用户名: 密码: 验证码:
含氮、氧建筑块的分子组装及其荧光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了一系列具有不同形状(包括链状、V型和三角形)的含吡啶或咪唑类配体,同时合成了β-二酮(即2,5-二取代-1,4-环己二烯醇)系列衍生物,使其与金属盐自组装,形成功能配合物,培养了一系列单晶。应用现代谱学方法, X-射线衍射分析确定了化合物和配合物的微观结构,根据微观结构来推断宏观性质,寻找分子结构与荧光性质之间的关系。具体研究内容如下:
     1.含氮配体的合成:①应用Witting反应合成了4个直链型刚性配体(L1、L2、L3、L4);②应用Ullmann反应合成了2个直链型柔性配体(L5、L8)、1个以芴为中心的V型吡啶类配体(L9)和1个以三苯胺为中心的三角形吡啶类配体(L10);③用醛酮缩合反应合成了2个直链型半柔性配体(L6、L7)和1个以三苯胺为中心的三角形吡啶类配体(L11)。通过元素分析、核磁氢谱和红外确定了它们的结构(见第二章)。
     同时,培养了4个中间体[2,7-二氯芴、2,7-二溴芴、三(4-溴苯基)胺和三(4-乙酰基苯基)胺]和1个配体化合物的单晶,通过X-射线衍射仪进一步确定了晶体结构。应用Mercury和diamond软件,对培养出来的单晶进行了微观结构探讨,研究其中的原子排布和分子堆积情况。研究了它们的结构与光物理性质(包括紫外、荧光和荧光寿命)之间的关系。
     2.合成了三个系列32个β-二酮(即2,5-二取代-1,4-环己二烯醇)系列衍生物,通过核磁氢谱和红外确定了它们的结构。并且培养了7个化合物的单晶,通过X-射线衍射仪进一步确定了晶体结构。应用Mercury和diamond软件,对培养出来的单晶进行了微观结构探讨,研究了其中的原子排布和分子堆积情况。同时,研究了他们的结构与光物理性质(包括紫外、荧光和荧光寿命)之间的关系。
     对2,5-二取代-1,4-环己二烯醇的合成方法探讨,用了不同的溶剂、催化剂及反应温度,通过比较,总结出了反应温和、产率高而且后处理简单的很适合工业化生产的合成路线(见第三章)。
     3.通过分子组装,合成了5个层状结构的配合物【Cu(dippy)(ace)_2、(H_2diPPY)(p-CH_3O-bic)_2、[Pb(dipic)]n、[Cu(dipic)(H_2O)_2]_n、[Cu(pic)_2(H_2O)_4]】,3个其他结构的配合物【Cu(H_2difpy)Cl_4、Ni(difpy)(ditbu)_2、([(CH_3)_2NH_2]_3 (Cd_3Cl_9))∞】。应用Mercury和diamond软件,对这8个单晶进行了微观结构研究,Cu(dippy)(ace)_2形成一个无限延伸的“楼梯”状结构;(H_2dippy)(p-CH_3O-bic)_2,两个超分子形成一个“V”结构,多个分子沿b轴方向延伸,形成一个无限延伸的“N或M”型链;[Pb(dipic)]_n形成了一种包含三种螺旋链结构的新颖2D网状结构,螺旋链的最大辫子根数是三根链缠绕在一起的自缠绕体系。网状2D结构通过氧桥连接在一起的形成一个3 D层状结构;[Cu(dipic)(H_2O)_2]_n形成了一种包含单螺旋链结构的新颖2D网状结构;Cu(pic)_2(H_2O)_4形成了一个新颖两根分子辫的分子互穿结构。分子辫向两边延伸形成一个带状平面;Cu(H_2difpy)Cl_4形成一个“躺椅”结构,不同的“躺椅”被平行的连接在一起;Ni(difpy)(ditbu)_2形成一个“w”结构,w型结构都非常整齐的平行排布在一起;{[(CH_3)_2NH_2]_3(Cd_3Cl_9)}∞形成了一个金属线状配合物{[(CH_3)_2NH_2]_3(Cd_3Cl_9)}∞,并对它进行了量化计算(见第四章)。
     4.用L_1、L_3和L_(11)与不同的有机或无机酸自组装,合成了27个超分子化合物,通过元素分析和红外确定了它们的结构;并对它们进行了光物理性质(紫外光谱、单光子荧光和单光子荧光寿命)测定,研究了他们的结构与光物理性质之间的关系。我们对对甲氧基苯甲酸对配体L_1单光子荧光光谱的影响做了仔细研究(见第五章)。
     5.用L_1、L_2、L_6、L_7、L_8、L_9和L_(10)与不同金属盐自组装,共合成了113个含氮配合物;用部分β-二酮(2,5-二取代-1,4-环己二烯醇)系列衍生物与不同金属盐自组装,共合成72个含氧配合物。并分别进行了光物理性质(紫外光谱、单光子荧光和单光子荧光寿命)测定,研究了他们的结构与光物理性质之间的关系(见第六、七章)。
     6.通过量化计算,从热力学的角度证明下面两个反应在自然条件下的可行性。从而推断此类反应在自然条件下的可行性(见第八章)。
In this thesis, a series of building blocks have been obtained that have different figure including chain, V shape and triangle; and -diketone( 2,5-dihydroxycyclohexa- l,4-diene-l,4-dicarboxylate) derivatives are synthesized. We utilize the known structural compounds including N and O to coordinate to metallic ion. Moreover, the crystals of a series of compounds/complexes are obtained. The crystal structures of the compounds/complexes are determined by X-ray single crystal diffraction. The information of crystal structures from X-ray single crystal diffraction are utilized to search for the relationship between structure and function. My work is summarized as follows:
     1. The synthesis of Building blocks including N: (1)four lined ligands (L1、L_2、L3、L4) are synthesized by utilizing the Witting reaction; (2) two lined, a 'V shape' and a triangle ligands have been obtained by utilizing the Ullmann reaction; (3) two lined and a triangle shape ligands have been obtained by utilizing the condensation reaction.
     Their structures were confirmed with IR, 1H NMR and EA. And the crystal structures of eight building blocks and four intermediates are determined by X-ray single crystal diffraction. The crystal structures are studied at micro structure. And the environment of atomic arrangement and molecular accumulation were analysed through Mercury and Diamond software. At the same time, Optical physical properties of them were mensurated and analyzed.
     2. Three series of thirty-two p-diketone derivatives are synthesized. Their structures were confirmed with IR and 1H NMR. And the crystal structures of eight building blocks and four intermediates are determined by X-ray single crystal diffraction. The crystal structures are studied at micro structure. And the environment of atomic arrangement and molecular accumulation were analyzed through Mercury and Diamond softwares. At the same time, Optical physical properties of them were mensurated and analyzed.
     The synthesis method of 2,5-dihydroxycyclohexa- l,4-diene-l,4-dicarboxylate are studied. Through comparison, we conclude a synthetic route of easier disposal, higher yield and milder reaction by utilizing different solvent, catalyzer and temperature of the reaction.
     3. By self-assembly, five layer coordination complexes are synthesized [Cu(dippy)(ace)_2、(H_2dippy)(p-CH_3O-bic)_2、[Pb(dipic)]_n、Cu(dipic)(H_2O)_2]_n、[Cu(pic)_2(H_2O)_4]] and the other three complexes [Cu(H_2difpy)Cl_4、Ni(difpy) (ditbu)_2、{[(CH_3)_2NH_2]_3(Cd_3Cl_9)}∞]。
     The eight crystal structures are studied at microstructure. And the environment of atomic arrangement and molecular accumulation were analyzed through Mercury and Diamond software5. Cu(dippy)(ace)_2 forms a 'stairway' structure. Cu(H_2difpy)Cl_4 forms a 'reclining chair' structure; The parallel 'reclining chair' structures are connected. Ni(difpy)(ditbu)2 forms a 'W structure. The parallel 'W structures are connected. (H2dippy)(p-CH3O-bic)2, two supermolecules form a 'V structure and the limitless 'M or Z' chain is connected through 'V' structure. [Pb(dipic)]n exhibits a novel 2D framework which contains three-type of helical chains with the highest-stranded number of three in the entangled system and the reticular 2D framework through oxo-bridges forms a 3D layer structure. [Cu(dipic)(H_2O)_2]_n exhibits a novel 2D framework which contains single-helix chains in the entangled system through oxo-bridges. [Cu(pic)_2(H_2O)_4] exhibits a novel 2D framework which contains double-helix in the entangled system. {[(CH_3)_2NH_2]_3(Cd_3Cl_9)}∞exhibits a ID frame- work containing metal string complexes and quantum chemical calculations were performed with GAUSSIAN 03 program.
