用户名: 密码: 验证码:
甘肃鼢鼠(Myospalax Cansus)、根田鼠(Microtus oeconomus)犁鼻系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃鼢鼠是一种独居、具有领域性和攻击性的地下鼠。它生活在独立的洞道中,除了繁殖季节外,几乎不与其他个体接触。甘肃鼢鼠在行为和生理方面都表现出对地下环境的适应性。本研究用组织学和免疫组织化学方法,对营地下生活的甘肃鼢鼠(Myospalax cansus)与地面生活的根田鼠(Microtus oeconomus)的犁鼻器、副嗅球的组织结构及甘肃鼢鼠犁鼻系统投射区中c-Fos蛋白表达进行研究,旨在探讨地下鼠与地面鼠犁鼻系统的差异以及甘肃鼢鼠嗅觉的功能状况。研究结果表明:
     1.甘肃鼢鼠与根田鼠犁鼻器、副嗅球的结构相似。两种鼠的犁鼻器均位于鼻腔前端鼻中隔基部的两侧,呈管状结构。犁鼻管内侧壁为犁鼻上皮,外侧壁略向囊腔中央突起,为假复层纤毛上皮,底端为一个三角形的骨髓腔。沿着犁鼻器的长轴犁鼻管呈现不同的形态学特征。犁鼻管直接开口于鼻腔,从前向后沿着长轴旋转,犁鼻上皮的位置也随之改变,位置由侧面逐渐转到底部。假复层纤毛上皮由犁鼻管侧面逐渐转到犁鼻管顶部。犁鼻管末端最终变小成为一个腺体的分支。甘肃鼢鼠和根田鼠副嗅球的显微结构由肾丝球层、外网织层、僧帽细胞层、内网织层和颗粒细胞层五种结构组成。
     2.甘肃鼢鼠犁鼻器、副嗅球的结构存在性二型分化。成年雄性甘肃鼢鼠的犁鼻上皮厚度、副嗅球颗粒细胞带宽与僧帽细胞带宽雄性显著大于雌性(P<0.05),而犁鼻黏膜长度、犁鼻上皮神经元细胞密度、神经元细胞核直径、副嗅球颗粒细胞带长与僧帽细胞带长等在雌雄间差异不显著(P>0.05)。甘肃鼢鼠犁鼻器、副嗅球的性二型分化比根田鼠更为显著。
     3.根田鼠犁鼻器、副嗅球结构亦存在性二型现象。成年雄性个体的犁鼻上皮厚度和副嗅球颗粒细胞带长大于雌性个体(P<0.05),雄性个体的犁鼻上皮神经元细胞密度、副嗅球僧帽细胞带长宽、副嗅球僧帽细胞密度、副嗅球颗粒细胞带宽和雌性个体无显著差异(P>0.05)。
     4.甘肃鼢鼠犁鼻上皮厚度和副嗅球颗粒细胞和僧帽细胞带宽比根田鼠发达(P<0.05)。说明地下鼠犁鼻器、副嗅球比地面鼠发达,在求偶交配中的作用大于地面鼠。
     5.甘肃鼢鼠与根田鼠犁鼻器和副嗅球的形态有一定的对应关系,甘肃鼢鼠犁鼻上皮、副嗅球厚而短;根田鼠犁鼻上皮、副嗅球薄而长。两种鼠均存在这种对应关系,可能与犁鼻器和副嗅球之间存在着神经投射有关。
Gansu zokor (Myospalax cansus) is a solitary, territorial and aggressive subterranean rodent. It lives in individual tunnel systems, rarely encountering each other except during the mating season. It shows the most striking behavioral and physiological adaptation to underground life. In order to compare the accessory olfactory bulb and vomeronasal organ between subterranean rodent and surface dwell rodent as well as the function in their life history, the histological and immunohistochemistrical methods were used to study the structure of accessory olfactory bulb and vomeronasal organ in Gansu zokor (Myospalax cansus) and root vole (Microtus oeconomus), and the c-Fos expression and its distribution in the vomeronasal system projects regions in the Gansu zokor brain were also determined. The main results are as follows:1. The structure of accessory olfactory bulb and vomeronasal organ of Gansu zokor are similar to the root vole. Vomeronasal epidermis is in the inboard wall of vomeronasal tube, while outside wall protrudes to the central cave slightly, which is pseudostratified epithelium, and its base is bone marrow of a triangle. The vomeronasal tube opens into the nasal cavity directly. In its rostral portion, it had a lateral flattened shape, but caudally the organ exhibited a typical crescent shape and a greater size. The organ is rotated along its longitudinal axis. The location of the vomeronasal epidermis shifted from the basal vomeronasal tube to the lateral vomeronasal tube gradually. The location of the pseudostratified epithelium shifted from the lateral vomeronasal tube to top of the vomeronasal tube gradually. In its most caudal portion the organ decreased in size and ends in glandular branches. The microstructures of accessory olfactory bulb of Gansu zokor and root vole are composed of glomeruli layer, external plexiform layer, mitral cell layer, internal plexiform layer and granule cell layer.2. Accessory olfactory bulb and vomeronasal organ of Gansu zokor have sexually dimorphic. In Gansu zokor, the vomeronasal epidermis thickness in adult males, the zones width of accessory olfactory bulb granular cells and the mitral cells are remarkably wider than that of the females (P<0.05). But the length of vomeronasal
