氧化影响:Ⅰ对CAT和POD的影响.农业环境科学学报,2006,25(4):841-845
    [57]吴杏春,林文雄,郭玉春等.植物对UV-B辐射增强响应的研究进展.中国生态农业学报,2001,9(3):52-55
    [58]Jansen M.A.K., Gaba V., Greenberg B.M.. Higher plants and UV-B radiation:balancing damage; repair and acclimation. Trends in Plant Science,1998,3(4):131-135
    [59]Palmer H., Ohta M., Watanabe M., et al. Oxidative stress-induced cellular damage caused by UV and methyl viologen in Euglena gracilis and its suppression with rutin. Journal of Photochemistry and Photobiology B:Biology,2002,67:116-129
    [60]Ryan K.G., Swinny E.E., Markham K.R., et al. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry,2002,59(1):23-32
    [61]刘爱琴,马祥庆.UV-B辐射增强对木本植物的影响研究进展.中国生态农业学报,2004,12(4):36-39
    [62]Zeuthen J.. Effects of increased UV-B radiation and elevated levels of tropospheric ozone on physiological processes in European beech (Fagus sylvadca). Physiologia Plantarum, 1997,100(2):281-290
    [63]Baumbusch L.D.. Interactive effects of ozone and low UV-B radiation on antioxidants in spruce (Picea abies) and pine (Pinus sylvestris) needles. Physiologia Plantarum,1998, 104(2):248-254
    [64]Johnson D.M., Smith W.K.. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce-fir forest (USA). American Journal of Botany,2006,93(11):1625-1632
    [65]Laasko K., Sullivan J.H., Huttunen S.. The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.). Plant Cell and Environment,2000,23:461-472
    [66]Sullivna J.H., Termaura A.H.. Field study of the interaction between solar ultraviolet-B radiation and drought on Photosynthesis and growth in soybean. Physiologia Plantarum, 1990,92:141-146
    [67]Pukacki P.M., Modrzvnski J.. The influence of ultraviolet-B radiation on the growth, pigment production and chlorophyll fluoresce of Norway spruce seedlings. Acta Physiologiae Plantarum,1998,3:245-250
    [68]Schumaker M.A.. Growth, leaf anatomy, and physiology of Populus clones in response to solar ultraviolet-B radiation. Tree Physiology,1997,17(10):617-626
    [69]Grordon D.C.. Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species. New Phytologist,1998,138(3):441-449
    [70]Teramura AH.. Effect of ultraviolet-B radiation on the growth and yield of crop plants. Physiologiae Plantarum,1983,58:415-427
    [71]林植芳,林桂珠,彭长连等.亚热带植物叶片UV-B吸收化合物的积累.生态学报,1998,18(1):90-95
    [72]黄梅玲,江洪,金清等.UV-B辐射胁迫下不同起源时期的3种木本植物幼苗的生长及光合特性.生态学报,2010,30(8):1998-2009
    [73]]朱素琴,徐向明,陈章和等.UV-B辐射对几种木本植物幼苗生长和叶绿体超微结构的影响.热带亚热带值物学报,2002,10(3):235-244
    [74]Hufton C.A., Besford R.T., Wellburn R.A.. Effects of NO(+NO2)pollution on growth, nitrate reducase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter CO2 enrichment. New Phytologist,1996,133:495-501
    [75]李慧.外源NO供体SNP对小麦幼苗抗旱诱导及作用机理研究.河南农业大学博士学位论文.2009:16-18
    [76]Stamler J.S., Singel D.J., Loscazlo J.. Biochemistry of nitric oxide and its redox-activated forms. Science,1992,258:1898-1902
    [77]Wojtaszek P.. Nitric oxide in plnats:to NO or not to. Phytochemistry,2000,54:1-4
    [78]徐茂军.一氧化氮对植物细胞次生代谢产物合成的调控作用及其信号转导机理研究.浙江大学博士学位论文.2005:16-17
    [79]Vaabdrager A.B., Jonge H.R.. Signalling by cGMP-dependent protein kinase. Molecular and Cellular Biochemistry,1996,157(1):23-30