     4. Twenty-seven supermolecular complexes have been obtained by self- assembly utilizing the compounds (L_1、L_3 and L_(11)) with organic or inorganic acid. Optical physical properties of them were mensurated and analyzed. The fluorescence property of ligand L1 is influenced by 4-methoxybenzoic acid that is studied.
     5. One hundred and thirteen complexes have been obtained by utilizing the ligands( L1、L_2、L6、L7、L8、L9 and L10) and seventy-two complexes have been synthesized by utilizing the ligands including 0 to coordinate to metallic ion. Optical physical properties of them were mensurated and analyzed, respectively. Through comparison, we have searched for the relationship between structure and function.
     6. From thermodynamics, quantum chemical calculations were performed with GAUSSIAN 03 program. We determine the below reaction possible at room condition. Therefore, we conclude a kind of reaction feasible.
引文
[1] (a)P. M. Graham, R. D. Pike, M. Sabat, R. D. Bailey and W. T. Pennington,Coordination Polymers of Copper(I) Halides, Inorg. Chem.,2000, 39: 5121–5132. (b) R. D. Schnebeck, E. Freisinger, F. Glahe and B. Lippert, Molecular Architecture Based on Metal Triangles Derived from 2,2'-Bipyrazine (Bpz) and EnMII (M = Pt, Pd) J. Am. Chem. Soc., 2000, 122: 1381-1390.(c) M. D. Fancis, P. B. Hitchcock and J. F. Nixon, Synthesis and structural characterisation of the first hexaphosphastrontocene [Sr(η6-P8C2But2)2] and its pyrazine adduct, Chem. Commum.,2000, 20: 2027-2028.
    [2] (a) Amy L. Gillon; Gareth R. Lewis; A. Guy Orpen; Sarah Rotter; Jonathan Starbuck; Xi-Meng Wang; Yolanda Rodríguez-Martín; Catalina Ruiz-Pérez; Organic–inorganic hybrid solids: control of perhalometallate solid state structures, J.Chem.Soc. Datton Trans,2000,20: 3897-3905. (b) Sandra Bruda, Marius Andruh, Herbert W. Roesky, Yves Journaux, Mathias Noltemeyer and Eric Rivière, Heteropolymetallic assemblies constructed from homometallic coordination polymers and paramagnetic metal- containing anions. Synthesis, crystal structure and magnetic properties of [Mn(4,4′-bipyridine-N,N′-dioxide)(H2O)4][Cr(bipy)(C2O4)2]2·8H2O,Inorganic Chemistry Com- munications,2001, 4: 111-114. (c)Rosa Bailey Walsh, Clifford W. Padgett, Pierangelo Metrangolo, Giuseppe Resnati, T. W. Hanks, and William T. Pennington ,Crystal Engineering through Halogen Bonding: Complexes of Nitrogen Heterocycles with Organic Iodides ,Crystal Growth and Design, 2001,1: 165– 175.
    [3]Chunhua Hu, Ulli Englert, Space Filling Versus Symmetry: Two Consecutive Crystal-to- Crystal Phase Transitions in a 2D Network, Angew.Chem. Int.Ed.Engl ,2006, 3457-3459
    [4]Roger D. Willett, Robert E. Butcher, Christopher P. Landee and Brendan Twamley,Two halide exchange in copper(II) halide dimers: (4,4′-bipyridinium) Cu2Cl6?xBrx Polyhedron,2006, 25: 2093-2100.
    [5]Chaitali Biswas, Shouvik Chattopadhyay, Michael G.B. Drew and Ashutosh Ghosh,Synthesis, crystal structure and hydrolysis of a dinuclear copper(II) complex constructed by N2O donor Schiff base and 4,4′-bipyridine: Discrete supra-molecular ensembles vs. oligomers Polyhedron., 2007,26,4411-4418;
    [6]So Young Lee, Sunhong Park, Joobeom Seo and Shim Sung Lee,One-pot synthesis of molecular dumbbell,[AgL(μ-bpy)AgL]2+(L = S2O2-macrocycle; bpy = 4,4′-bipyri- dine), Inorganic Chemistry Communications., 2007, 10: 1102-1104.
    [7]Satoshi Horike, Daisuke Tanaka, Keiji Nakagawa and Susumu Kitagawa, Selective guestsorption in an interdigitated porous framework with hydrophobic pore surfaces, Chem. Commum., 2007, 3395-3397.
    [8]Zhao-Xun Lian, Jiwen Cai and Cai-Hong Chen,A series of metal-organic frameworks constructed with arenesulfonates and 4,4′-bipy ligands, Polyhedron, 2007,26: 2647-2654.
    [9] Roger D. Willett, Robert E. Butcher, Christopher P. Landee and Brendan Twamley,Two halide exchange in copper(II) halide dimers: (4,4′-bipyridinium)Cu2Cl6?xBrx ,Polyhedron , 2006, 25: 2093-2100.
    [10]Jorge Pasán, Joaquín Sanchiz, Catalina Ruiz-Pérez, Francesc Lloret, and Miguel Julve,Polymeric Networks of Copper(II) Phenylmalonate with Heteroaromatic N-donor Ligands: Synthesis, Crystal Structure, and Magnetic Properties,Inorg. Chem., 2005, 44: 7794-7801.
    [11] Sanjit Konar, Ennio Zangrando, Michael G. B. Drew, Talal Mallah, Joan Ribas, Nirmalendu Ray Chaudhuri, Syntheses, Structural Analyses, and Magneto-Structural Correlations of Three Polymeric Fe(II) Complexes with Azide Ligand, Inorg. Chem., 2003, 42: 5966-5973.
    [12] Ghodrat Mahmoudi,Ali Morsali,Long-Guan Zhu, Mercury thiocyanate coordination polymers generated from rigid or flexible organic nitrogen donor-based ligands,Polyhedron, 2007, 26: 2885-2893.
    [13] Kumar Biradha ,Makoto Fujita, Co-ordination polymers containing square grids of dimension 15×15 ?, J. Chem. Soc. Dalton Trans., 2000, 3805–3810.
    [14] M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W.S. Li, M. Schroder, Anionengesteuerte Strukturbildung bei Bipyridylsilber(I)-Polymeren: eine Verbindung mit heli- calem, polymerem Netz, Angew, Chem., 1997, 109: 2421-2423.
    [15] M. John Plater, Mark R. St. J. Foreman, Thomas Gelbrich, Simon J. Coles, Michael B. Hursthouse, Synthesis and characterisation of infinite co-ordination networks from flexible dipyridyl ligands and cadmium salts , J. Chem. Soc. Dalton Trans., 2000, 3065-3073.
    [16] Xiuchun Gao, Tomislav Friscic, Leonard R. MacGillivray,Supramolecular Construction of Molecular Ladders in the Solid State ,Angew.Chem. Int.Ed.Engel, 2004, 43: 232-236.
    [17] Tingfeng Tan, Supramolecular helical architecture from the self-assemblies of 2-chloro-5-nitro-benzoic acid and organic bases, J.Mol.Struct, 2007, 840: 6-13.
    [18] (a)Inorg. Chim.Acta.,2005, 44: 2719.(b) Liliana Dobrzan′ska, Gareth O. Lloyd, Helgard G. Raubenheimer, and Leonard J. Barbour,A Discrete Metallocyclic Complex that Retains Its Solvent-Templated ChannelStructure on Guest Removal to Yield a Porous, Gas Sorbing Material,J. AM. CHEM. SOC., 2005, 127: 13134-13135.
    [19] (a) Effendy, Fabio Marchetti, Claudio Pettinari, Riccardo Pettinari, Brian W. Skelton, Allan H., White,Synthesis and Spectroscopic Characterization of Silver(I) Complexes with theBis(1,2,4-triazol-1-yl)alkane Ligand tz2(CH2). X-ray Structures of Two- and Three-Dimensional Coordination Polymers ,Inorg. Chem., 2003, 42: 112 -117.(b) Wen Dong, Yan Ouyang, Li-Na Zhu, Dai-Zheng Liao, Zong-Hui Jiang, Shi-Ping Yan and Peng Cheng , Structure and magnetic properties of a dtm-bridged two-dimensional supramolecular complex {[Fe(dtm)2 (H2O)2] (ClO4)2·2H2O}n (dtm = 4,4′-ditriazolemethane) Transition, Met. Chem., 2006, 31: 801-804.
    [20] (a) J.Chem.Cryst,2006,36: 679(b) Jing Wang, Shao-Liang Zheng, Sheng Hu, Yue-Hua Zhang, Ming-Liang Tong, New In Situ Cleavage of Both S-S and S-C(sp2) Bonds and Rearrangement Reactions toward the Construction of Copper(I) Cluster-Based Coordination Networks ,Inorg Chem., 2007, 46: 795-800.
