用户名: 密码: 验证码:
三叶木通形态解剖特征与环境因子的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三叶木通Akebia trifoliata(Thunb.)Koidz.为木通科木通属落叶或半常绿的藤本植物,喜温暖气候及湿润、排水良好的土壤,多见于山坡疏林。其药用历史悠久,历代本草文献中都有记载,三叶木通的根、茎有清心火、利小便、通经下乳的功效,在中药中配伍很广。根据近年来研究三叶木通的根、茎、叶、种子、果皮中都含有主要药用成分常春藤皂苷元和齐墩果酸,果皮和种子的常春藤皂苷含量较高,根和茎中的齐墩果酸含量较高。三叶木通叶所含齐墩果酸和常春藤皂甙元与藤茎相同,并达到了2005版国家药典规定木通的药用标准。
     本文通过对三叶木通营养器官和生殖器官通过电镜扫描和石蜡切片等方法进行形态解剖学研究。并对陕西、湖南、湖北等省的三叶木通进行了调查,从生态学的角度进行了研究,初步探讨了三叶木通形态特征与环境的关系。利用解剖学的方法,观察了三叶木通各器官的特征。结果表明:
     1)三叶木通根的初生结构表皮一层细胞,长方形。内皮层有凯氏带,星状中柱,初生根二原型。根的次生结构主要由周皮和次生维管束组成,根的生长轮不明显,皮层发达。次生木质部厚度约占根半径的一半,由木薄壁细胞、导管和木射线构成,木薄壁细胞数量较大,间隔1~2细射线有宽大射线,导管直径较大,有复管孔,根中间无髓部。
     2)三叶木通茎的初生结构表皮由一层长方形细胞组成,排列紧密,外被角质膜。皮层由7~10层细胞构成,最外侧有1~3层厚角组织,细胞排列紧密,其内含叶绿体。其内是薄壁组织,细胞排列较疏松,没有内皮层结构。维管束为外韧无限维管束排成圆环状。三叶木通茎的次生结构,其横切面近似圆形,生长轮明显,散孔材。周皮分化明显,周皮、韧皮部易与木质部分离,射线明显。中柱鞘含晶纤维束与含晶石细胞群交替排列成连续的环带,含晶石细胞群仅存在于与射线相对处。
     3)三叶木通叶的解剖特征三叶木通为异面叶,叶肉组织发达,分化为栅栏组织和海绵组织。靠上表皮一侧是栅栏组织,其细胞呈长柱形,并与上表皮垂直相交排列。层数多为2~3层,含叶绿体较多。海绵组织位于栅栏组织与下表皮之间。栅栏薄壁组织与海绵薄壁组织的长度比为2.52。叶表皮细胞形状无规则,外切向面明显向外隆起,而垂周壁略下陷,上表皮外均有角质膜覆盖。下表皮有单细胞表皮毛,气孔器分布为散生型,气孔器取向无规则。气孔器均为长椭圆形,气孔密度为每平方毫米144个。
     三叶木通的叶主脉有1~5个维管束,木质部位于近叶腹面,韧皮部位于近叶背面,中间有活动微弱的形成层。叶柄横切面呈圆形,近轴面微凹,叶柄横切面上共5个维管束呈圆形分散在基本组织中,近轴面上的两个维管束较小。
     4)三叶木通花为雌雄异花同株,雄花序和单生雌花。雌花的花萼花瓣状,由3片萼片组成,离萼,萼片由4~6层薄壁细胞组成。三叶木通具侧膜胎座,心皮3-9枚,圆柱形。心皮主要分为柱头和子房两部分,无明显花柱,柱头有分泌物。子房壁表面光滑,无毛或异细胞,可以看见气孔器。子房上位,1室。雄蕊6枚、分离。花药四室,花药壁由表皮、纤维层(药室内壁),2~3层中层,分泌型绒毡层组成,药隔薄壁细胞组织占大部分体积。子房上位,1室,离生,花丝扁、极短或近于无,开花时花药内弯。
     5)果的解剖特征
     三叶木通的果实为浆果,长椭圆形,略带弯曲,子房上位发育而来。外果皮栓质化,中果皮肉质化。内果皮由一层内表皮细胞构成。胎座特别发达,肉质化,由肉膏状细胞组成。果实成熟时,背缝线开裂,利于种子传播。
     6)种子解剖结构三叶木通的种子较小,呈扁椭圆形,黑色。种皮外壁光滑。种子为双子叶有胚乳种子,胚直生,由种皮、胚和胚乳组成。胚乳丰富,白色,内含大量淀粉粒。
     应用一元回归研究了三叶木通三片小叶叶面积与长宽之间的关系。结果表明,三叶木通各小叶叶面积均与其叶宽和长宽乘积有着线性关系,并得到每个小叶长、宽与叶面积的一元方程。通过方程的检验,证实其可行。进行方差分析后,表明三片小叶之间叶面积没有显著差异。
     对11个地区叶片的数量性状特征的进行方差分析,结果表明:三叶木通叶数量特征变化明显。对数量特征与经纬度、海拔等环境因子进行相关分析,结果并没有明显关系。
     对采集条件相似的五个地区的三叶木通进行了进一步解剖学数量特征与环境关系的研究,结果表明:三叶木通气孔密度与纬度成负相关和年平均温度、极端高温、有效积温成正相关关系;气孔的宽度和极端低温成负相关关系;长宽乘积和极端低温成负相关关系;其他数量特征与环境因子相关性不显著。叶片上层栅栏组织与日照数成正相关,下层栅栏组织与纬度成正相关和极端低温成负相关和纬度成正相关关系;海绵组织和极端低温成负相关;叶片厚度和日照数成正相关;其他数量特征与环境因子相关性不显著。导管直径与纬度和年日照数成负相关关系,与年平均气温和有效积温成正相关关系;导管长宽比与纬度成正相关关系,与年平均气温和有效积温成负相关关系;其他数量特征与环境因子相关性不显著。