    [80]Chung H.T., Pae H.O., Choi B.M., et al. Nitric oxide as a bioregulator of apoptosis. Biochemical and Biophysical Research Communications,2001,282(5):1075-1079
    [81]张媛华.一氧化氮(NO)-植物生长发育的新型调控剂.安康学院学报,2007,19(1):91-94
    [82]Chandok M.R., Ytterberg A.J., Vanwijk K.J., et al. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the protein of the glycine decarboxylase comples. Cell,2003,113:469-482
    [83]Guo F.Q., Okamoto M., Crawford N.M.. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science,2003,302:100-103
    [84]秦毓茜,李延红.一氧化氮在植物中的生理作用.安徽农业科学,2006,34(9):1802-1804
    [85]Stohr R.C., Strube F., Marx C.,et al. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta,2001,212:835-841
    [86]Rorckel F., Strube F., Rockel A., et al. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and invitro. Journal of Experimental Botany,2002,53:103-110
    [87]Hrrison R.. Structure and function of X anthine oxidoreductase. where are we now? Free radical biology and medicine,2002,33:774-797
    [88]Cooney R.V., Harwood P. J., Custer L.J., et al. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids.Environmental Health Perspectives,1994,102: 460-462
    [89]Wojtaszek P.. Oxidative burst:an early plant response to pathogen infection. Biochemical Journal,2000,322:681-692
    [90]刘斌,张淑晓,宋玉光等.高等植物叶绿体中光诱导生成NO的ESR证据.高等学校化学学报,2004,25(6):1139-1141
    [91]Bethke P.C., Badger M.R., Jones R.L.. Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell,2004,16:332-341
    [92]Delledonne M., Xia Y.J., Dixon R.A., et al. Nitric oxide functions as a signal in plant disease resistance. Nature,1998,394:585-588
    [93]Pedrosom C., Magalhaes J.R., Durzan D.. Nitric oxide induces celldeath in Taxus cells. Plant Science,2000,157(2):173-180
    [94]Foissner I., Wendehenne D., Langebartels C., et al. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant Journal,2000,23:817-824
    [95]刘新,石武良,张蜀秋等.一氧化氮参与茉莉酸诱导蚕豆气孔关闭的信号转导.科学通报,2005,50(5):453-458
    [96]Francisco J., Corpas F.J., Juan B., et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006,224:246-254
    [97]齐秀东.一氧化氮在植物体内的生理作用研究进展(综述).河北科技师范学院学报,2008,22(3):17-22
    [98]Murgia I., Delledonne M., Sovae C.. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant Journal,2002,30:521-528
    [99]Mackerness S.A-H., John C.F., Jordan B., et al. Early signaling components in ultraviolet-B responses:distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters,2001,489:237-242
    [100]Lamattina L., Beligni M.V., Garcia-Mata C., et al. Method of enhancing the metabolic function and the growing conditions of plants and seeds. US Patent. US,2001,6242384 B1
    [101]Zhang M.X., An L.Z., Feng H.Y., et al. The cascade mechanisns of nitric oxide as a second messenger of ultaviolet-B in inhibiting mesocotyl elongations. Photochemistry and Photobiology,2003,77(2):219-225
    [102]马建路.天然红松混交林的演化史.东北林业大学学报,1997,25(5):66-70
    [103]周秀骥,罗超,李维亮等.中国地区臭氧总量变化与青藏高原低值中心.科学通报,1995,15:1396-1398
    [104]Jiang G.M.. Review on some hot topics towards the researches in the field of plant physioecology. Acta Phytoecologioa Sinica,2001,25(5):514-519