    [21] Taro Tsubomura, Shinya Enoto, Shinya Endo, Tsuyoshi Tamane, Kenji Matsumoto, Toshiaki Tsukuda, Synthesis, Structure, Spectroscopic Properties, and Photochemistry of Homo- and Heteropolynuclear Copper(I) Complexes Bridged by the 2,5-Bis(2-pyridyl)pyrazine Ligand,Inorg. Chem., 2005, 44: 6373–6378.
    [22] (a) J. M. Lehn, Supramaleculor Chemistry-Concepts and Perspective. VCH, Weinheim,1995. (b) J.M. Leha, Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) ,Angew. Chem. Int. Ed., 1988, 27:89-112.(c) J.M. Lehn, Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization, Angew. Chem.Int. Ed., 1990, 29: 1304-1319. (d) J.M. Lehn, A.Rigault ,Helicates: Tetra- and Pentanuclear Double Helix Complexes of CuI and Poly(bipyridine) Strands ,Angew Chem. lnt. Ed, 1988, 27: 1095-1097.
    [23] O. Kahn, N France, Magnetism: a Supramolecular Function, NATO ASI, Kluwer, 1996.
    [24] (a) P J. Stang, Molecular Architecture: Coordination as the Motif in the Rational Design and Assembly of Discrete Supramolecular Species - Self-Assembly of Metallacyclic Polygons and Polyhedra, Chem. Eur. J.,1998,4: 19-27.(b)P.J.Stang, D. H. Cao, S. Saito, A. M. Arif, Self-Assembly of Cationic, Tetranuclear, Pt(II) and Pd(II) Macrocyclic Squares. x-ray Crystal Structure of [Pt2+(dppp)(4,4'-bipyridyl) cntdot.2-OSO2CF3]4,J.Am.Chem.Soc.1995,117(23): 6273-6283.(c) P.J. Stang, D. H. Cao, Transition Metal Based Cationic Molecular Boxes. Self-Assembly of Macrocyclic Platinum(II) and Palladium(II) Tetranuclear Complexes ,J. Am. Chem. Soc., 1994,116(11): 4981-4982.(d) P. J. Stang, K. Chen, A. M. Arif, Modular Assembly of Hybrid Iodonium-Transition Metal Cationic Tetranuclear Macrocyclic Squares. Single Crystal Molecular Structure of {[(Et3P)2Pd(OTf)2][(NC5H4C6H4)2I(OTf)]}, J. Am. Chem. Soc., 1995, 117(34): 8793-8797.(e) P.J. Stang, K. Chen, Hybrid, Iodonium-Transition Metal, Cationic Tetranuclear Macrocyclic Squares J. Am. Chem. Soc .,1995, 117(5): 1667-1668.
    [25] (a) M. Eddaoudi, H. L. Li. O, M. Yaghi, Highly Porous and Stable Metal-Organic Frameworks:Structure Design and Sorption Properties , J. Am. Chem. Soc., 2000, 122: 1391-1397. (b) H. L, Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework ,Narure,1999, 402: 276-279. (c) H.L. Li, C. E. Davis.,T. L. Groy, D.G. Kelley, O. M. Yaghi.,Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate) ,J. Am. Chem. Soc., 1998, 120:2186-2187.
    [26] Xiaoying Huang, Jing Li, The First Covalent Organic-Inorganic Networks of Hybrid Chalcogenides: Structures That May Lead to a New Type of Quantum Wells ,J Am. Chem. Soc., 2000, 122: 8789-8790.
    [27] G. B. Gardner, D. Venkateraman, J. S. Moore and S. Lee, Spontaneous assembly of a hinged coordination network, Nature,1995, 374, 792-795,
    [28] (a) B. F. Hoskins, R, Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc., 1989, 111: 5962-5964.(b) B. F Abrahams, B. F. Hoskins, D. M. Michall, R. Robson, Assembly of porphyrin building blocks into network structures with large channels, Nature, 1994,369: 727-729. (c) S. R. Batten, R Robson, Interpenetrating Nets: Ordered, Periodic Entanglement ,Angew. Chem. Int. Ed., 1998.37: 1460-1494. (d) S. R. Batten., B. F. Hoskins, R. Robson. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine as a 3-Connecting Building Block for Infinite Nets, Angew Chem Int. Ed., 1995, 34: 820-822.
    [29] Nathan W. Ockwig, Olaf Delgado-Friedrichs,Michael O’keeffe, and Omar M. Yaghi, Reticular Chemistry: Occurrenceand Taxonomy of Nets and Grammar for the Design of Frameworks. Account of Chemical Researc., 2005,38(3): 176-182.
    [30] Jarrod J. M. Amoore, Cory A. Black, Lyall R. Hanton, and Mark D. Spicer,Increasing Structural Dimensionality in Ag(I)Coordination Polymers Formed from the Same FlexibleMultimodal Thioether Pyrazine Ligand,Crystal Growth,Design , 2005,5:1255-1261.
    [31] Ki-Whan Chi, Chris Addicott, Atta M. Arif, Neeladri Das, and Peter J. Stang,Bidentate Ligands Capable of Variable Bond Angles in the Self-Assembly of Discret Supramolecules,J.Org.Chem.,2003, 68: 9798-9801.
    [32] M.J. Zaworotko, Superstructural diversity in two dimensions: crystal engineering of laminated Solids, Chem. Conunun., 2001, 1: 1-9.
    [33] (a) O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, synthetic strategies, structure patterns, and emerging properties in the chemistry or molecular porous solids, Acc.Chem. Res., 1998, 31: 474-484. (b) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, Molecular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res., 2001, 34: 319-330.
    [34] T. L Hennigar, D. C. Macquarrie, P. Losier, R. D. Rogers, M. J. Zaworotka, Supramolecular isomerism in coordination polymers. conformational freedom of ligands in [Co(NO3)2 (1,2-bis(4-pyridyl)ethane)1.5]n, Angew. Chem. Int. Ed. Engl., 1997, 36: 972-973.
    [35] Hong-Ling Gao, Long Yi, Bin Ding, Hong-Sheng Wang, Peng Cheng, Dai-Zheng Liao, and Shi-Ping Yan, First 3D Pr(III)-Ni(II)-Na(I) Polymer and A 3D Pr(III) Open Network Based on Pyridine-2,4,6-tricarboxylic Acid, Inorganic Chemistry, 2006, 45: 481-483 .
    [36]S. Bhandari, C. G. Frost, C. E. Hague, M. F. Mahon, K. C. Molloy, Synthesis of functionalised (triorganostannyl)tetrazoles: supramolecular structures of n-[2-(triorganostannyl)tetrazol-5-yl] pyridine (n=2, 3 or 4), J. Chem Soc. Dalton Trans., 2000, 5: 663-670.
    [37] M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. Schroder, Anion control in bipyridylsilver(I) networks: a helical polymeric array, Angew. Chem. Int. Ed. Engl, 1997, 36: 2327-2329.
    [38]Sara R. Halper and Seth M. Cohen Self-Assembly of Heteroleptic [Cu(dipyrrinato)(hfacac)] ComplexesDirected by Fluorine-Fluorine Interactions, Inorganic Chemistry, 2005, 44: 4139-4141.
    [39] Shi, X., Zhu, G.; Wang, X.; Li, G.; Fang, Q.; Wu, G.; Tian, G.; Xue, M.; Zhao, X.; Wang, R.; Qiu, S. ,From a 1-D Chain, 2-D Layered Network to a 3-D Supramolecular Framework Constructed from a Metal-Organic Coordination Compound ,Crystal Growth Design., 2005, 5: 207-213.
    [40] O. M. Yaghi, H. Li, T. L Groy, Construction of Porous Solids fromHydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid, J. Am. Chem. Soc.,1996,118: 9096-9101.
    [41] A. J. Blake, N. R. Champness, A. N. Khlobystov, D .A. Lemenovskii, W.-S.Li,M. Sckroder, Polycatenated copper(Ⅰ) molecular ladders: a new structural motif ininorganic coordination polymers, Chem. Commun., 1997, 21: 2027-2028.
    [42] A-Qing Wu, Yan Li, Fa-Kun Zheng, Guo-Cong Guo, and Jin-Shun Huang, Different Molecular Frameworks of Zinc(II) and Cadmium(II)Coordination Polymers Constructed by Flexible Double BetaineLigands, Crystal Growth Design, 2006, 6: 444-450
    [43]Gregory J. McManus, Zhenqiang Wang, and Michael J. Zaworotko Suprasuper- molecular Chemistry: Infinite Networks from Nanoscale,Crystal Growth & Design, 2004, 4: 11-13
    [44] Jian-Kai Cheng,Yuan-Gen Yao, Jian Zhang, Zhao-Ji Li,Zong-Wei Cai, Xiang-You Zhang, Zhong-Ning Chen, Yu-Biao Chen, Yao Kang, Ye-Yan Qin, and Yi-Hang Wen A Simultaneous Redox, Alkylation, Self-Assembly Reaction under Solvothermal Conditions Afforded a Luminescent Copper(I) Chain PolymerConstructed of Cu3I4‐ and EtS-4-C5H4N+Et Compone- nts (Et =CH3CH2) ,J. AM. Chem. Soc., 2004, 126: 7796-7797.