The plant Akebia trifoliata which is a defoliated or semi-evergreen liana, belongs to Akebia Decne of Lardizabalaceae. Many plants of Lardizabalaceae are commonly used for medical purpose. In China, A. trifoliata has been used as traditional medicine for centuries-old history, and has been recorded in many literatures. The root and caudex can clear the fire in people's body, accelerate pee, regulate catamenia and hasten the exudation of latex. And it has abroad dosage in Chinese medicine. Study shows that there are oleanolic acid and saponins PD in the roots, stems, leaves, fruit and seeds of A. trifoliata. While fruit and seeds are abundant with saponins PD, the stems and roots of A. trifoliata contain oleanolic acid plenty. Also the leaves of A. trifoliata are proved as the medicinalstandards of caulis akebiae containing the codex of China
     The structure of the roots, stems, leaves, flowers, fiuit and seed of Akebia trifoliata of differentwere studied through scanning electron microscope and paraffin section method. The relationship between the structure and environment was discussed through the ecological research of A. trifoliata of Shaanxi, Hunan, Hubei and other provinces in China. Each apparatus of A. trifoliata were studied with anatomy methods.The results are as follows:
     1) The primary structure of root of A. trifoliata: root epidermis contains one layer of cells, quadrate. The Casparian strip is not obvious in the endodermis. It has actinostele, and primary xylem is diarch. The secondary structure of root of A. trifoliata includes periderm and secondary vascular tissue from the outer to the inner. The growth ring can not been obviously see. The cortex is well developed. The secondary xylem, which is composed of three parts: the wooden parenchyma cell, the drive pipe and the xylem ray, is half of the root radius in width. The wood-parenchyma is rich. Spacious xylem ray are separated by 1~2 thin xylem ray. The diameter of vessel of root, which has pore chain, is wild. There isn't pith cavity in stem.