    [105]Kakani V.G., Reddy K.R., Zhao D., et al. Field crop responses to ultraviolet-B radiation:a review. Agricultural and Forest Meteorology,2003,120(1-4):191-218
    [106]梁婵娟,陶文沂,周青.UV-B辐射增强的环境植物学效应研究.中国生态农业学报,2004,12(4):40-42
    [107]Zu, Y.G., Pang, H.H., Yu, J.H., et al. Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. Journal of Photochemistry and Photobiology B:Biology.2010,98:152-158
    [108]Yannarelli G.G., Noriega G.U., Batlle A., et al. Heme oxygenase up-regulation in ultraviolet-B irradiation soybean plants involves reactive oxygen species. Planta,2006, 224(5):1154-1162
    [109]刘敏,李荣贵,范海等.UV-B辐射对烟草光合色素和几种酶的影响.西北植物学报,2007,27(2):291-296
    [110]Gao Q., Zhang L.X.. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtcl mutants of Arabidopsis thaliana. Journal of Plant Physiology,2008,165(2):138-148
    [111]Wang C.K.. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management,2006,222:9-16
    [112]Caldwell M.M.. Solar UV radiation and the growth and development of higher Plants, In: Castellani A C ed. Photophysiology,1971,6:131-177
    [113]Green A.E.S., Corss K.R., Smith L.A.. Improved analytical characterization of ultraviolet skylight. Photochemistry and Photobiology,1980,31:59-65
    [114]Ye Z.P.. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica,2007,45(4):637-640
    [115]Bhaduri P.N., Ghosh M.. Excised embryo culturing:the study of inheritance of root types in rice. Botanical Magazine,1965,78:348-352
    [116]Patterson B.D., MacRae E.A., Ferguson I.B.. Estimation of hydrogen peroxide in plant extract using titanium(IV). Analytical Biochemistry,1984,139(2):487-492
    [117]高俊凤.植物生理学实验指导.北京:高等教育出版社,2006
    [118]Chapelle E.W., Kim M.S.. Ratio analysis of reflectance spectra (RARS):an algorithm for the remote estimation of the concentration of chlorophyll a, Chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247
    [119]Wellburn A.R.. The spectral determination of chlorophylls a and b, As well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology,1994,144:307-313
    [120]王晓鹏.外源性可溶性糖对长春花响应盐胁迫的影响.东北林业大学硕士论文.2009:11-14
    [121]程春龙.额济纳绿洲胡杨体内酚类物质分布及其对环境变化的响应研究.北京林业大学硕士论文.2007:1-11
    [122]李兰芳,张魁,吴树勋等.不同生长期白羊草中总黄酮的含量测定.中国野生植物资源,1996,23(4):37-39
    [123]Jiang M.Y., Zhang J.H.. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany,2002,53(379):2401-2410
    [124]周小云,陈信波,徐向丽等.稻叶表皮蜡质的提取方法及含量的比较.湖南农业大学学报(自然科学版),2007,33(3):273-276
    [125]Jenks M.A., Tuttle H.A., Eigenbrode S.D., et al. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiology.1995,108:369-377
    [126]Song Y.X., Guo S.H., Ma H.A.. Observation of leaf epidermis of 15 species shrubsin Helanshan moutain by SEM, Acta Botanica Boreali-Occidentalia Sinica,2003,23:1283-1287
    [127]Rozema J., Boelen P., Blokker P.. Depletion of stratospheric ozone over the Antarctic and Arctic:Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an ove rview. Environmental Pollution,2005,137(3):428-442
    [128]苏占胜,王连喜,李福生等.紫外线-B增加对宁夏春小麦光合作用日变化的影响. 干旱地区农业研究,2006,24(4):82-86
    [129]苏占胜,王连喜,李福生等.UV-B增加对玉米光合作用日变化的影响.宁夏工程技术,2006,5(3):284-287