    [45] (a) L . R. MacGillvary, S. Subramanian, M. J. Zaworotko, interpenetrating copper(Ⅱ)adamantoid networks: synthesis and structure of {[Cu(bpe)2]BF4}n, Chem. Commun., 1997,11: 1005-1006. (b) L. Carlucci, G. Ciani, D. M. Prosrtpio, A. Sironi, Interpenetrating diamondoid frameworks of silver(Ⅰ) cations linked by N, N'-bidentate molecular rods, J. Chem. Soc. Chem. Common., 1994, 2755-2756. (c) A. J. Blake, N. R Champness, A. N. Khlobystov, D. A. Lcmenovski, W. S. 1i, M. Scbroder, Crystal engineering: the effects ofπ-πintersactions In copper(Ⅰ)and silver(Ⅰ) complexes of 2,7-diazapyrene, Chem. Commun.,1997,15: 1339-1340.
    [46] M. S. Wang, T.J. Pinnavaia, Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin ,Chem. Mater.,1994, 6: 468-474.
    [47] S. R. Batten, R. Robson, Interpenetrating nets: ordered, periodic entanglement, Angew. Chem. Int. Ed., 1998, 37: 1461-1494.
    [48] M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of ca4mium (II) and 4,4'-bipyridine, J. Am. Chem. Soc., 1994,116: 1151-1152.
    [49] K,.Biradha, D. Dennis, V. .4_ MacKinnon, C. Seward, M. J. Zaworotko, Current Challenges on Large Supramolecular Assemblies, ed. G. Tsoucaris, Dordrrecht: Kluwer, 1999, 115-132; K. Biradha, K. V. Domasevitch, B. Moulton, C. Seward, M. J. Zaworotko, 2,5-Di-(tcrt-butyl) phospholyl sandwich complexes containing group 14 elements (Ge, Sn, Pb). Synthesis, molecular structure, and ring transfer chemistry of [M(PC4H2But2)2] (M=Sn, Pb) Chem. Commun., 1999,14, 1327-1328; K.Biradha, K. V. Dornasevitch, C. Hogg, B. Moulton, K. N. Power, M.J. Zaworotko, Interpenetration of covalent and noncovalent networks in the crystal structures of {[M(4,4′- bipyridine)2(NO3)2] 2p-nitroaniline}n where M=Co, 1, Ni, 2, Zn, 3 Cryst. Eng., 1999, 2: 37-45.
    [50]K. Biradha, A. Mondal, B. Moulton, M. J. Zaworotko, Coexisting covalent andnon-covalent planar networks in the crystal structures of{[M(bipy)2 (NO3)2]?arene}, (M=Ni,1; Co, 2; arene = chlorobenzene, o-dichlorobenzene, benzene, nitrobenzene, toluene or anisole) J. Chern. Soc.; Dalton Trans., 2000, 20: 3837-3844.
    [51] L. Carlucci, G. Ciani, D. M. Proserpio, Three-dimensional architecturres of intertwinedplanar coordination polymers: the first case of interpenetration involving twodifferent bidimensional polymeric motifs, New J. Chem., 1998, 22: 1319-1322.
    [52] (a) Eric Demers, Thierry Maris, and James D. Wuest, Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of 2,2,7,7-Tetraphenyl-9,9-spirobi[9H- fluorene], Crystal Growth Design., 2005, 5: 1227-1235. (b) D. J. Plaut, K. M. Lund, M. D.Ward, Low-density hydrogen-bonded networks in crystals and at the air/waterinterface, Chem. Commun., 2000, 9: 769-770.
    [53] L. Carlucci, G. Ciani, D. M. Proserpio, Self-assembly of novel co-ordination polymerscontaining polycatenated molecular ladders and intertwined two- dimensional tilings, J. Chem. Soc. Dalton Trans, 1999,11: 1799-1804.
    [54] M. Fujita, Y. J. Kwon, O. Sasaki, K. Yamaguchi. K. Ogura, Interpenetrating molecular ladders and bricks, J. Am. Chem. Soc., 1995, 117: 7287-7288.
    [55] (a)K. N. Power, T. L. Hennigar, M. J. Zaworotko, Crystal structure of the coordination polymer [Co(bipy)1.5(NO3)2]?CS2 (bipy=4,4′-bipyridine), a new motif for a network sustained by‘T-shape’building blocks, New J. Chem., 1998, 22: 177-182; (b)A. Rujiwatra, C. J. Kepert, M. J. Rosseinsky, A new route to incompletely- condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilse- squioxanes, Chem. Commun., 1999, 22: 2307-2308;
    [56] Tapas Kumar Maji, Masaaki Ohba, and Susumu Kitagawa,Transformation from a 2D Stacked Layer to 3D InterpenetratedFramework by Changing the Spacer Functionality Synthesis, Structure,Adsorption, and Magnetic Properties, Inorg.Chem., 2005, 44: 9225-9231.
    [57](a)Frederic The bault, Sarah A. Barnett, Alexander J. Blake, Claire Wilson, Neil R. Champness, and Martin Schro1der ,Control of Copper(I) Iodide Architectures by Ligand Design: Angular versus Linear Bridging Ligands,Inorg. Chem., 2006, 45: 6179-6187. (b) M. A. Withersby, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, M. Schroder, Parallel interpenetration in novel herringbone sheets formed by Co(Ⅱ) and Cd(Ⅱ) complexes with trans-4,4'-azobis(pyridine), New J. Chem., 1999, 23: 573-576. (c) Y. B. Dong, R. C. Layland, N. G. Pschirer, M. D. Smith, U. H. F. Bunz, H. C. Zur Loye, New Crystalline Frameworks Formed from 1,2-Bis(4-pyridyl)ethyne and Co(NO3)2: Interpenetrating Molecular ladders and an Unexpected Molecular Parquet Pattern from T -Shaped Building Blocks, Chem. Mater.,1999,11: 1413-1415.
    [58] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Three-dimensional framework with channeling cavities for small molecules. {[M2(4,4'-bpy)3(NO3)4]·χH2O}, (M=Co, Ni, Zn), Angew. Chem., Int. Ed. Engl., 1997, 36:1725-1727.
    [59] R. Atencio, K. Biradha, T. L Hennigar, K. M. Poirier, K. N. Power, C. M. Seward, N. S. White, M. J. Zaworotko, Structural Diversity in Metal-Organic Nanoscale Supramolecular Architectures, Cryst. Eng., 1998, 1: 203-212.
    [60] J. C. Dai, X. T. Wu, Z. Y. Fu, C. P Cui, S. M. Hu, W X. Du, L. M. Wu, H. H. Zhang, R. Q. Sun, Synthesis, structure and fluorescence of the novel cadmium(II)- trimesate coordination polymers with different coordination architecture, Inorg. Chem., 2002, 41: 1391-1397.
    [61] Paz, F. A. A.; Klinowski, J. , Synthesis and Characterization of a Novel Cadmium-Organic Framework with Trimesic Acid and 1,2-Bis(4-pyridyl)ethane, Inorganic Chemistry., 2004, 43: 3948-3964.
    [62](a)S. Suhramanian, M. J. Zaworotko, Porous solids by design: [Zn(4,4'-bpy)2 (SiF6)]n·χDMF, asingle framework octahedral coordination polymer with large squarechannels, Angew. Chem. lnt. Ed. Engl., 1995, 34: 2127; (b) S. Noro, S. Kitagawa, M. Kondo, K Seki, A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4'-bipyridine)2}n], Angew. Chem. Int. Ed., 2000, 39: 2081-2084.
    [63] Z. Y. Fu, P. Lin, W.X. Du, L . Chen, C. P. Cui, W. J. Zhang and X. T. Wu, Two new coordination host frameworks for the inclusion of 4-amino-benzophenone guest molecules, Polyhedron, 2001,20: 1925-1931.
    [64] A. J. Blake, N. R Champness, S. S. M. Chung, W. S. 1.i, M. Schroder, Control of interpenetrating copper(I) adamantoid networks: synthesis and structure of {[Cu(bpe)3]BF4}n, Chem. Commun.,1997,11: 1005-1006.
    [65](a)S. C. Zimmerman, F. Zeng, D. E. C. Reichert, S. V. Kolotuchin, Self-Assembling Dendrimers, Science, 1996,271: 1095-1098.(b)M.Morgan Conn and Jusius Rebek, J.Chem.Rev. 1997,97: 1647-1668.(c)K. Kobayashi, T. Shirasaka, K. Yamaguchi, S. Sakamoto, E. Hom and N. Furukawa, Molecular capsule constructed by multiple hydrogen bonds: self-assembly of cavitand tetracarboxylic acid with 2-aminopyrimidine, Chem. Commun., 2000,1: 41-42.