     2) The primary structure of stem of A. trifoliate: The epidermis, which is covered by corneous, is composed by tightly arrayed quadrate cell. The cortex is consisted by 7~10 layers of cells, and its outer cells are collenchyma, containing chloroplast. Inner cells of the cortex are parenchyma, and no endoderm can be found. The infinite collateral bundles form a circle. The secondary structure of stem of A. trifoliata: the transverse section of stem is circinal, with obvious growth ring. It is diffuse-porous wood. The periderm differentiation is obvious, and the periderm, the bast separate easily with the xylem. The beam is obvious, too. In the pericyle. the druse fibrous bundles and the sclereids, containing rystalloid, form the continuous annulus alternately, and the sclereids only present in the relative place with the beam.
     3) The leaf of A. trifoliata is typical bifacial. The epidermis cells are irregula. The circumscribes outwards stick out obviously to the surface, while the anticlinal walls are sinked. There is veriform cutin on the face of leaf adaxial epidermis, while single cell hair on the upperepidermis. The long-ellipsoidal stomatal apparatus is anomocytic type, which only dist ribute on and sink into abaxial epidermis. The stomata number is 144/mm~2.
     The mesophyll organization is well developed, splits up into the palisade tissue and the spongy tissue. The palisade tissue, which cells are long -cylindrical, is on the epidermis side, and present vertical to epidermis. There are 2~3 layers of cell of the palisade tissue, with many chloroplasts. The spongy tissue is located between the palisade and the epidermis, and the ratio of palisade tissue and spongy tissue is 2.5: 2.
     The primary vain has 1~5 bundles, with xylem near the leaf belly, phloem near the leaf base, while cambium in the middle. The transverse section of petiole is circular, and its adaxial side sunk a few. There are 5 vascular bundles disperse in the basic tissue of the leaf petiole transverse section, two of which on the adaxial side are small.
     4)A. trifoliata is monoecious plant with bisexual flower, male inflorescence and female flower. The calyx of female flower, composed of 4~6 layers of parenchyma cells, is petal like in shape, and seprated. The female flower has parietal placenta and 3~9 carpels, which is columniform. The carpel mainly divide into the column head and the ovary. The style is not obvious and the stigma has the secretion. The ektexine surface of the ovary wall is smooth, no hais or idioblast The stomatal apparatus can be seen. Superior ovary, single room; stamen 6, separation. The filament is flattened, short or none, incurved when blossom. The anther contains fourpollen sacs. The epidermis, fibrous endothecium, mesoderm 2~3 and secretory-type tapetum form the wall of the filament, with the parenchyma cells of the anther separation account for the majority of volumes.
     5) The anatomical characteristics of fruit of A. trifoliata: It is berries, oblong, and curving slightly, developed from the superior ovary on the ovary. The epicarp of the fruit of A. trifoliata is phellem-like; the sarcocarp is suculence, and the endocarp is composed by one layer of epidermis. The suculence placenta is well developed, composed by meat-paste cells. The dorsal suture will craze in ripe fruit, beneficial to seed dissemination.
     6) The characteristics of seed of A. trifoliata:
     The seed of A. trifoliata is small, flat-elliptic, black mostly. The ektexine of seed coat is smooth. It is dicotyledonous seed, has endosperm, composed by seed coat, vertical embryo and plenty of endosperm, white, content massive starch grain.
     Single regression analysis approach was applied to search the relationship among leaf area length and width of A. trifoliate . The results showed that leaf area of A. trifoliate was linearly proportional to the leaf width and the product of length and width .we can get every microphy's single element equation.Though equation verification .It is feasible .The ANOVA results for the reapeated measurement data showed that there were no significant difference in leaf area of three microphylls.
     ANOVA approach was applied to search the quantitative characteristic trait of lenives in different areas. The reasults showed that there was an obvious change in quantitative characteristic trait of A. trifoliate's leaf. Correlation ananlysis was used among quantitative characteristic trait. lititude and altitude.The results showed that there's no obivious correlation.