    mucous, the density of vomeronasal epidermis neuron cells, the diameter of neuron cell nucleus, the zones length of accessory olfactory bulb granular cells and the mitral cells in females and males are no significant difference (P>0.05). Compared with the root voles, the sexually dimorphic of accessory olfactory bulb and vomeronasal organ in Gansu zokor are obvious.3. Accessory olfactory bulb and vomeronasal organ of root vole is sexually dimorphic. The vomeronasal epidermis is thick in adult males of root vole. The zones length of accessory olfactory bulb granular cells are longer than the females (P<0.05). But the density of vomeronasal epidermis neuron cells, the zones length of accessory olfactory bulb mitral cells, the density of accessory olfactory bulb mitral cells, the zones width of accessory olfactory bulb granular cells and the mitral cells in females and males are no significant difference (P>0.05).4. The vomeronasal epidermis thickness in Gansu zokor, the zones width of accessory olfactory bulb granular cells and the mitral cells are well developed than that of the root vole (P<0.05). So accessory olfactory bulb and vomeronasal organ of Gansu zokor are well developed than that of the root vole, and it take a important role in the mating and courtship activitise of the Gansu zokor.5. There is a certain corresponding relation between the accessory olfactory bulb and vomeronasal organ shape. The vomeronasal epidermis and accessory olfactory bulb of Gansu zokor are thick and short. The vomeronasal epidermis and the accessory olfactory bulb of root voles are thin and long. The cause of this kind of corresponding relation is there is nerve projection between these two structures.6. Stimulated by the unfamiliar homogeneous urine of Gansu zokor, the frequency to visite the stimulant origin of the male Gansu zokor is obviously higher than the female (P<0.05). The duration of sniffing/licking the sent origin is shorter than the female (p<0.05). It showed that the capcity to distingusih the unfamiliar homogeneous urine has a sex difference distingusih in Gansu zokor. Compared with the data on the root vole, ability distingusih to unfamiliar homogeneous urine in Gansu zokor is stronger than in root vole.7. Stimulated by the unfamiliar homogeneous urine of Gansu zokor, c-Fos-IR present in the accessory olfactory bulb granular cells and the mitral cells, main olfactory bulb granular cells and the mitral cells, bed nucleus of the stria terminalis (BST), ventromedial hypothalamic nucleus (VMH), medial preoptic area (MPO), medial
引文
[1] 崔庆虎,苏建平,张同作,连新明,根田鼠对不同类型栖息地的利用,动物学研究,2004,Aug.25,4,316-320.
    [2] 崔庆虎,蒋志刚,连新明,张同作,苏建平,根田鼠栖息地选择的影响因素,兽类学报,2005,25,1,45-51.
    [3] 都玉蓉,根田鼠身体大小的性二型,兽类学报,2001,21,3,236-239.
    [4] 范喜顺,刘朝辉,翟荣仙,周永恒,根田鼠种群年龄和繁殖的研究,石河子农学院学报,1996,4,35-40.
    [5] 侯建军,根田鼠的生物能学研究,四川动物,1996,15,2,65-68.
    [6] 李金钢,甘肃鼢鼠的求偶和交配行为,兽类学报,2001,21,3,233-235.
    [7] 李金钢,王廷正,何建平,闵一建,甘肃鼢鼠的震动通讯,兽类学报,2001,21,2,152-154.