    [66] G. R Desiraju,Supramolecular Synthons in Crystal Engineering A New Organic Synthesis, Angew. Chem. Int. Ed. Engl., 1995, 34: 2311-2327.
    [67](a) A. L. Gillon, A. G. Orpen, J. Starbuck, X. M. Wang, R. M. Yolanda and R.P. Catalina, Cation-controlled formation of [{MCl4}n]2n– chains in [4,4′-H2bipy][MCl4] (M = Mn, Cd): an alternative to the A2MCl4 <100> layer perovskite structure, Chem. Commun., 1999,22: 2287-2288. (b) M. T. Allen, A. D. Burrows and M. F. Mahon, Hydrogen bond directed crystal engineering of nickel complexes: the effect of ligand methyl substituents on supramolecular structure, J. Chem. Soc. Dalton Trans., 1999, 2: 215-222.
    [68] C. B. Aakeroy, A. M. Beatty, D. S. Leinen and K. R. Lorimer. Deliberate combination of coordination polymers and hydrogen bonds in a supramolecular design strategy for inorganic/ organic hybrid networks, Chem. Commun., 2000,11: 935-936.
    [69] Benjamin J.Coe,James A. Harris and Bruce S. Brunschwig, et. al, Contrasting Linear and Quadratic Nonlinear Optical Behavior of Dipolar Pyridinium Chromophores with 4-(Dimethyl- amino)phenyl or Ruthenium(II) Ammine Electron Donor Groups, J. AM. CHEM. SOC. 2004, 126, 10418-10427
    [70] Nicolas Leclerc, Sebastien Sanaur and Laurent Galmiche, et. al, 6-(Arylvinylene)-3-bromo- pyridine Derivatives as Lego Building Blocks for Liquid Crystal, Nonlinear Optical, and Blue Light Emitting Chromophores, Chem. Mater. 2005, 17, 502-513
    [71] H. K. Fun, S. S. Raj, R. G. Xiong, et al. A three-dimensional network coordination polyer.(terephtalato)(pyridine)cadmium,with biue fluorescent emission, J. Chem. Soc. Dalton Trans., 1999, 12: 1915-1916.
    [72]Sun. P. P., Duan. J. P. and Shih. H. T., Europium complex as a highly efficient red emitter in electroluminescent devices, Appl. Phys. Lett., 2000, 81, 792-794.
    [73]卞祖强,高德青和关敏等,不同邻菲洛琳衍生物作为中性配体的三元铕配合物电致发光性质研究,中国科学(B辑), 2004, 34, 113-120.
    [74]游效增,从配位化学到超分子化学(分子自组装部分),2004.
    [75] (a) M. Moran, Sungnam Park, and Norbert F. Scherer, Coherent Electronic and Nuclear Dynamics for Charge Transfer in 1-Ethyl-4-(carbomethoxy)pyridinium Iodide Andrew, J. Phys. Chem. B, 2006, 110: 19771-19783. (b)M. Dixon, Frede ric Lopez, Agueda M. Tejera, Jean-Pierre Este ve, Maria A. Blasco,Genevie ve Pratviel, and Bernard Meunier A G-Quadruplex Ligand with 10000-Fold Selectivity over Duplex DNA Isabelle ,J. Am. Chem. Soc., 2007, 129: 1502-1503.
    [76] Xiaojun Peng, Jianjun Du, Jiangli Fan, Jingyun Wang, Yunkou Wu, Jianzhang Zhao, Shiguo Sun, and Tao Xu, A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells, J. Am. Chem. Soc., 2007, 129: 1500-1501.
    [77] Nanfeng Zheng, Xianhui Bu, and Pingyun Feng, Self-Assembly of Novel Dye Molecules and [Cd8(SPh)12]4+ Cubic Clusters into Three-Dimensional Photoluminescent SupSuperSuperlattice J. Am. Chem. Soc. 2002, 124: 9688-9689.
    [78] Karl D. Oyler, Frederick J. Coughlin, and Stefan Bernhard,Controlling the Helicity of 2,2-Bipyridyl Ruthenium(II) and Zinc(II) Hemicage Complexes, J. Am. Chem. Soc. 2007, 129: 210-217.
    [79] Li-Li Wen, Dong-Bin Dang, Chun-Ying Duan, Yi-Zhi Li, Zheng-Fang Tian, and Qing-Jin Meng, 1D Helix, 2D Brick-Wall and Herringbone, and 3D Interpenetration d10 MetalO?rganic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide , Inorganic Chemistry, 2005, 44(20): 7161-7170.
    [80] Kanji Takaoka, Masaki Kawano, Toshiya Hozumi, Shin-ichi Ohkoshi, and Makoto Fujita, 2D Hydrogen-Bonded Square-Grid Coordination Networks with aSubstitution-Active Metal Site, Inorganic Chemistry, 2006, 45(10): 3976-3982.
    [81] Ronald W. McClard, Edward A. Holets, Andrew L. MacKinnon and John F. Witte, Half-of-Sites Binding of Orotidine 5 -Phosphate and R-D-5-Phosphorylribose 1-Diphosphate to Orotate Phosphoribosyltransferase from Saccharomyces cereVisiae Supports a Novel Variant of the Theorell-Chance Mechanism with Alternating Site Catalysis, Biochemistry, 2006, 45: 5330-5342.
    [82] Andrew L. Larkin, Kevin A. Ogilvie, Laine A. Green, Sunny Lai, Simon Lopez,and Victor Snieckus ,Directed ortho Metalation-Boronation and Suzuki-Miyaura Cross Coupling of PyridineDerivatives: A One-Pot Protocol to Substituted Azabiaryls Manlio Alessi, J. Org. Chem., 2007, 72: 1588-1594.
    [83] Xiao Hua Sun, Wenye Li, Ping Fang Xia, Hai-Bin Luo, Yingli Wei, Man Shing Wong, Yuen-Kit Cheng and Shaomin Shuang Phenyl-calix[4]arene-Based Fluorescent Sensors: Cooperative Binding for Carboxylates ,J. Org. Chem., 2007, 72: 2419.
    [84] Deshou Jiang, Hua Fu, Yuyang Jiang and Yufen Zhao, CuBr/rac-BINOL-Catalyzed N-Arylations of Aliphatic Amines at Room Temperature, J. Org. Chem., 2007, 72: 672-674.
    [85] Eun Young Lee, Seung Yeon Jang, and Myunghyun Paik Suh, Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal-Organic Framework [Zn4O(NTB)2], J. Am. Chem. Soc., 2005, 127: 6374-6381.
    [86](a)Thompson, D J ,Kenyon R W,Thorp D., Dyestuffs comprising two 5-membered heterocyclic nuclei fused to a central cyclohexa-1 ,4-diene nucleus : GB ,2 103 231 [P].1983-02-16. (b)YASUYOSHI U ,YAMAMOTO J ,TAKASHI O ,et al. Heterocyclic disperse dyes for hydrophobic fibers :EP ,371 223[P] .1990-06-06.(c)RANGERM, RONDEAU D, LECLERCM. New well-definedpoly(2,7-fluorene) derivatives: photoluminescene and basedoping [J], Macromolecules,1997,30 (25): 7686-7691. (d)CHO.N.S , HWANGD.H., LEEJ.I, et al. Synthesis and color tuning of new fluorine- based copolymers[J]., Macromolecules, 2002, 35(4): 1224-1228.