    [130]罗南书,刘芸,钟章成等.田间增加UV-B辐射对丝瓜光合作用日变化及水分利用效率的影响.西南师范大学学报(自然科学版),2003,28(3):436-439
    [131]李雪梅,张利红,马莲菊等.不同UV-C辐射时间对豌豆幼苗光合特性及抗氧化酶活性的影响.生态与农村环境学报,2006,22(1):34-37
    [132]孙令强,李召虎,段留生等.UV-B辐射对黄瓜幼苗生长和光合作用的影响.华北农学报,2006,21(6):79-82
    [133]Guan W.C., Gao K.S.. Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environmental and Experimental Botany,2010,67(3):502-508
    [134]钟楚,王毅,陈宗瑜.UV-B辐射对植物光合器官和光合作用过程的影响.云南农业大学学报,2009,24(6):895-903
    [135]He J., Huang L.K., Chou W.S.. Effects of supplementary ultraviolet-B radiation on rice and pea plants. Australian Journal of Plant Physiology,1993,20:129-142
    [136]Cassi-Lit M., Whitecross M.I., Nayudu M., et al. UV-B irradiation induces differential leaf damage, ultrastructural changes and accumulation of specific phenolic compounds in rice cultivars. Australian Journal of Plant Physiology,1997,24:261-274
    [137]冯虎元,安黎哲,徐世健等.紫外线-B辐射增强对大豆生长、发育、色素和产量的影响.作物学报,2001,27(3):319-323
    [138]王忠.植物生理学.北京:中国农业出版社.2000:128-131
    [139]吴业飞,吴鲁阳,张振文.紫外线-B辐射增强对葡萄叶片抗氧化系统的影响.西北农林科技大学学报(自然科学版),2008,36(12):161-166
    [140]曹宛虹.作为叶绿体H2O2分解系统关键酶的抗坏血酸过氧化物酶.植物生理学通讯,1994,30(6):452-458
    [141]Foyer C.H., Descourvieres P., Kunert K.J.. Protection against oxygenr adicals:an important defence mechanism studied in transgenic plants. Plant, Cell and Environment, 1994,17(5):507-523
    [142]吴楚,王政权.冰冻条件下外源SA对水曲柳幼苗叶片内抗氧化酶的影响.林业科学,2002,38(5):54-59
    [143]黄少白,戴秋杰,刘晓忠等.水稻对紫外光B辐射增强的生化适应机制.作物学报,1998,24(4):464-46
    [144]柯世省,金则新.干旱胁迫对夏腊梅叶片脂质过氧化及抗氧化系统的影响.林业科学,2007,43(10):28-33
    [145]周青,黄晓华.生存胁迫-紫外辐射增强对植物的生理生态效应.自然杂志,2001, 23(4):199-203
    [146]牛传坡,蒋静艳,黄耀.UV-B辐射对土壤-冬小麦系统碳氮转化的影响.矿物岩石地球化学通报,2007,26(z1):470-471
    [147]Quaite F.E., Sutherland B.M., Sutherland J.C.. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature,1992,358(6387):576-578
    [148]Gonzalez J.A., Rosa M., Parrado MF, et al. Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV-B in a lowland location. Journal of Photochemistry and Photobiology B:Biology,2009,96:144-151
    [149]Hilal M., Parrado M.F., Rosa M., et al. Epidermal lignin deposition in Quinoa Cotyledons in response to UV-B radiation. Photochemistry and Photobiology,2004,79(2): 205-210
    [150]庞海河.增强UV-B辐射下南方红豆杉形态、结构及代谢的研究.东北林业大学博士学位论文.2010:58-59
    [151]Demmig-Adams B., Adams W.W.. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43: 599-626
    [152]Tracewell C.A., Vrettos J.S., Bautista J.A.. Carotenoid photooxidation in photosystem Ⅱ. Archives of Biochemistry and Biophysics,2001,385(1):61-69
    [153]张新永,郭华春,戴华峰.增强UV-B辐射对彩色马铃薯叶片中相关保护酶活性的影响.西北植物学报,2009,29(5):867-873
    [154]Hatcher P.E., Paul N.D.. The effect of elevated UV-B radiation on herbivory of pea by Autographa gamma. Entomologia Experimentalis et Applicata,1994,71(3):227-233
    [155]Appel H.M.. Phenolics in ecological interactions:The importance of oxidation. Journal of Chemical Ecology,1993,19(7):1521-1552
    [156]Lavola A.. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiology,1998,18(1):53-58
    [157]Rozema J, Lenssen GM, Staaij JWM, et al. Effects of UV-B radiation on terrestrial plants and ecosystems:interaction with CO? enrichment. Plant Ecology,1997,128(1-2):183-191.