    [8] 李金钢,何建平.王廷正,闵一建,甘肃鼢鼠鸣声声谱分析,动物学研究,2000,Dec.21,6,458-462.
    [9] 李金钢,王廷正,李金铭,赵亚军,甘肃鼢鼠种群动态及其影响因素的初步分析,兽类学报,1999,19,2,131-159.
    [10] 李金钢,王廷正,甘肃鼢鼠种群性比的研究,动物学研究,1999,Dec.20,6,431-434.
    [11] 李金钢,何建平,王廷正,笼养条件下甘肃鼢鼠夏秋季行为活动节律,西北大学学报(自然科学版),2003,33,2,217-222.
    [12] 刘东刚,杨天祝,杨华,大鼠嗅球的纤维联系,河北医学院学报,1988,9,1,1-4.
    [13] 聂海燕,刘季科,根田鼠攻击行为模式及其进化稳定对策分析,生态学报,2004,24,7,1406-1412.
    [14] 孙平,赵新全,徐世晓,赵同标,赵伟,雪后海北高寒草甸地区根田鼠种群特征的变化,兽类学报,2002,22,4,318-320.
    [15] 孙平,赵亚军,赵新全,根田鼠气味识别的性二型,兽类学报,2004,24,4,315-321.
    [16] 寿天德主编,神经生物学,高等教育出版社,2001,173.
    [17] 孙儒泳,郑生武,崔瑞贤,根田鼠巢区的研究,兽类学报,1982,2,2,219-232.
    [18] 邰发道,王廷正,张育辉,郝琳,孙儒泳,棕色田鼠与沼泽田鼠犁鼻器和副嗅球的组织结构,动物学报,2003,49,2,248-255.
    [19] 熊忠,杜继曾,根田鼠肾上腺皮质酮水平的日节律及急性低氧的影响,兽类 学报,1997,17,4,234-235.
    [20] 王德华,姜永进,王祖望,根田鼠的行为热能调节。见:刘季科、王祖望主编,高寒草甸生态系统第三集,北京:科学出版社,1991,167-173.
    [21] 王德华,王祖望,孙儒泳,根田鼠消化道长度和重量的变化及其适应意义,兽类学报,1995,15,1,53-59.
    [22] 万选才,脑的理论模式,生理科学进展,1987,18,2,181-184.
    [23] 王祖望,曾缙祥,梁杰荣,韩永才,根田鼠繁殖时期的能量需要[A],高寒草甸生态系统第1集[C],兰州:甘肃人民出版社,1982,101-109.
    [24] 王振龙,根田鼠的交配行为模式,动物学报,2001,47(专刊),187-189.
    [25] 尹峰,房继明,布氏田鼠的择偶行为[J],动物学报,1998,44,2,162-169.
    [26] 俞诗源,根田鼠大脑内去甲肾上腺素水平的昼夜节律及低氧作用,兽类学报,1997,17,4,306-307.
    [27] 张立,房继明.非繁殖期成年雄性布氏田鼠对群体气味的辨别[J],兽类学报,1996,16,4,285-290.
    [28] 张立,王煜全,房继明,布氏田鼠的嗅觉通讯Ⅰ-非繁殖期的种内识别[J],北京师范大学学报(自然科学版),1996,32,1,116-119.
    [29] 张立,房继明,孙儒泳,布氏田鼠嗅觉通讯的行为发育—幼体对群体气味的辨别[J],兽类学报,2000,20,1,30-36.
    [30] 张培林,神经解剖学,北京:人民卫生出版社,1987,1262-1268.
    [31] 张育辉,方荣盛,梁刚,蝮蛇犁鼻器的显微与亚显微结构,中国黄山国际两栖爬行动物学学术会议论文集—蛇蛙研究丛书,1993,4,104-108.
    [32] 赵亚军,赵新全,李保明,邰发道,王廷正,雌性根田鼠的亲属识别与配偶选择,动物学报,2002,48,4,452-458.
    [33] 赵亚军,孙儒泳,房继明,李保明,赵新全,青春期雌性根田鼠初次择偶行为与雄性优势等级[J],动物学报,2003,49,3,303-309.
    [34] Alberts JR., May B. Ontogeny of olfaction: development of the rat's sensitivity to urine and amylacetate, J. Physiol Behav., 1980, 24, 965-970.
    [35] Apferbach R., Russ D., Slotnick BM. Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat, J. Chemical Senses., 1991, 16, 209-218.