    [87] (a)T. Maindron, Y . Wang, J.Dodelet, et al., Highly electrolum inescent devices made with a conveniently synthesized triazole-triphenylam ine derivative, Thin Solid Films., 2004, 466: 210-211.(b)Min zhao Xue,De yin Huang,Yan gang liu. Design and synthesis of poly (p-phenylenevinylene)derivative with triphenylamine segments on polymer backbone,Synthetic Metals, 2000, 110: 203-205.(c) Nandkumar M.P, Ashutosh A. K, Raghunath V.C.,Synthesis of triarylamines by copper-catalyzed amination of aryl halides, Journal of Molecular Catalysis A : Chemical, 2004, 223: 46-50.(d)Antonin Domenech, Belen Ferrer, Vicente Fornes, Herm enegildo G arcia and A ntonio Leyava.,Ship-in-a-bottle synthesis of triphenylamine inside fau jasite supercages and generation of the triphenylaminium radical ion. , Tetrhedron , 2005, 61: 791-793.(e)Rattan Gujadhur, D. Venkataraman and Jeremy T. Kintigh. Form ation of aryl-nitrogen bonds using a soluble copper(I) catalyst,Tetrahedron Letters, 2001, 2(5): 4791-4793.(f)王金芳,孙亚丽,邵科峰等,二苯胺和碘苯反应合成三苯胺,化学试剂,2004, 26(1): 35-36.(g)Takayoshi Mori, Krzysztof Strzelec, Hisaya Sato,Synthesis of charge transporting polymer containing TPD units using Friedel-Crafts reaction, Synthetic Metals,2002, 126: 165-171.(h)Jaekook Ha, Martin Vacha, Paisan Khanchaitit,etal., Synthesis and characterization of novel light-emitting copolymers containing triphenylamine derivatives,Synthetic Metals, 2004, 144: 151-152.(i)Touraj Manifar, Sohrab Rohani, Timothy P.Bender, et al. , Copper (I)-Mediated Ligand-A ccelerated Ullmann-Type Coupling of Anilines with Aryliodides: Ligand Selection and Reaction Kinetics for Synthesis of Tri-p-Tolylamine, Ind. Eng. Chem . Res., 2005, 44(4): 790-791. (j)Dawei Ma, Qian Cai, HuiZhang. Mild method for Ullmann coupling reaction of amines and arylhalides, Org. Lett.,2003, 5(14): 2453 -2454.
    [88] Sheldrick G. M. SADABS., Program for Empirical AbsorptionCorrection of Area Detector Data, University of Gottingen, Germany 1996
    [89] Sheldrick G. M. SHELXTL V5.1, Software Reference Manual, Bruker AXS, Inc., Madison, Wisconsin, USA,1997.
    [90] Wilson A. J., International Table for X-ray Crystallography, Vol. C, Kluwer Academic Publishers, 1992, Dordrecht: Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222) respectively.
    [91]刘志东,周雪琴,褚吉成.芳乙烯基三苯胺类电荷传输材料的合成与性能研究.绿色高新精细化工技术,北京:化学工业出版社, 2004. 244-254.
    [92] S. Philip Anthony and T. P. Radhakrishnan,Coordination Polymers of Cu(I) with a Chiral Push-Pull Ligand: Hierarchical Network Structures and Second Harmonic Generation,Crystal Growth & Design, 2004,4(6):1223-1227.
    [93] Maria D. Stephenson and Michaele J. Hardie, Extended Structures of Transition Metal Complexes of 6,7-Dicyanodipyridoquinoxaline: e-Stacking, Weak Hydrogen Bonding, and CN…e Interactions, Crystal Growth & Design, 2006,6(2): 423-432.
    [94] Miao Du, Zhi-Hui Zhang, and Xiao-Jun Zhao, A Search for Predictable Hydrogen-Bonding Synthons in Cocrystallization of Unusual Organic Acids with a Bent Dipyridine, Crystal Growth & Design, 2006, 6(2): 390-396.
    [95] Geanina Marin, Violeta Tudor, Victor Ch. Kravtsov, Marc Schmidtmann, Yurii A. Simonov, Achim Muller,and Marius Andruh, Extended Structures Constructed from Alkoxo-Bridged Binuclear Complexes as Nodes and Bis(4-pyridyl)ethylene as a Spacer, Crystal Growth & Design, 2005, 5(1): 279-282.
    [96] Ki-Whan Chi, Chris Addicott, Yury K. Kryschenko, and Peter J. Stang,Flexible Bidentate Pyridine and Chiral Ligands in the Self-Assembly of Supramolecular 3-D Cages, J. Org. Chem., 2005, 70: 5309.
    [97] R. Yang, K. Lin, Y. Hou, D. Wang and D. Jin ,Binuclear copper(I) complexes containing bis(diphenylphosphino)methane bridging ligands. X-ray crystal structure of [Cu2(dppm)2(Py)2 (NO3)](NO3)·CH3OH,Polyhedron, 1997, 16(23), 4033-4038.
    [98] F.Meyyers, S.T.Mardeer,B.M.Pierce and J.L.Bredas, Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Invest- igation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation, J.Am.Chem.Soc, 1994, 116(23): 10703- 10714.
    [99]西赫拉,斯沃博达,鲁别舒卡,“原子荧光光谱”,冶金出版社,1979(荧光部分).
    [100] (a)U .Narang,C .F .Zhao et.al., Structures, Spectra, and Lasing Properties of New (Aminostyryl)pyridinium Laser Dyes ,J. Phys. Chem. 1996,100:4526-4532. (b)G .S .he ,L .Yuan,et.al ., Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material, J. Appl. Phys,1997,81:2529-2537
    [101]程能林,溶剂手册(第二版),化学工业出版社,1999(溶剂黏度部分).
    [102]陈国珍,黄贤智等,荧光分析法(第二版),科学出版社,1990(荧光部分).
    [103] (a) Liu, W.S.; Jiao, T.Q.; Li, Y.Z.; Liu, Q.Z.; Tan, M.Y.; Wang, H.; Wang, L.F. Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence , J. Am. Chem. Soc. 2004, 126, 2280-2281.(b) Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano,T. Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications ,J. Am. Chem. Soc. 2004, 126, 12470-12476.
    [104] He G S , Yuan L X , Cui Y P , Li M , Prasad P N.,Studies of two-photon pumped frequency-up converted lasing properties of a new dye material., J. Appl. Phys., 1997 ,81(6): 2529-2537.
    [105] Ren Y, Fang Q , Yu W T , Lei H , Tian Y P , Jiang M H , Yang Q C , Mak T C W., Synt hesis , st ructures and two-photon pumped up-conversion lasing properties of two new organic dyes,J. Mater. Chem., 2000, 10: 2025-2030.
    [106] Lin.T.C., He.G.S., Prasad.P.N., et al., Degenerate nonlinear absorption and optical power limiting properties of asymmetrically substituted stilbenoid chromophores[J], J. Mater. Chem., 2004,6: 982-991.
    [107] Huang Y Y, Cheng T R , Li F Y, Luo C P , Huang C H , Cai Z G, Zeng X R , Zhou J Y., Photophysical studies on the monoand dichromophoric hemicyanine dyes (Ⅱ) : Solvent effect s and dynamic fluorescence spectra study in chloroform and in LB films, J. Phys. Chem. B , 2002, 106(39) : 10031-10040.
    [108] Albota M,Beljonne D ,Brédas J L ,et al ., Design of organic molecules with large two- photon absorption cross sections [J],Science,1998,281: 1653-1656.
    [109]Cleland G H., Meerwein reaction in amino acid synthesis.Ⅱ.An investigation of twenty-one substituted anilines [J]., J. Org. Chem., 1969, 34: 744-747.
    [110]Wolfe J P, Singer A, Yang B H. et al. Highly active palladium catalysts for Suzuki coupling reactions [J]. J.Am.Chem.Soc., 1999, 121: 9550-9561.
    [111]Thiemann T, Umeno K, Wang J, et al. Elongated phosphoranes by C-C coupling of haloaroylmethylidenetriphenylphosphoranes: synthesis and applications [J]. J. Chem. Soc. Perkin Trans 1., 2002, 18: 2090-2110.
    [112]Berliner E, Liu L H., The hydrolysis of substituted ethyl P-biphenylcarboxylates[J]., J. Am. Chem. Soc., 1953, 75: 2417-2420.
    [113]Jutan A, Mosleh A Nickel- and palladium- catalyzed homocoupling of aryl triflates, scope,limitation, and mechanistic aspects [J]., J. Org. Chem., 1997, 62: 261-274.
    [114]Mowery M E, De Shong P., Cross-coupling reactions of hypervalent siloxane derivatives: An alternative to stille and Suzuki couplings [J]., J. Org. Chem., 1999, 64: 1684-1688.
    [115]Moore L R, Shaughnessy K H., Efficient aqueous-phase Heck and Suzuki coupling of aryl bromides using tri(4,6-dimethyl-3-sulfonatophenyl) phosphine trisodium salt (TXPTS) [J]., Org. Lett., 2004, 6(2): 225-228.
    [116]Moore L R, Shaughnessy K H., Efficient aqueous-phase Heck and Suzuki coupling of aryl bromides using tri(4,6-dimethyl-3-sulfonatophenyl) phosphine trisodium salt(TXPTS) [J]., Org. Lett., 2004, 6(2): 225-228.
    [117]Bei X H, Tumer H W, Weinberg W H. et al., Palladium/P,O-ligand-catalyzed Suzuki cross-coupling reactions of arylboronic acids and aryl chlorides. Isolation and structural characterization of (P,O)-Pd(dba) complex [J]., J. Org. Chem., 1999, 64(18): 6797-6803.
    [118] Karl-Josef Boosen, Reaktionen mit-Chloracetessigesterderivaten, HELVETICA CH IMICA ACTA, 1977, 60(4): 1256-1261.
