用户名: 密码: 验证码:
42m拖网渔船水动力数值计算与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展和现时代的能源危机,特别是近些年来,世界石油价格处在高位水平,直接影响到了渔船外出作业的生产成本,渔船的节能技术得到了越来越多的关注。目前,国内对拖网渔船节能方面研究的不多,本文主要从减阻效果上来体现渔船的节能。传统的船体阻力测量都是在拖曳水池进行,这种试验要投入大量经费去制造船模。随着CFD技术在各个领域的广泛使用,数值模拟计算也逐渐进入到了船舶领域。
     本文概括了计算流体力学(CFD)在国内外的研究现状,并对船舶CFD水动力性能研究进行了一些介绍。在对本论文研究对象用Fluent进行数值模拟优选前,首先对数值模拟计算的参数依赖性进行了验证。然后对42m拖网渔船的原始模型进行船模拖曳试验,并与数值模拟计算得到的阻力数据进行比对。结论证明,数值模拟计算的结果和船模试验得到的结果基本吻合,说明数值模拟计算在一定程度上可以减少传统的船模试验。
     通过对比得出数值模拟计算有较高的可靠性和准确性后,本文采用数值模拟计算对42m拖网渔船进行阻力优选。文中选用了球鼻艏、船尾线型和外龙骨三个参数进行数值模拟计算的对比。尤其在球鼻艏方面,分别从其的长度、高度和宽度进行了数值模拟计算的对比;在船尾线型方面,主要从虚长度方面对船体阻力的影响进行了对比;在外龙骨方面,计算了有无外龙骨对船体阻力的影响。并把每个参数下减阻效果最好的模型进行简单的线型集合,选出一个优选模型。
     最后,通过数值模拟计算对原始模型和优选模型进行了全航速下的阻力数据对比。结果表明优选模型相对于原始模型有较明显的减阻效果。
With the rapid development of the economy and the energy crisis,especially theseyears,the price of oil is always high,which directly influence the cost of production on thefishing boat to work,as a result,the energy saving technology of fishing boats obtained moreand more attention.At present,domestic scholars rarely do reseach on the energy-saving oftrawlers.This paper is mainly that research the effect of drag reduction to reflect theenergy-saving of trawlers.Traditional measurements of hull resistance are carried out in thetowing tank,which need a lot of money to make ship models.Along with the CFDtechnology used in various fields, the numerical simulation is also used gradually in the fieldof ship.
     This paper generalize the research status of CFD at home and abroad,and introduce thestudy on hydrodynamic performance.Before numerical simulation is used to makeoptimization of models by Fluent, the dependence of the parameters of the numericalsimulation is validated. The towing experiment is done on the original model of the42mtrawler,and compared with the numerical simulation in this paper.Conclusion proves that theresults of the numerical simulation and the results of ship model basically coincide,whichshows that numerical simulation can replace the traditional model testing at a certain extent.
     After the conclusion that the numerical simulation has high reliability and accuracy got,the numerical simulation is used to optimize the42m trawler on drag reduction. This paperselected the parameters of bulbous bow, stern line and outer keel to contrast on numericalsimulation.Especially in the parameters of bulbous bow,its length,height and width areinvestigated by numerical simulation.In the stern line, the effect of virtual length to hullresistance is studied.In the outer keel aspect, the effect on the hull resistance with or withoutouter keel are calculated. And the best models of drag reduction in each parameter aresimply combined into an optimal model.
     At last, this paper contrasts the resistance data of the original model and the optimalmodel in full-speed by the numerical simulation.The result shows that the effect of dragreduction of the optimal model is more obvious than the original model at a certain extent.
引文
[1]刘龙.渔船节能技术及其评价体系研究[D].中国海洋大学,2010.
    [2]高慧颖.基于CFD的大型船舶球艏线型设计比较研究[D].哈尔滨工程大学,2010.
    [3]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [4]陶文铨.数值传热学(第二版)[M],西安:西安交通大学出版社,2001.
    [5]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [6]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004.
    [7]Hess J.L,Smith.A.M.O.Calculation of non-lifting potential flow about arbitrary three-dimensionalbodies[C].Douglas Report No.E.S40622,1962.
    [8]周连第.船舶计算流体力学发展现状和前景[J].上海造船,1998(2).
    [9]G.B.Deng,P.Queutey,M.Visonneau,Navier-Stokes Computations of Ship Stern Flows:ADetailedComparative Study of Turbulence Models and Discretion Schemes[C].6thProceedings InternationalConference on Numerical Ship Hydrodynamics,Iowa City,1993.
    [10]张雨新.小攻角斜侧体三体船水动力性能数值模拟[D].哈尔滨工程大学,2009.
    [11]蔡荣泉.船舶计算流体力学的发展与应用[J].船舶,2002,8(4):8‐13.
    [12]L.larsson,F.Stern and V.Bertram.Benchmarking of Computational Fluid Dynamics for Ship Flow:The Gothenburg2000Workshop [J].Journal of Ship Research,Vol.47,No,1(63-81),2003.
    [13]马娟.水面船舶和高性能多体船兴波与阻力性能计算[D].上海交通大学,2011.
    [14]ITTC.Proceedings of the24thITTC-Volume I [C],2005.
    [15]Joseph J,Gorski,et al.The Use of a RANS Code in the Design and Analysis of a NavalCombatant[C].24thSymposium on Naval Hydrodynamics,Fukuoka,Japan,2002.
    [16]K.S.Min,et al.Study on the CFD Application for VLCC Hull-Form Design[C].24thSymposium onNaval Hydrodynamics,Fukuoka,Japan,2002.
    [17]刘应中,张怀新,李谊乐,缪国平.21世纪的船舶性能计算和RANS方程[J].船舶力学,2001,5(5);66-84.