    [36] Beauchamp G.K., I Martin CJ., Wysocki and JL Wellington. Chemoinvestigatory and sexual behaviors of male guinea pigs following vomeronasal organ removal, Physiol. Behav., 1982a, 29, 329-336.
    [37] Beauchamp GK., Gilbert A., Yamazaki K., Boyse EA. Genetic basis for individual discriminations, The major histocompatibility complex of the mouse, In: Duvall D, Muller-Schwarze D, Silver-stein RM, eds, Chemical signals in vertebrates 4, New York, Plenum Press.,1986,414-422.
    [38] Beltramino C, S Taleisnik. Facilitatory and inhibitory effects of electrochemical stimulation of the amygdale on the release of luteinizing hormone, Brain Res.,1978 144, 95-107.
    [39] Belluscio L.,G Koentges., R Axel and C Dulac. Amap of pheromone receptor activation in the mammalian brain, Cell., 1999,97,209-220.
    [40] Berghard A, Buck LB. Sensorytrans duction in vomeronasal neurons: Evidence for Goa, Gi2a and adenyly cyclase ; as major components of pheromone signaling cascade, J. Neurosci., 1996,16, 909-918.
    [41] Beynon RJ, Hurst JL, Multiple role of major urinary proteins in the house mouse (Mus domesticus), Biochem Soc Trans., 2003,31,142-146.
    [42] Bluthe R M, Dantzer R. Role of the vomeronasal system in vasopressinergic modulation of social recognition in rats, Brain Res., 1993,604,205-201.
    [43] Brown RE, Individual odors of rats are discriminable independently of changes in gonadal hormone levels, Physiol Behav., 1988,43, 3, 359-363.
    [44] Brown RE, Roser B, Singh PB, The MHC and individual odours in rats, In: MacDonald DW, MuUer-Schwarze D, Natynczuk SE, eds, Chemical signals in vertebrates 5, Oxford, Oxford University Press., 1990,229-243.
    [45] Brown RE, Schellinck HM, Interactions among the MHC, diet and bacteria in the production of social odors, In: Doty R, Muller-Schwartze D, eds, Chemical signals in vertebrates 6, New York, Plenum Press., 1992,175-181.
    [46] Brown RE, Schellinck HM, West AM, The influence of dietary and genetic cues on the ability of rats to discriminate between the urinary odors of MHC-congenic mic- Physiology & Behavior., 1996,60,2,365-372.
    [47] Brown RE, What is the role of the immune system in determiningindividual distictive body odours? J. Immnnopharmac, 1995,17, 8,655-661.
    [48] Brunjes PC, Frazier LL. Maturation and plasticity in the olfactory system of vertebrates, J. Brain Res. Bull., 1986,11,1-45.
    [49] Brunet LJ., Gold GH and Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel, Neuron., 1996, 17,681-693.
    [50] Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Cell., 1991,65,1,175-87.
    [51] Buck L. The molecular architecture of odor and pheromone sensing in mammals, Cell., 2000,100,6,611-618.
    [52] Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat, J. Comp Neurol., 1990,296, 517-530.
    [53] Clutton-brock T. H Iason GR. Sex ratio variaion in mammals, J. Quart Rev Biol., 1986,61,339-374.
    [54] Collado P., Guillamon A., Valencia A and Segovia S. Sexual dimorphism in the bed nucleus of the accessory olfactory tract, Dev. Brain Res., 1990,56,263-268.
    [55] Coolen LM., Wood RI. Testosterone stimulation of the medial preoptic area and medial amygdala in the control of male hamster sexual behavior: redundancy without amplification, Behav. Brain Res., 1999,98,1, 143-153.
    [56] Dorries KM., Aadkins-Regan E, Halperm BP. Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs, Brain Behav Evol., 1997,49,53-62.
    [57] Doving KB., Trotier D. Structure and function of the vomeronasal organ, J. Exp Biol., 1998,201,2913-2925.
    [58] Doty RL. Odor guilded behavior in mammals, J. Experientia., 1986,42,4-271.
    [59] Dudley CA., Moss RL. Activation of an anatomically distinct subpopulation of accessory olfactory bulb neurons by chemosensory stimulation, Neurosciernce., 1999,91,1549-1556.
    [60] Dulac C, Axel R. A novel family of genes encoding putative pheromone receptors in mammals, Cell., 1995, 83,195-206.