    [119]常建华,董绮功著,波谱原理及解析.科学技术出版社., 2001. 80-93
    [120] Ning-Hai Hu, Zhi-Gang Li, Jing-Wei Xu, Heng-Qing Jia, and Jia-Jia Niu,Self-Assembly of a Water Chain with Tetrameric and Decameric Clusters in the Channel of a Mixed-Valence CuICuII Complex,Crystal Growth & Design, 2007, 7: 15-17.
    [121] Xian-Wen Wang, You-Ren Dong, Yue-Qing Zheng and Jing-Zhong Chen, A Novel Five-Connected BN Topological Network Metal-Organic Framework Mn(II) Cluster Complex, Crystal Growth & Design, 2007, 7: 613-615.
    [122] Lili Wen, Yizhi Li, Zhenda Lu, Jianguo Lin, Chunying Duan and Qingjin Meng, Syntheses and Structures of Four d10 Metal-Organic Frameworks Assembled with Aromatic Polycarboxylate and bix[bix )1,4-Bis(imidazol-1-ylmethyl)benzene], Crystal Growth & Design, 2006, 6: 530-537.
    [123]Kanji Takaoka, Masaki Kawano, Toshiya Hozumi, Shin-ichi Ohkoshi, and Makoto Fujita, 2D Hydrogen-Bonded Square-Grid Coordination Networks with a Substitution -Active Metal Site Inorganic Chemistry, 2006, 45, 3976-3982.
    [124] (a) Moulton, B., Zaworotko, M.,From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids, J. Chem. Rev., 2001, 101: 1629-1658. (b) Evans, O. R.; Lin, W. Acc. , Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks Chem. Res. 2002, 35: 511-522. (c) Janiak, C,Engineering coordination polymers towards applications,J. Chem. Soc., Dalton Trans., 2003, 2781-2804. (d) Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 2004, 43: 2334-2375. (e) Rao, C. N. R., Natarajan, S., Vaidhyanathan, R. Metal Carboxylates with OpenArchitectures, Angew. Chem. Int. Ed., 2004, 43: 1466-1469. (f)Ockwig, N. W.; elgado- Friederichs, O.; O’Keeffee, M.; Yaghi, O. M. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks, Acc. Chem. Res. 2005, 38, 176-182. (g) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.,Reticular synthesis and the design of new materials, Nature, 2003, 423: 705-714.
    [125] (a) Carlucci, L.; Ciani, G.; Proserpio, D. M. ,Polycatenation, polythreading and poly- knotting in coordination network chemistry,Coord. Chem. ReV., 2003, 246: 247-289. (b) Carlucci, L.; Ciani, G.; Proserpio, D. M. , Borromean links and other non-conventional links in ‘polycatenated’coordination polymers, CrystEngComm., 2003, 5: 269-279. (c) Bourne, S. A.; Lu, J.; Moulton, B.; Zaworotko, M.,Coexisting covalent and noncovalent nets: parallel interpenetration of a puckered rectangular coordination polymer and aromatic noncovalent nets, J. Chem. Commun., 2001, 861-862. (d) Bu, X. H.; Tong, M. L.; Chang, H. C.; Kitagawa, S.; Batten, S. R.,A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Inter- penetrating NbO-Type Network , Angew. Chem. Int. Ed., 2004, 43: 192-195.
    [126] (a) Sauvage, J. P. Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors, Acc. Chem. Res. 1998, 31, 611-619. (b) Kim, K.,Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies , Chem. Soc. ReV., 2002, 31: 96-107. (c) Fujita, M.; Sasaki, O.; Watanabe, K.; Ogura, K.; Yamaguchi, K. Self-assembled molecular ladders, New. J. Chem. 1998, 22, 189-191. (d) Carlucci, L.; Ciani, G.; Moret, M.; Proserpio, D. M.; Rizzato, S. Polymeric Layers Catenated by Ribbons of Rings in a Three-Dimensional Self-Assembled Architecture: A Nanoporous Network with Spongelike Behavior, Angew. Chem. Int. Ed., 2000, 39: 1506-1510.
    [127] (a) Blatov, V. A.; Carlucci, L.; Ciani, G.; Proserpio, D. M. Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. CrystEngComm, 2004, 6: 378-395. (b) Liang, K.; Zheng, H.; Song, Y.; Lappert, M. F.; Li, Y.; Xin, X.; Huang, Z.; Chen, J.; Lu, S. Self-Assembly of Interpenetrating Coordination Nets Formed from Interpenetrating Cationic and Anionic Three-Dimensional Diamondoid Cluster Coordination Polymers , Angew. Chem. Int. Ed., 2004, 43: 5776-5779. (c) Park, K. M.; Whang, D.; Lee, E.; Heo, J.; Kim, K. Transition Metal Ion Directed Supramolecular Assembly of One- and Two-Dimensional Polyrotaxanes Incorporating Cucurbituril, Chem. Eur. J., 2002, 8, 498-508. (d) Niel, V.; Thompson, A. L.; Munoz, M. C.; Galet, A.; Goeta, A. E.; Real, J. A. Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability , Angew. Chem. Int. Ed., 2003, 42: 3760. (e) Aitken, J. A.; Kanatzidis, M. G. Interwoven Pair of Open Frameworks in the Thiosphosphate K6Yb3(PS4)5 , J. Am. Chem. Soc., 2004, 126: 11780-11781.
    [128] (a) Batten, S. R.; Robson, R. Interpenetrating Nets: Ordered, Periodic Entanglement, Angew. Chem. Int. Ed., 1998, 37: 1460-1494. (b) Batten, S. R. Topology of interpenetration, CrystEngComm, 2001, 3: 67-67.
    [129] (a) Abrahams, B. F.; Hardie, M. J.; Hoskins, B. F.; Robson, R.; Sutherland, E. E., Infinite square-grid [Cd(CN)2]n sheets linked together by either pyrazine bridges or polymerisable 1,4-bis(4-pyridyl)butadiyne bridges arranged in an unusual criss-cross fashion, Chem. Commun.,1994, 1049-1050. (b) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Porta, F. Open Network Architectures from the Self-Assembly of AgNO3 and 5,10,15,20-Tetra(4-pyridyl)porphyrin (H2tpyp) Building Blocks: The Exceptional , Angew. Chem. Int. Ed., 2003, 42: 317-322. (c) Jensen, P.; Price, D. J.; Batten, S. R.; Moubaraki, B.; Murray, K. S. Self-Penetration - A Structural Compromise between Single Networks and Interpenetration: Magnetic Properties and Crystal Structures of [Mn (dca)2(H2O)] and [M(dca)(tcm)], M=Co, Ni, Cu, dca=Dicyanamide, N(CN)2-, tcm=Tricyanomethanide, C(CN)3-, Chem. Eur. J. 2000, 6, 3186-3195. (d) Abrahams, B. F.; Batten, S. R.; Grannas, M. J.; Hamit, H.; Hoskins, B. F.; Robson, R. Ni(tpt)(NO3)2 - A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net, Angew. Chem. Int. Ed., 1999, 38: 1475-1477. (e) Withersby, M. A.; Blake, A. J.; Champness, N. R.; Cooke, P. A.; Hubberstey, P.; Schroder, M. Assembly of a Three-Dimensional Polyknotted Coordination Polymer, J. Am. Chem. Soc., 2000, 122: 4044-4066. (f) Tong, M. L.; Chen, X. M.; Batten, S. R., A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes , J. Am. Chem. Soc., 2003, 125: 16170-16171. (g) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S., New examples of self-catenation in two three-dimensional polymeric co-ordination networks, J. Chem. Soc. Dalton Trans., 2000, 3821-3828. (h) Long, D. L.; Hill, R. J.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Wilson, C.; Schroder, M. Anion Control over Interpenetration and Framework Topology in Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes, Chem.Eur. J. 2005, 11, 1384-1391.
    [130] (a) Nakano, T.; Okamoto, Y. Synthetic Helical Polymers: Conformation and Function, Chem. ReV. 2001, 101, 4013-4038. (b) Albrecht, M.“Let's Twist Again”-Double-Stranded, Triple-Stranded, and Circular Helicates, Chem. ReV. 2001, 101, 3457-3498. (c) Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J.; O’Connor, C. J., An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4 (PO4)7]·4H2O,Science, 1993, 259: 1596-1599. (d) Song, Y.; Yu, J.; Li, Y.; Li, G.; Xu, R., Hydro- gen-Bonded Helices in the Layered Aluminophosphate (C2H8N)2[Al2(HPO4)(PO4)2],Angew. Chem. Int. Ed., 2004, 43: 2399-2402. (e) Han, L.; Hong, M. C., Recent advances in the design and construction of helical coordination polymers, Inorg. Chem. Commun., 2005, 8: 406-419.