    [158]Flint S.D., Searles P.S., Caldwell M.M.. Field testing of biological spectral weighting functions for induction of UV-absorbing compounds in higher plants. Photochemistry and Photobiology,2004,79(5):399-403
    [159]Strid A., Porra RJ.. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant and Cell Physiology,1992,33(7):1015-1023
    [160]Petropoulou Y, Kyparissis A., Nikopoulos D., et al. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions. Physiologia Plantarum,1995,94:37-44
    [161]Kinnunen H., Huttunen S., Laakso K.. UV-absorbing compounds and waxes of Scots pine needles during a third growing season of supplemental UV-B. Environmental Pollution,2001,112(2):215-220
    [162]董新纯,赵世杰,郭珊珊等.增强UV-B条件下类黄酮与苦荞逆境伤害和抗氧化酶的关系术.山东农业大学学报(自然科学版),2006,37(2):157-162
    [163]Zhao D., Reddy K.R., Kakani V.G., et al. Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. Plant, Cell and Environment,2003,25(5):771-782
    [164]梁滨,周青,UV-B辐射对植物类黄酮影响的研究进展.中国生态农业学报,2007,15(3):191-194
    [165]Warren J.M., Bassman J.H., Mattinson D.S., et al. Alteration of foliar flavonoid chemistry induced by enhanced U V-B radiation in fieldgrown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii. Journal of Photochemistry and Photobiology B: Biology,2002,66(2):125-133
    [166]Sharma P.K., Anand P., Sankhalkar S., et al. Photochemical and biochemical changes in wheat seedlings exposed to supplementary ultraviolet-B radiation. Plant Science,1998, 132(1):21-30
    [167]Tegelberg R., Julkunen-Tiitto R.. Quantitative changes in secondary metabolites of dark-leaved willow (Salix myrsinifolia) exposed to enhanced ultraviolet-B radiation. Physiologia Plantarum,2001,113(4):541-547
    [168]Robberecht R, Calewell M.M., Bullings W.D.. Leaful-traviolet optical properties along a latitude gradient in the arctic-alpine life zone. Ecology,1980,61:612-619
    [169]Holmesm G, Keiller D.R.. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands:a comparison of a range of species. Plant Cell and Environment,2002,25:85-93
    [170]Holmes M.G., Action spectra for UV-B effects on plants:monochromatic and approaches for analyzing plant responses. Cambridge University Press, Cambridge,1997:31-50
    [171]Esch A., Mengel K.. Combined effects of acid mist and frost drought on the water status of young spruce trees (Picea abies). Environmental and Experimental Botany.1998,39: 57-65
    [172]Steinmuller D., Tevini M.. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta,1985,164(4):557-564
    [173]Qaderi M.M., Reid D.M.. Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiologia Plantarum,2005, 125(2):247-259
    [174]Barnes J.D., Percy K.E., Paul N.D., et al. The influence of UV-B radiation on the physicochemical nature of tobacco(Nicotiana tabacum L.) leaf surfaces. Journal of Experimental Botany,1996,47:99-109