     A futher study to search the correlation between anatomical quantitative trait and enbironment in five areas where in the same condition .The results showed that the stomataldensity of the plant showed a negative correlation to latitude .The anmal average temperature and extreme high temperature showed a positively correlated to the stamataldensity of the plant. The stomata wideh showed a negative correlated to exterme low temperature .Other quantity characteristics had no obvions relation with environmental factors .The upper most palisade tissue of leaf showed a positively correlated to the annual mean sunlight hours.The underlayer palisade tissue of leaf showed a positiverly palisade tissue of leaf showed a positively correlation to latitude but had a negative correlation to low tempreture.The sponge tissue showed a negative correlation to low tempreture. The leaf thickness showed a positively correlation to annual mean sunlight hours. Other quantity characteristics had no obvious relation with environmental factors. The latitude and annual mean sunlight hours showed a negative correlation to diameter of vesser , but the annual average temperature and effective accumulative tempretuer showed appositively correlation to the diameter of Bessel . The ration of vessel tength to width showed a positively crrelation to latitude , but showed a negative correlation to annual average temperature and effective accumulative temperature.Other quantity characteristics had no obvious relation with environmentics had noobvious relation with environmental factors.
引文
[1]中国植物志(第二十九卷)[M].中国科学院中国植物志编辑委员会.科技出版社2001年4月第1版:4-10.
    [2]中国科学院植物研究所.中国高等植物图鉴(第一册)[M].北京:科学出版社,1998:756.
    [3]王文龙,郭春秋,席在星等.湖南木通属植物种质资源的研究[J].中国野生植物资源,2004,23(6):33-35.
    [4]谢娇,李秀华,张传军等.三叶木通野生资源的分布[J].陕西师范大学学报(自然科学版),2006,34(3):272-274.
    [5]王勇,戴联林,康海峰.晋南地区三叶木通野生资源的开发利用[J].中国野生植物资源,2004,24(2):35-36.
    [6]张建华.秦岭北坡户县木通科植物野果资源调查[J].2007,(1):14-16,30.
    [7]李秀华,谢娇,张传军等.陕西镇安三叶木通野生资源调查[J].2006,34:258-260.
    [8]奚同行,林圣玉.江西浮梁县野生三叶木通资源及其开发利用价值[J].国土与资源研究,2001(4):61-63.
    [9]武曙红.黔东南州三叶木通资源的开发利用[J].河北林果研究.2001,16(4):329-331.
    [10]袁媛,李学林,李露等.云南木通科野生果树资源及开发利用[J].西南农业学报.2004,17:212-215.
    [11]杨长群.河南西峡县三叶木通种质及其利用[J].中国果树,2001,(4):54.
    [12]张丹翎,伏晓,黄小敏.木通及其类似品种辨析[J].中国基层医药.2001,8(3):239-240
    [13]谢宗万.通草与木通品种的本草考证.中药通报,1986,11(5):269-271.
    [14]国家药典委员会.中华人民共和国药典.2000年版(一部)[M].北京:化学工业出版社,2000.27,114.
    [15]张斌,王丽娜,郑伟然.中成药含马兜铃酸成分的控制[J].制剂究,2003,20(3):50.
    [16]中华人民共和国药典委员会.中华人民共和国药典(2000年版一部-2002增补本)[M].北京:化学工业出版社,2000:114,154.
    [17]冷晓波,王修光,郭峰.木通科属考[J].新疆中医药,2005,23(2):49-51.
    [18]王晓君,徐淑江.木通之肾毒性[J].山东中医杂志,2000,19(4):240.
    [19]丹翎,伏晓,黄小敏.木通及其类似品种辨析[J].中国基层医药,2001,8(3):239-240.
    [20]Higuchi R,Miyahara K,Kawasaki T,etal.Seed saponins of A.kebia quinata Decne.Ⅰ.Hederagenin 3-O-glycosides.[J].Chem Pharm Bull,1972,20(9):1935-1939.
    [21]Higuchi R,Miyahara K,Kawasaki,etal.Seed saponins of A.kebia quinata Decne.Ⅱ.Hederagen 3,28-0-glycosides.[J].Chem Pharm Bull,1972,20(10):2143-2149.
    [22]Mitiiti F,Hideji I,Ypshihiro K,etal.The study on the constituents of clematisand A kebiaspp.Ⅱ.On the saponins isolated from the stem of A.kebia quinata Decne.[J].Yakugaku Zasshi,1974,94(2):194-198.
    [23]Ikuta A,Itokawa H.30-Noroleanane saponins from callus tisues of A.kebia quinata[J].Phytochenistry,1989,28(10):2663-2665.