    [61] Dulac C. Sensory coding of pheromone signals in mammals, Curr Opin Neurobiol., 2000,10,511-518.
    [62] Egid K, Brown JL, The major histocompatibility complex and female mating preferences in mice, Anim Behav., 1989,38, 548 -549.
    [63] Eisenberg JF. The mammalian radiation [M]. Chicago: The Chicago University Press., 1981,23, 55.
    [64] Eisthen HL. Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates, Microsc Res Tech., 1992,23,1- 21.
    [65] Ferguson JN., Yong LJ., Insel TR. Ther neuroendocrine basis of social recognition, Frontiers in Neuroendocrinol., 2002,23,2,200-224.
    [66] Ferkin M.H., Johnston RE. Meadow voles (Microtus pennsylvanicus) use multiple sources of scent for sex recogniton, Anim Behav., 1995 ,49, 1, 37-44.
    [67] Ferkin MH., ES Sorkin and RE Johnston. Self-grooming as a sexually dimorphic communicative behaviour in meadow voles (Microtus pennsylvanicus), Anim. Behav., 1996,51,801-810.
    [68] Fleming A., F Vaccarino., L Tambosso and P Chee. Vomeronasal and olfactory system mogulation of maternal behavior in rat, Sci., 1979,203, 372-373.
    [69] Fortier GM., Erskine MS., Tamarion RH. Female familiarity influences odor preferences and plasma estradiol levels in the meadow vole(Microtus pennsylvanicu), J. Physiol Behav., 1996, 59,1,205-208.
    [70] Gheusi G, Bluthe RM., Goodall G, Dantzer R. Social and individual recognition in rodents, methodological aspect and neurobiology bases, Behav Process., 1994,33, 59-88.
    [71] Gorski RA., Gordon JH., Shryne JE and Southam AM. Evidence for a morphological sex difference within the medial prepptic area of the rat brain, Brain Res., 1978, 148,333-346.
    [72] Greco B., Edwards DA., Zumpe D., Michael RP., Clancy AN. C-Fos induced by mating or noncontact sociosexual interaction is colocalized with androgen receptor in neurons within the forebrain, midbfain, and lumbosacral spinal cord of male rats, Hormones and Behavior., 1998b, 33,125-138.
    [73] Halpin ZT. Individual odors among mammals, origins and function, Adv study Behav., 1986,16,40-70.
    [74] Halpern M. The organization and function of the vomeronasal system, Annu. Rev. Neurosci., 1987,10,325-362.
    [75] Halpern, M. and Martinez-Marcos, A. Structure and function of the vomeronasal system: an update, Prog. Neurobiol., 2003,7,3,245-318.
    [76] Heth G., J. Todrank and R. E. Johnstron. Kin recognition in golden hamsters: evidence for phenotype matching, Anim. Behav., 1998, 56,409-417.
    [77] Heth G., Todrank J, Individual odour similarities across species parallel phylogene- tic relationships in the S, ehrenbergi superspecies of mole-rats, Animal Behaviour., 2000,60,789-795.
    [78] Hurst JL. Ther complex network of olfactory communication in population of wild house mice Mus domesticus Rutty: urine marking and investigation within family groups, J. Anim Behav., 1989,37,705-725.
    [79] Jia C, Chen WR., Shepherd GM. Synaptic organization and neurotransmitters in the rat accessory olfactory bulb, The American Physiological Society.1999,345-355
    [80] Jirik-Babb R, S Manaker., AM Tucker and MA Hofer. The role of the accessory and main olfactory system in maternal behavior of the primiparous rat, Bahav. Neural Biol., 1984,40,170-178.
    [81] Johnston RE., Rasmussen K. Individual recognition of female hamsters by males, role of chemical cues and of the olfactory and vomeronasal systems, Physiol Behav., 1984,33,1,95-104.
    [82] Johnston RE. Chemical communication in golden hamsters: from behavior to molecules and neural mechanisms [A]. In: Dewsbury D.Aed. Contemporary Issues in Compartive Psychology [C], New York. Sinauer Press., 1990,381-409.
    [83] Johnston RE. Memory for individual scent in hamsters (Mesocricetus auratus) as assessed by habituation methods, J. Comp Psychol., 1993,107,201-207.
    [84] Keverne EB. The Vomeronasal Organ, Science., 1999,286, 716-720.