    [175]Olsson L.C., Veit M., Weissonbock G., et al. Differential flavonoid response to enhanced uv-b radiation in brassica napus. Phytochemistry,1998,49(4):1021-1028
    [176]Cen Y.P., Bornman J.F.. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiologia Plantarum,1993,87(3):249-255
    [177]Awada, M.A., Wagenmakers P.S., Jager A.d., et al. Effects of light on fiavonoid and chlorogenic acid levels in the skin of 'Jonagold' apples. Scientia Horticulture,2001,88(4): 289-298
    [178]Stapleton A.E., Walbot V. Flavoniods can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiology,1994,105:881-889
    [179]李鹏,李祺福,黄胤怡等,抗UV-B辐射植物黄酮类化合物研究进展,生态学杂志,2001,20(6):36-40
    [180]周青,黄晓华,马育国等.紫外辐射胁迫对小麦生长的影响.农业环境保护,2001,20(2):94-96
    [181]樊怀福,郭世荣,焦彦生等.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响.生态学报,2007,27(2):546-553
    [182]邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度效应.生态学报,2008,28(1):302-309
    [183]Beligni M.V., Lamattina L.. Is nitric oxide toxic or protective? Trends in Plant Science, 1999,4(8):299-300
    [184]杨亚军,李利红,赵会杰等.外源NO对高温强光胁迫下小麦叶片膜脂过氧化和叶绿素荧光的影响.安徽农业科学,2008,36(29):12571-12574
    [185]Anderson L., Mansfield T.A., The effects of nitric oxide pollution on the growth of tomato. Environmental Pollution,1979,20:113-121
    [186]Leshem Y.Y., Harmaaty E.. The characterization and contrasting effects of the nitric oxide Free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology,1996,148:258-263
    [187]徐茂军,董菊芳.一氧化氮和过氧化氢在介导长春花细胞生物碱合成中的相互作用.自然科学进展,2008,18(12):1386-1397
    [188]Beligni M.V., Lamattina L.. Nitric oxide in plants:The history is just beginning. Plant Cell and Environment,,2001,24:267-278
    [189]Kinnunen H., Laakso K., Huttunen S.. Methanol-extractable UV-B-absorbing compounds in Scots pine needles. Chemosphere-Global Change Science,1999,1(4):455-460
    [190]李彩香,惠伟,屠荫华等.一氧化氮(NO)熏蒸蒜瓣对蒜苗叶片光合作用的影响,植物研究,2009,29(3):308-312
    [191]Farquhar G.D., Sharkey T.D.. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-334
    [192]樊洪泓,李廷春,李正鹏等.强光胁迫下外源NO对霍山石斛叶绿素荧光的影响.核农学报,2008,22(04):524-528
    [193]师守国,李善菊,童斌等.一氧化氮对杏叶片光合作用的影响.水土保持研究,2005,12(3):86-87
    [194]Downton W.J.S., Loveys B.R., Grant W.J.R., et al. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytologist,1988,108(3):263-266
    [195]Lazalt A.M., Beligni M.V., Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by phytophthora infestants. European Journal of Plant Pathology, 1997,103:643-651
    [196]吴雪霞,朱月林,朱为民等.外源一氧化氮对NaCI胁迫下番茄幼苗生长和光合作用的影响.西北植物学报,2006,26(6):1206-1211
    [197]Strid A.. Alteration in expression of defense genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation. Plant and Cell Physiology,1993,34(6):949-953
    [198]罗建平,夏宁,沈国栋等.茉莉酸甲酯、水杨酸和一氧化氮诱导怀槐悬浮细胞合成异黄酮及细胞结构变化.分子细胞生物学报,2006,39(5):438-444
    [199]Burner J, Wendehenne D., Klessigd F.. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of The National Academy of Sciences of The United States of America,1998,95:10328-10333