    [24]Ikuta A,Saponins and tritepenes from callus tissues of A.kebia trifoliata and comparison with the constituents of other Lardizabalaceous callus tissues[J].J N at Prod,1995,58(9):1378-1383.
    [25]Ma S C,Chen D C,Zhao S J,etal.The structure of yuzhizioside(Ⅳ) from the seed of A.kebia trifoliata[J].China Tradit Herb Drugs(中草药),1993,24(11):563-566.
    [26]Ma S C,Chen D C,Zhao S J,etal.The study on the constituents of Yuzhizi(Ⅰ)[J].China Tradit Herb Drugs(中草药),1994,25(4):171-174.
    [27]Ma S C,Chen D C,Zhao S J,etal.The study on the constituents of Yuzhizi(Ⅳ)[J].Acta Pham Sin(药学学报),1994,29(4):285-189.
    [28]Ma S C,Chen D C,Zhao S J,etal.The study on the constituents of Yuzhizi(Ⅲ)[J].China Tradit Herb Drugs(中草药),1995,26(3):122-124.
    [29]Kumekawa Y.The study on the constituents of clematis and A.kebia spp.Ⅲ.Structures of akebosides isolated from the stem of A kebia quinata Decne[J].Chem Pham Bull,1974,22(10):2294-2300.
    [30]Lavelle J.,Meyers S.,Ramage R.,et al.Protamine sulfate-induced cystitis a model of selective cytodestruction of the urothelium.UROLOGY 2001,57(Supplement 6A):113.
    [31]张斌,王丽娜,郑伟然.中成药含马兜铃酸成分的控制[J].制剂研究,2003,20(3):50.
    [32]何仰清,高黎明,魏小梅等.八月扎化学成分的研究[J].西北师范大学学报,2004,40(3):38-42.
    [33]王晔,鲁静,林瑞超.三叶木通藤茎的化学成分研究[J].中草药,2004,35(5):495-498.
    [34]张铮,王喆之.三叶木通不同部位有效成分含量比较研究[J].中药材,2005,28(11):983-984.
    [35]侯芳玉,高庆英,郭超.大鼠急性逆行性肾盂肾炎模型的制作[J].中国实验动物学杂志,1998,8(1):31-34.
    [36]周惠玲等.新型果树三叶木通扦插育苗试验研究[J].种子,2002(6)108-109.
    [37]周惠玲等.南方新型果树三叶木通建园及其管理技术[J].种子,2002(5).
    [38]熊大胜等.三叶木通生物学特性研究[J].西南农业大学学报,1996,2(1):85-90.
    [39]熊大胜,曹庸,朱金桃.人工栽培条件下三叶木通座果及果实生长特性研究[J].武汉植物学研究,1996,14(1):89-93.
    [40]中华本草编委会.中华本草.第3册.上海:上海科技出版社,1999.330.
    [41]王玉琢,孙纬刚.木通的本草记载及其混乱品种[J].辽宁中医杂志,2003,3(9)761-762.
    [42]国家药典委员会会编.中华人民共和国药典(2005版一部)[M].北京:化学工业出版社,2005.43.
    [43]李金光,李嘉瑞.三叶木通果实生物学特征及营养成分的研究[J].广西植物,1991,11(2):189-192.
    [44]李维林.秦巴山区木通科植物研究[J].中国野生植物,1991(1):19-20.
    [45]杜乃正,张风英.攀援植物[M].北京:中国林业出版社,1984,68-69.
    [46]鲍思伟.浙江天台山野生观赏攀援植物资源及其园林应用[J].湖北大学学报(自然科学版),2005,27(2):169-173.
    [47]马进,王小德,林夏珍.天目山野生观赏木本藤本植物开发与应用[J].河南科技大学学报(农学版),2004,24(3):26-28.
    [48]胡海燕,娄钢.藤本植物立体绿化[J].陕西林业科技,2005,(2):32-34.
    [49]旁发虎,赵旗峰,张俊民等.一种值得开发的野生果树—三叶木通[J].山西果树,2002,(3):9.