    [18]GADD G.E.Wave resistance calculation by Guilloton's method[J].Trans,RINA,1973.
    [19]GADD G.E.A method of computing the flow and surface wave pattern around fullforms[J].Trans,RINA,1976.
    [20]DAWSON C.W.A practical computer method for solving ship-wave problem[A].2nd Int Conf onNumerical Ship Hydrodynamics[C],1977.
    [21]RAVEN H.C.Inviscid calculations of ship wave making capabilities[C].limitations and propects,22nd Symposium on Naval Hydrodynamics,1998.
    [22]C.E.Janson.potential flow panel methods for the calculation of free-surface with lift[D].Sweden:Ph.D,Thesis,Chalmers University of Technology,1997.
    [23]S.Abdallah,et al,InvestigationonScale Effect inShip ViscousFlowbyCFD[C].19th Symposiumon Naval Hydrodynamics,1992.
    [24]Hino T.Shape Optimization of Practical Ship Hull Forms Using Navier-stokes Analysis [C].Proceedings of the7thInternational Conference on Numerical ShipHydrodynamics,Nates,France,1999.
    [25]陈义根.非定常不可压N‐S方程求解方法研究及三维水面舰船粘性绕流的数值模拟[D].中国船舶与海洋工程设计研究院,1998.
    [26]刘应中,张怀新.带自由面三维船体周围粘性流场的数值模拟[J].上海交通大学学报,2001,35(10):1429‐1432.
    [27]于领.大型电厂循环水流道弯道引水段数值模拟研究[D].华北水利水电学院,2011.
    [28]黄志新.卧螺离心机螺旋输送器结构、强度及其转鼓内的流场研究[D].北京化工大学,2007.
    [29]汪庆雷.低速多尾船型阻力计算的CFD仿真应用研究[D.华中科技大学,2006.
    [30]韩涛.不完全包角水轮机引水部件三维流场数值模拟[D].西华大学,2008.
    [31]方月兰.旋流式燃烧器炉内空气动力场的数值模拟[D].华北电力大学,2007.
    [32]陈品磊.环保水性涂料高效分散技术与装备研究[D].江南大学,2009.
    [33]孙立宪.三体船和五体船的阻力与流场计算及比较[D].哈尔滨工程大学,2006.
    [34]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社,1993.
    [35]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [36]Fluent Inc.FLUENT User's Guide.Fluent Inc.,2003.
    [37]王红涛.颗粒物料对撞流干燥的试验研究[D].东北大学,2005.
    [38]白桦.塔桅结构风荷载的数值模拟研究[D].长安大学,2006.
    [39]H.K.Versteeg,W.Malalasekera.An Introduction to Computational Fluid Dynamics:The FiniteVolume Method.Wiley,New York,1995.
    [40]C.J.Chen,S.Y.Jaw.Fundamentals of Turbulence Modeling.Taylor&Francis,Wsahington,1998.
    [41]B.E.Launder,D.B.Spalding.Lectures in Mathematical Models of Turbulence,Academic Press,London,1972.
    [42]V.Yakhot, S.A.Orzag.Renormalization group analysis of turbulence: basic theory.JScientComput.1:3-11,1986.
    [43]Mente F.R.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J].AIAA Journal,1994,32(8):1598-1605.
    [44]MacCormack R.W..Paullay A.J.Computational Efficiency Achieved by Time Splitting of FiniteDifference Operators.AIAA Paper.1972.72-154.
    [45]潘忠滨.弓形降液管内流场研究和数值模拟[D].浙江工业大学,2006.
    [46]李魁山.离心‐沉降式除污器结构设计及模拟分析[D].哈尔滨工业大学,2005.
    [47]Hirt C.W and Nichols B.D.Volume of fluid(VOF)method for the dynamics of free boundaries,JComput Phys,1986,63:168~190.
    [48]江帆,黄鹏.Fluent高级应用于实例分析[M].清华大学出版社,2008.
    [49]杨静.叶轮机械轴向蜗壳内部流动的数值分析[D].华中科技大学,2005.
    [50]张哲衡.高能燃料燃烧流场的数值模拟与结构设计[D].哈尔滨工程大学,2010.
    [51]刘刚.鼓泡与节涌流化床内流动特性的CFD模拟[D].中国石油大学,2006.
    [52]刘臻.岸式振荡水柱波能发电装置的试验与数值模拟研究[D].中国海洋大学,2008.
    [53]刘丹.密集桁架对大跨屋盖平均风压的影响[D].同济大学航空航天与力学学院,2009.
    [54]周勇秋.长大公路隧道火灾数值模拟及逃生研究[D].长安大学,2006.
    [55]邵发展.沥青摊铺机布料槽内集料运动的稳定性研究[D].重庆交通大学,2011.
    [56]黄亚南.集装箱船球首型线设计研究[D].大连理工大学,2004.
    [57]夏泰淳.工程流体力学[M].上海:上海交通大学出版社,2006.
    [58]应业炬.船舶快速性[M].北京:人民交通出版社,2007.
    [59]王红军.高速三体船片体布局优化实验研究[D].大连理工大学,2007.
    [60]柏建勇.16,400T化学品船主推进动力装置的选型设计及试验分析[D].上海交通大学,2005;
    [61]S.V.Patanker,D.B.Spalding,A calculation processure for heat,mass and momenturm transfer inthree-dimensional parabolic flows.Int J Heat Mass Transfer,15:1787-1806,1972.
    [62]郭观明,李刚强.42m拖网渔船球鼻艏优化研究[J].中国水运,2012(1),53‐55.
    [63]臧运蕾.城轨空调客车客室内气流组织的数值模拟与分析[D].北京交通大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700