    [131] (a) Lehn, J.M., Rigault, A., Siegel, J., Harrowfield, J., Chevrier, B., Moras, D., Proc. Natl. Acad. Sci. U.S.A Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix, 1987, 84, 2565-2569. (b) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J.M., Formation and Interconversion of Artificial Single and Double Stranded Helices, Nature, 2000, 407: 720-723. (c) Lehn, J.M. Supra- molecular Chemistry, VCH: Weinheim, Germany, 1995.
    [132] (a) Cui, Y.; Lee, S. J.; Lin, W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices,J. Am. Chem. Soc., 2003, 125: 6014-6014. (b) Chen, X. M.; Liu, G. F., Double-Stranded Helices and Molecular Zippers Assembled from Single-Stranded Coordination Polymers Directed by Supramolecular Interactions, Chem.Eur. J. 2002, 8, 4811-4817. (c) Bau, R., Crystal Structure of the Antiarthritic Drug Gold Thiomalate (Myochrysine): A Double-Helical Geometry in the Solid State , J. Am. Chem. Soc,1998, 120: 9380-9381. (d) Jouaiti, A.; Hosseini, M.W.; Kyritsakas, N. Molecular tectonics: infinite cationic double stranded helical coordination networks, Chem. Commun. , 2003, 472-473. (e) Grosshansa, P.; Jouaitia, A.; Bulacha, V.; Planeixa, J.M.; Hosseini, M.W.; Nicoudb, J.F., Molecular tectonics: from enantiomerically pure sugars to enantiomerically pure triple stranded helical coordination network, Chem. Commun., 2003, 1336-1337. (f) Xiao, D. R.; Wang, E. B.; An, H. Y.; Li, Y. G.; Su, Z. M.; Sun, C. Y., A Bridge between Pillared-Layer and Helical Structures: A Series of Three-Dimensional Pillared Coordination Polymers with Multiform Helical Chains, Chem.Eur. J., 2006, 12, 6528-6541.
    [133] Miao Du, Hua Cai, Xiao-Jun Zhao,Novel CuII, CoII and PbII supramolecular networks ofpyridine-2,6-dicarboxylate (pydc) in cooperation with a bent dipyridyl spacer via coordinative, hydrogen-bonding and aromatic stacking interactions, Inorganica Chimica Acta, 2006, 359: 673-679.
    [134] Cingi. M. B, Villa. A. C and Guastini. C , et.al, Catena(Diaqua-(u2-pyridine- 2,6-dicarboxyla- to)-copper, Gazz. Chim. Ital., 1971, 101: 825-828.
    [135] Waizumi. K., Takuno. M.,Fukushima. N., Masuda. H., trans-tetraaqua-bis (pyridine-4- car- boxylate-N)-copper(ii), J. Coord. Chem., 1998, 44, 269-279.
    [136] Labeguerie, P.; Benard, M.; Rohmer, M.M.,DFT Modeling of Sandwich Complexes Involving Cationic Palladium Chains and Polyenic or Polycyclic Aromatic Hydrocarbons, Inorg. Chem., 2007, 46(13): 5283-5291.
    [137] Weng Z. ; Teo S. ; Hor T. S.,Metal Unsaturation and Ligand Hemilability in Suzuki Coupling, Acc. Chem. Res., 2007, 40(8): 676-684.
    [138] Werner, D.; Hashimoto, S.; Tomita, T.; Matsuo, S.; Makita, Y.Examination of Silver Nano- particle Fabrication by Pulsed-Laser Ablation of Flakes in Primary Alcohols, J. Phys. Chem. C.,2008, 112(5): 1321-1329.
    [139] Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K., Variability in the Structures of [4-(Amino- methyl)pyridine]silver(I) Complexes through Effects of Ligand Ratio, Anion, Hydrogen Bonding, and -Stacking, Inorg. Chem., 2006,45: 935-944.
    [140] Lopez, X.; Huang, M.Y.; Huang, G.C.; Peng, S.M.; Li, F.Y.; Benard, M.; Rohmer, M.M. Even-Numbered Metal Chain Complexes: Synthesis, Characterization, and DFT Analysis of [Ni4(μ4-Tsdpda)4(H2O)2] (Tsdpda2- = N-(p-toluenesulfonyl)dipyridyl- diamido), [Ni4(μ4-Tsdpda)4]+, and Related Ni4 String Complexes, Inorg. Chem., 2006, 45(22): 9075-9084.
    [141] Nguyen, D.-T.; Chew, E.; Zhang, Q.; Choi, A.; Bu, X., Metal-Organic Frameworks from Zinc Sulfite Clusters, Chains, and Sheets: 4-Connected, (3,4)-Connected 3-D Frameworks and 2-D Arrays of Catenane-Like Interlocking Rings, Inorg. Chem., 2006, 45(26): 10722-10727.
    [142] Bruzewicz, D. A.; Boncheva, M.; Winkleman, A.; St. Clair, J. M.; Engel, G. S.; Whitesides, G. M., Biomimetic Fabrication of 3D Structures by Spontaneous Folding of Tapes, J. Am. Chem. Soc., 2006, 128(29): 9314-9315.
    [143] Chouparova, E.; Lanzirotti, A. and Feng, H.et.al., Characterization of Petroleum Deposits Formed in a Producing Well by Synchrotron Radiation-Based Microanalyses, Energy & Fuels, 2004, 18(4): 1199 - 1212
    [144] Wilton-Ely, J. D. E. T.; Schier, A.; Mitzel, N. W.; Schmidbaur, H.Diversity in the Structural Chemistry of (Phosphine)gold(I) 1,3,4-Thiadiazole 1,3,4-Thiad iazole -2,5-dithiolates (Bismuthiol- ates I) , Inorg. Chem., 2001, 40(24): 6266-6271.
    [145] Madhushree Sarkar and Kumar Biradha,Crystal Engineering of Metal-Organic Frameworks Containing Amide Functionalities: Studies on Network Recognition, Transformations, and Exchange Dynamics of Guests and Anions, Crystal Growth and Design, 2007, 7: 1318-1331.
    [146] C.F. Huang, H.H. Wei, G.H. Lee, Y. Wang, Structure and magnetic properties of a novel chloro-bridged polymeric cadmium(II) complex with pyridyl-substituted nitronyl nitroxide, Inorg. Chim. Acta, 1998, 279: 233-237.
    [147] I.R. Laskar, G. Mostafa, T.K. Maji, D. Das, A.J. Welch, N.R.Chaudhuri, Flexibility in co-ordinative behaviour of N-(3-hydroxypropyl)ethane-1,2-diamine toward cadmium(ii) halides: syntheses, crystal structures and solid state thermal studies ,J. Chem. Soc.Dalton Trans., 2002, 6: 1066-1071.
    [148] C. Hu, Q. Li, U. Englert, Structural trends in one and two dimensional coordination polymers of cadmium(ii) with halide bridges and pyridine-type ligands ,Cryst. Eng. Commun., 2004, 5(94): 519-529.
    [149] C. Stuhlmann, Z. Park, C. Bach, K. Wandelt, An ex-situ study of Cd underpotential deposi-tion on Cu(111), Electrochim. Acta, 1998, 44, 993-998.
    [150] Wilton-Ely, J. D. E. T.; Schier, A.; Mitzel, N. W.; Schmidbaur, H.Diversity in the Structural Chemistry of (Phosphine)gold(I) 1,3,4-Thiadiazole-2,5-dithioates (Bismuthiolates I), Inorg. Chem., 2001, 40(24): 6266-6271.
    [151] Nguyen, D.T.; Chew, E.; Zhang, Q.; Choi, A.; Bu, X., Metal-Organic Frameworks from Zinc Sulfite Clusters, Chains, and Sheets: 4-Connected, (3,4)-Connected 3-D Frameworks and 2-D Arrays of Catenane-Like Interlocking Rings, Inorg. Chem., 2006,45(26): 10722-10727.
    [152] M.J. Frisch, G.W. Trucks and H.B. Schlegel, et.al, Inc., Wallingford CT, 2004.
    [153] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, Chem. Phys. 1985, 82, 299-310.
    [154] Mayr.A., Guo.J.,Metal Complexes of Pyridylphenylisocyanides and Pyridyl-ethynylphenyl- isocyanides as Building Blocks for Coordination Polymers and Supra- molecular Assemblies, Inorg. Chem., 1999, 38: 921-928.
    [155] Dewar M. J. S., Zoebisch E. G., Healy E. F., Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 107: 3902-3909.
    [156] Peng C., Ayala P. Y., Schlegel H. B., Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem., 1996, 17: 49-56.
    [157] Stewart J. J. P., Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10: 209-220.
    [158] Stewart J. J. P., QCPE Program 455, 1983, Version 6.0, 1990.
    [159] Hahre W. J., Radom L., Schleyer P. V. R., Ab Initio Molecular Orbital Theory. Weiley, New York, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700