    [50]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报.2001,25(1):90-98.
    [51]祁建,马克明,张育新.辽东栎叶特性沿海拔梯度的变化及其环境解释[J].生态 学报.200727(3):930-937.
    [52]何涛,吴学明,贾敬芬.青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展[J].生态学报.2007,27.(6):2574-2583.
    [53]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报.1999,19,(6):787-792.
    [54]HONG Y P(洪亚平),PAN K Y(潘开玉),CHEN ZD(陈之端).Characters of leaf epidermis and their systematica significance inMenispermaceae[J].Acta Bot.Sin.(植物学报),2001,43(6):615-623.
    [55]LIU D Y(刘德议),WU SH M(吴树明),LI ZH L(李正理).Comparative anatomy of vessels of Magnolia and Michelia[J].Acta Bot.Sin植物学报),1987,29(1):22-28.
    [56]WEN X Y(文香英),LIN Q(林祁),ZEN GQ W(曾庆文).Study on the leaf venation of fivespecies in the family schisandraceae from China[J].Life Science Research(生命科学研究),2000,4(1):41-47(in Chinese).
    [57]郑国铝谷祝平生物显微技术[M].河北;高等教育出版社,1993
    [58]李正理.植物组织制片学.第一版.北京:北京大学出版社,1996
    [59]王峰,李德铢.基于广义形态学性状对木通科的分支系统学分析[J].云南植物研究,2002,(24):445-454.
    [60]CARLQUISTS,SCHNDEREL.The tracheid-vessel element transition in angio sperms involves multiple independent features;cladistic consequences[J].American Journal of Botany,2002,89(2):185-195.
    [61]CARLQUISTS,SCHNEIDEREL.Vegetative anatomy of the New Caledonian endemic Amborella tricbopoda:relationships for vessel origin[J].Pacific Science,2001,55:305-312.
    [62]CARLQUISTS,SCHNEIDE E L.The tracheid-vessel element transition in angio sperms invo-lves multiple independent features:cladistic consequences[J].American Journal of Botany,2002,89,(2) P185-195:185-195.
    [63]Zimmermann M.H.Xylem Structure and Abcent of Sap[M].Berlin:Spring-Verlag.1983:-220.
    [64]Baas P.,E.Werker and A.Fahn.Some ecological trends in vessel characters[J].IAWA Bull.n.s.,1983,4(2):141-159.
    [65]张荣贵,宋宇.大豆叶面积、净光合生产率与产量的相关性[J].中国农业科学,1979(2):40-46.
    [66]王光全,孟庆杰.摘叶可提高核桃座果率及其品质[J].林业实用技术,2002,6: 20.
    [67]刘立强,廖康,徐麟,等.新疆若干杏品种叶、枝和果实品质与叶面积的相关分析[J].新疆农业大学学报,2005,28(2):55-58.
    [68]杜宗绪,李绍华,张洪,等.长枝修剪对桃树生育状况的影响[J].北方果树,1997(3):15-16.
    [69]王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
    [70]张娜,于贵瑞,于振良,等.基于景观尺度过程模型的长白山净初级生产力空间分布影响因素分析[J].应用生态学报,2003,14(5):659-664.
    [71]NemaniA R,Pierce L L,Running SW,et al.Forest ecosystem p rocessed at the watershed scale:sensitivity to remotely-sensed leaf area index estimates[J].International Journal of Remote Sensing.1993,14(2):2519-2534.
    [72]伏军.矮秆早籼叶片形状及其与产量关系的研究[J].湖南农学院学报,1990,16(1):1-8.
    [73]冯常虎.棉花叶面积测定方法综述[J].江西棉花,1990(3/4):13-16.
    [74]杨劲峰,陈清,韩晓日,等.数字图像处理技术在蔬菜叶面积测量中的应用[J].农业工程学报,2002,18(4):155-158.
    [75]冯冬霞,施生锦.叶面积测定方法的研究效果初报[J].中国农学通报,2005,21(6):150-153.
    [76]左欣,韩斌,程嘉林.基于数字图像处理的植物叶面积测量方法[J].计算机工程与应用,2006.27:194-196,221.