    [200]顾庆龙,莫亿伟,涂庆华等.盐胁迫下NO对玉米幼苗生理特性的影响.干旱地区农业研究,2009,27(1):157-162
    [201]刘招龙,郭团玉,孙益林.外源一氧化氮供体对高温胁迫下梨叶片膜脂过氧化的影响.中国农学通报,2006,22(11):179-181
    [202]Lamattina L, Garcia-Mata C., Graziano M., et al. Nitric oxide:The versatility of an extensive signal molecule. Annual Review of Plant Biology,2003,54:109-136
    [203]陈郑盟,李颖波,许微微.一氧化氮在植物逆境生理中的作用.安徽农业科学,2008,36(29):12563-12564
    [204]Tevini M., Iwanzik W., Thoma V.. Some effects of enhanced UV-B irradiation the growth and composition of plants. Planta,1981,153(3):388-394
    [205]Jia Y.X., Zhang L.J., Zeng F.L.. Study of the function of ferritin in cucumber seedling leaves under oxidative stress. Journal of Lanzhou University (Natural Sciences),2006, 42(5):37-43
    [206]Qu Y, Feng H.Y., Wang Y.B., et al. NO functions an signal in UV-B-induced growth inhibition in pea stems elongation. Plant Science,2006,170:994-1000
    [207]吴锦程,陈建琴,梁杰等.外源一氧化氮对低温胁迫下枇杷叶片AsA-GSH循环的影响.应用生态学报,2009,20(6):1395-1400
    [208]段凯旋,杨洪强,冉昆等.一氧化氮对铜、镉胁迫下平邑甜茶幼苗活性氧代谢.中国农学通报,2007,23(10):104-109
    [209]相昆,李宪利,张美勇等,外源一氧化氮对核桃幼苗抗旱性的影响.林业科学,2007,43(10):122-126
    [210]Corpas F.J., Barroso J.B., Carreras A., et al. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiology,2004,13: 2722-2733
    [211]唐静.一氧化氮促进盐胁迫下玉米种子萌发和幼苗生长机制的研究.青岛农业大学硕士学位论文.2008:23-24
    [212]张志良,瞿伟菁.植物生理学实验指导(第三版).北京:高等教育出版社,2003:41-43
    [213]郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨工业大学出版社.2004:80-81
    [214]孙红梅,李天来,李云飞.低温解除休眠过程中兰州百合茎酚类物质含量及相关酶活性变化.中国农业科学,2004,37(11):1777-1782
    [215]Brune B., Lapetina E.G.. Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. The Journal of Biological Chemistry,1989,264:8455-8458
    [216]Basiouny F.M., Van T.K., Biggs R.H.. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B. Physiologia Plantarum,1978,42: 29-32
    [217]Teramura A.H., Biggs R.H., Kossuth S.. Effects of ultraviolet-B irradiance on soybean. Ⅱ. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration. Plant Physiology,1980,65:483-488
    [218]张义凯,崔秀敏,杨守祥等.外源NO对镉胁迫下番茄活性氧代谢及光合特性的影响.应用生态学报,2010,21(6):1432-1438
    [219]施溯筠,陈翠云.外源一氧化氮供体SNP对UV-B辐射下红芸豆叶片中SOD,CAT和POD同工酶的影响.兰州大学学报(自然科学版),2009,45(4):78-82
    [220]Wang J.W., Zheng L.P., Tan R.X.. Involvement of nitric oxide in cerebroside-induced defense responses and taxol production in Taxus yunnanensis suspension cell. Applied Microbiology Biotechnology,2007,75:1183-1190
    [221]阮海华,沈文飚,叶茂炳等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报,2001,46(23):1993-1997
    [222]唐静.一氧化氮促进盐胁迫下玉米种子萌发和幼苗生长机制的研究.青岛农业大学硕士学位论文.2008:58-59
    [223]高华君,杨洪强,杜方岭等.平邑甜茶幼苗生长过程中精氨酸和一氧化氮水平的变化,植物营养与肥料学报,2008,14(4):774-778
    [224]姚晓芹,刘庆.陆生植物体内酶系统对UV-B辐射增强的响应.应用生态学报,2006,17(5):939-942
    [225]Quaggiotti S., Trentin A.R., Vecchia F.D., et al. Response of maize (Zea mays L.) nitrate reductase to UV-B radiation. Plant Science,2004,167:107-116