    [85] Kleiman DG. Monogamy I mammals, J. Quart Rev Biol., 1977, 52, 39-69.
    [86] Klintsova AY., BD Philpot and PC Brunjes. Fos protein immunoreactivity in the developing olfactory bulbs of normal and naris-occluded rats, Dev. Brain Res., 1995,86,1-2,114-114.
    [87] Kruczek M. Vomeronasal organ removal eliminates odor preference in bank voles ( Clethrionomys glareolus). In: Advances in the Bioscience (Eds. Apfelbach R. et al.), Oxford: Pergamon Press., 1994,93,421-426.
    [88] Kruczek M. Female bank voles (Clethrionomys glareolus) recognition: preference for the stud male, Behav Proc, 1998,43,229-237.
    [89] Lai SC, Vasilierva NY, Johnston RE. Odors providing sexual information in jungarian hamsters: evidence for an across-odor code, J. Horm Behav., 1996,30,26-36.
    [90] Leinders-Zufall T., Lane AP., Puche AC, et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons, Nature., 2000,405,792-796.
    [91] Lepri JJ., CJ Wysocki and JG Vandenbergh. Mouse vomeronasal organ: effects on pheromone production and maternal behavior, Physiol. Behav., 1985, 35, 809-814.
    [92] Lewis DB., Gower DM. Signals and their evolution [A]. In: Biology of Commmunication [C], New York: Halsted Press., 1980,125-167.
    [93] Liman ER., Corey DP., Dulac C. TRP2: A candidate transduction channel for mammalian pheromone sensory signaling, Proc Natl Acad Sci USA., 1999, 96, 5791-5796.
    [94] Lisa FH., J Montmayeur., Y Echelard and LB Buck. A genetic approach to trace neural circuits, Neurobiol., 1999, 96,6, 3194-3199.
    [95] Lisa S., EH Timothy., M Markus., D Catherine and K Georgy. Los of sex discrimination and male aggression in mice deficient for TRP2, Science., 2002,295, 5559, 1493-1500.
    [96] Loo SK and Kanagasuntheram R. The vomeronasal organ in tree shrew and slow loris, J. Anat, pp., 1972,112,2,165-172.
    [97] Macirdes R, A Bartke and S Dalterio. Strange female increase plasma testosterone levels in male mice, Sci., 1979,189,1104-1106.
    [98] Marques DM. Roles of the main olfactory and vomeronasal system in the response of the female hamster to young, Neural Biol., 1979,26,311-329.
    [99] Maruniak JA., FH Bronson. Gonadotropic responses of male mice to female urine, Endocrinology., 1976,99,963-969.
    [100] Matochik JA. Role of the main olfactory system in recognition between individual spiny mice, Physiol Behav., 1988,42, 3,217-222.
    [101] Meredith M. Sensory physiology of pheromone communication [A]. In: Vandenbergh, J.Ged. Pheromones and reproduction in mammals [C], New York: Academic,Press.,1983,199-252.
    [102] Meredith M., Fernandez-Fewell GVomeronasal system, LHRH, and sex behaviour, Psychoneuroendocrinology., 1994,19,657-672.
    [103] Moss RL., Flynn RE., Shen XM et al. Urine-derived compound evokes membrane responses in mouse vomeronasal receptor neurons, The American Physiological Society., 1997,2856-2862.
    [104] Muller-Schwarze D. Scent glands in mammals and their function[A]. In:Eisenberg JF, Kleiman DG eds. Advances in the study of mammlian behavior. Special Publicantion No. 7 [C], The American Society of Mammalogists., 1983,150-197.
    [105] Negus VE. The organ of Jacobson, J. Anatomy., 1961,90,4, 515-519.
    [106] Pantages E., Dulac C. A novel family of candidate pheromone receptors in mammals, Neuron., 2000,28, 3, 835-845.
    [107] Pdedrsen PE., Stewart WB., Greer CA., Shepherd GM. Early development olfactory function [A]. In: Blass, E.Med. Hand book of behavioral neurology [C], New York: Plenum., 1985,163-203.
    [108] Perez-Laso C, Valencia A., Rodriguez-Zafra M., Cales MJ., Guillamon A and Segovia S. Perinatal administration of diazepam alters sexual dimorphism in the rat accessory olfactory bulb, Brain Res., 1994, 634,1-6.