    [77]王家保,林秋金,等.5种测量热带果树单叶面积的方法研究[J].热带农业科学,2003,23(1):11-14.
    [78]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应.植物学通报,2005,22(增刊):118-127
    [79]刘全宏,王孝安,田先华.太白红杉(Larix chinensis)叶的形态解剖学特征与环境因子的关系[J].西北植物学报,2001,21(5):885-893.
    [80]王勋陵,王静.植物的形态结构与环境[M].兰州:兰州大学出版社.1989.
    [81]周云龙.植物生物学[M].北京:高等教育出版社,1999.
    [82]周守标,罗琦,李金花等.石蒜属12种植物叶片比较解剖学研究[J].云南植物研究,2006,28(5):473-480.
    [83]李芳兰,包维楷,刘俊华等.岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究[J].应用生态学报,2006,17(1):5-10.
    [84]袁祖丽,马新明,韩锦峰等.镉污染对烟草叶片超微结构及部分元素含量的影响[J].生态学报,2005,25(11):2919-2927.
    [85]王孝安,王志高,肖娅萍.秦岭山地太白红杉种群种实性状的生态可塑性研究[J].应用生态学报,2005,16(1):29-32.
    [86]王孝安,王志高,肖娅萍.太白红杉种实数量特征[J].植物生态学报,2005,29(3):367-372.
    [87]马绍宾,姜汉侨.小檗科鬼臼亚科种子大小便以式样及其生物学意义[J].西北植物学报,1999,19(4):715-724.
    [88]张世挺,杜国桢,陈家宽.种子大小变异的进化生态学研究现状与展望[J].生态学报,2003,23(2):353-364.
    [89]陆时万.植物学[M].北京:高等教育出版社,1991:142-168.
    [90]JACKSON LWR.Effect of shade on leaf structure of deciduous tree species[J].Ecology,1967,48:498-499.
    [91]Carpenter S B,Smith N B.Stomatal distribution and size in southern Appalachian hardwoods.Can J Bot,1975,53:1153-1156
    [92]Strobel DM,SundbergMD.Stomatal density in leaves of various xerophytes preliminery studies.J Minn Acad Sci,1984,49:7-9
    [93]蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应[J].应用生态学报.2004.15(2):201-204.
    [94]费松林,方精云,樊拥军等.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J].植物学报.1999,41(9):1002-1009.
    [95]BOSABALIDISAM,KKOFIDISG.Comparative effects of drought stress on leaf anatomy of two olive cultivars[J].J.Plant Sci,2002,163:375- 379(in Chinese).
    [96]张晓艳,杨惠敏,侯宗东等.土壤水分和种植密度对春小麦叶片气孔的影响[J].植物生态学报.2003,27(1):133-136.
    [97]HE J SH;贺金生,CHEN W L;陈伟烈,WAN G X L;王勋陵.Morpho logical and anatomical features of Q uercus Section S uber and its adaptation to the ecological environment[J].A eta P hy toecol.S in.;植物生态学报.1994,18(3):219-227(in Chinese).
    [98]HIGUCHIH,SAKURATANIU,UTSUNOM IYAN.Photo synthesis,leaf morphology and shoot growth as affected by temperatures in cherimoya(Annona cherim olaMill) trees[J].J.S ci.H ortic,1999,80:91-104.
    [99] Carpenter S B , Smith N B. Stomatal distribution and size in southern Appalachian hardwoods. Can J Bot, 1975 , 53 :1153~ 1156
    [100] Strobel DM, SundbergMD. Stomatal density in leaves of various xerophytes preliminery studies. J Minn Acad Sci, 1984 ,49 :7~9
    [101] TIPPO O. A list of diagnostic characteristics for descriptions of dicotyledonous woods[J] . Trans. Illinois .Acad. Sci. ,1941,34 :105-106. 5
    [102] CARLQUISTS, SCHNDEREL. The tracheid-vessel element transition in angio sperms involves multiple independent features; cladistic consequences[J].American Journal of Botany, 2002, 89 (2): 185- 195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700