    [226]Balakumar T., Selvakumar V., Sathiameena K., et al. UV-B radiation mediated alterations in the nitrate assimilation pathway of crop plants I.Kinetic characteristics of nitrate reductase. Photosynthetica,1999,37(3):459-467
    [227]Ghisi R., Trentin A.R., Masi A., et al. Carbon and nitrogen metabolism in barley plants exposed to UV-B radiation. Physiologia Plantarum,2002,116(2):200-205
    [228]聂磊,刘鸿先,彭少麟.增强UV-B辐射对柚树苗生长和生理特性效应研究.生态科学,2001,20(3):31-38
    [229]Saralabai V.C., Thamizhchel P.van, Santhaguru K.. Influence of UV-B radiation on fixation and assimilation of nitrogen in Crotalaria junceaf Linn. Indian Journal of Plant Physiology,1989,32:65-67
    [230]刘清华.紫外线-B(UV-B)辐射增强下银杏(Ginkgo biloba)叶的生理生态机理研究.西南师范大学硕士学位论文.2002:27-28
    [231]齐泽民,钟章成,邓君.模拟酸雨对土壤酸化及杜仲生长的影响.植物生态学报,2001,25(5):544-548
    [232]Morcuende R., Krapp A., Vaughan H.. Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of a-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta,1998,206:394-409
    [233]Laspina N.V., Groppa M.D., Tomaro M.L., et al. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science,2005,169:323-330
    [234]Xu J., Wang W.Y., Tin H.G., et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant and Soil,2010,326:321-330
    [235]李慧.外源NO供体SNP对小麦幼苗抗旱诱导及作用机理研究.河南农业大学博士学位论文.2009:59
    [236]Clark D., Durner J., Navarre D.A., et al. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molecular Plant-Microbe Interactions,2000,12:1380-1384
    [237]屠洁,沈文飚,叶茂炳等.外源NO供体对小麦离体叶片过氧化氢代谢的影响.植物学通报,2002,19(3):336-341
    [238]Mackerness S.A-H., Thomas B., Jordan B.R.. The effect of supplementary ultraviolet-B radiation on mRNA transcripts,translation and stability of chloroplast proteins and pigment formation in pis um salivum L. Journal of Experimental Botany,1997,48(308): 729-738
    [239]王超,侍福梅.活性氧与一氧化氮在逆境胁迫下的相互关系.安徽农业科学,2009,37(5):1903-1904
    [240]刘卫红,程水源.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响.湖北农业科学,2003,3:73-75
    [241]Kreuzaler F., Ragg H., Fautz E., et al. UV-induction of chalcone synthase mRNA in cell suspension cultures of petroselimum hortense. Proceedings of national academy of science USA,1983,80:2591-2593
    [242]Ryder T.B., Hedriek S.A., Bell, J.N. et al. Elicitor rapidly induces. Chalcone synthase mRNA in phaseolus valgaris cells at the onset of the phytoalexin defense response. Molecular and General Genetics,1987,210:219-233
    [243]谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节.植物学通报,2000,17(5):44344
    [244]郝岗平,杜希华,史仁玖.干旱胁迫下外源一氧化氮促进银杏可溶性糖、脯氨酸和次生代谢产物合成.植物生理与分子生物学学报,2007,33(6):499-506
    [245]Pan R.C. Plantphysiology. Beijing:Higher Education Press,2004.130-137
    [246]方兴,钟章成,闫明等.增强UV-B辐射与不同水平氮素对谷子(Setaria italica (L.) Beauv.)叶片保护物质及保护酶的影响.生态学报,2008,28(1):284-291
    [247]Neumann G, Schwemmle B.. Flavonoids from Oenothera-seedlings:identification and extranuclear control of their biosynthesis. Journal of Plant Physiology,1993,142,135-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700