    [109] Popik P., Vetulani J., Bisaga A., van Ree JM. Recognition cue in the rat's social memory paradigm, J. Basic Clin Physiol Pharmacol., 1991,2,315-327.
    [110] Powers JB and SS Winans. Sexual behavior in peripherally anosmic male hamster, Physiol. Behav., 1973,10,361-368.
    [111] Roos J., Roos M., Schaeffer C and Aron C. Sexual differences in the development of the accessory olfactory bulbs in the rat, J. Comp. Neurol., 1988,270,121-131.
    [112] Roos J., Roos M, Schaeffer C and Aron C. Prepubescent hormonal conreol of the development of accessory olfactory bulbs in the male rat, Dev. Brain Res., 1989, 47,309-312.
    [113] Ryba NJ., Tirindelli R. A new multigene family of putative pheromone receptors, Neuron., 1997,19,371-379.
    [114] Sam M., Vora S., Malnic B., Ma WD., Novotny MV., Buck LB. Odorants may arouse instinctive behaviors, Nature., 2001,412-142.
    [115] Scalia F and Winans SS. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals, J. Comp, Neurol., 1975,161,31-56.
    [116] Schaefer ML., Young DA.,Restrepo DJ. Olfactory fingerprints for major histoco- mpatibility complex-determined body odors, Neurosci., 2001,21,7,2481-2487.
    [117] Schellinck HS., West AM., Brown RE. Rats can discriminate between the urine odors of genetically identical mice maintained on different diets, Physiol Behav., 1992, 51,1079-1082.
    [118] Schmiedal-Jakob I., Anderson PAV., Ache BW. Whole cell recording from lobster olfactory receptor cells: responses to current and odor stimulation, J. Neurophysiol., 1989,61,994-1000.
    [119] Segovia S., Delcerro MCR and Guillamon A. Effects of neonatal thyroidectomy on the development of the vomeronasal organ in the rat, Dev. Brain Res., 1982a, 5, 206-208.
    [120] Segovia S and Guillamon A. Effects of sex steroids on the development of the vomeronasal organ in the rat, Dev. Brain Res., 1982b, 5,209-212.
    [121] Segovia S and Guillamon A. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors, Brain Res. Dev., 1993,18, 51-74.
    [122] Simerly, R.B. Hormonal control of neuro peptide geneex pression in sexually dimorphic olfactory pathways, J. Trends Neurosc, 1990,13,104-110.
    [123] Smith TD., Siegel ML, Mooney MP. Prenatal growth of the human vomeronasal organ, Anta Research., 1997,248,447-455.
    [124] Smith TD., DL Roslinski., AM Burrows., KP Bhatnagar and MI Siegel. Size of the vomeronasal neuro epithet liumintwo species of Microtus with differing levels of paternal behavior, J. Mammal., 2001, 82,209-217.
    [125] Stee E., Keverne EB.Effect of female odoron male hamster mediated by the vomeronasal organ, J. Physiol, Behav., 1985,35,195-200.
    [126] Stowers L., Holy TE., Meister M et al. Loss of sex discrimination and male-male aggression in mice deficient for TRP2, Science., 2002, 295,1493-1500.
    [127] Taniguchi M., Kashiwayanagi M., Kurihara K. Intracellular dialysis of cyclic nucleotides induces inward currents in turtle vomeronasal receptor neurons, J. Neurosci., 1996,16,1239-1246.
    [128] Terranova JP., Perio A., Worms P et al. Social olfactory memory in rodents: deterioration with age, cerebral ischemia and septal lesion, Behav Pharmacol., 1994, 5,90-98.
    [129] Wekesa KS and J Lepri. Removal of the vomeronasal organ reduces reproductive performance and aggression in male prairie evoles, Chemical Senses., 1994,19,35-45.
    [130] Wiley J and Sons. Offprints from neurobiology of taste and smell, Edited by Dr. Thomas E. Finger., 1987,125-149.
    [131] Winans SS and JB Powers. Olfactory and vomeronasal deaggerentiation of male hamsters: histological and behavioral analysis, Brain Res., 1977,126,325-344.
    [132] Wray S., Fueshko SM., Kusano K et al. GABAergic Neurons in the Embryonic Olfactory Pit/Vomeronasal Organ: Maintenance of Functional GABAergic Synapses in Olfactory Explants, Dev Biol, 1996, 180,631-645.
    [133] Wysocki CJ and M Meredith. The vomeronasal system. In: Finger, T. Eed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700