用户名: 密码: 验证码:
龙葵多糖亚级分1a抗宫颈癌及免疫调节作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宫颈癌是妇科易发恶性肿瘤,在发展中国家居妇科恶性肿瘤的首位。近20年来,宫颈癌发病逐渐趋于年轻化,且宫颈腺癌比例增加。因此,寻找科学、有效的途径来增强放、化疗疗效,改善预后成为宫颈癌治疗领域的一个研究热点。天然抗肿瘤药物以其毒副作用小和不产生耐药性等优点引起了高度关注,特别是在发展中国家得到了广泛的研究和利用。
     龙葵作为我国传统中药,具有抑菌、抗病毒和抗肿瘤等作用。本研究采用水提醇沉法从龙葵全草中提取龙葵多糖,并进一步分离、纯化获得质量稳定、分子量均一的龙葵多糖亚级分1a(SNL-P1a)。以小鼠荷U14宫颈癌模型为研究对象,环磷酰胺为阳性对照组,采用流式细胞术、免疫组织化学技术、酶联免疫吸附检测(ELISA)、透射电子显微镜技术(TEM)以及反转录-聚合酶链式反应(RT-PCR)等方法,对SNL-P1a可能的抗肿瘤作用及其机理,从机体免疫调节、机体抗氧化防御体系及肿瘤组织细胞周期和细胞凋亡干扰等方面进行了较深入的探讨,获得如下研究结果。
     荷宫颈癌U14小鼠模型经灌胃给予低、高剂量的SNL-P1a 13 d后,其实体瘤生长受到明显抑制(P<0.05),肿瘤重量抑制率分别为37.65和52.52%,体积抑制率分别为36.75和50.29%;而且,低、高剂量的SNL-P1a均可以显著抑制腹水性肿瘤细胞的生长(P<0.01),抑制率分别为40.00和53.68%;荷瘤小鼠的存活时间显著延长(P<0.05,P<0.01),生命延长率分别为43.95和76.43%。同时,SNL-P1a对小鼠宫颈癌细胞的肺转移也表现出显著的抑制作用,低、高剂量抑制率分别为38.92和53.89% ( P<0.05,P<0.01)。
     SNL-P1a低、高剂量处理可使荷瘤小鼠的胸腺重量显著增加(P<0.05),胸腺指数增长率分别为220.11和179.89%。同时,由于肿瘤侵袭,对荷瘤小鼠所造成的胸腺萎缩、结构破坏和细胞凋亡在SNL-P1a低、高剂量处理后都有显著改善作用,这种保护作用是通过上调Bcl-2/Bax比值、进而抑制细胞凋亡而调控;但SNL-P1a对荷瘤小鼠脾脏组织保护作用不显著(P>0.05)。
     SNL-P1a处理可使荷瘤小鼠外周血CD4+ T淋巴细胞亚群比例上升,CD8+ T淋巴细胞亚群比例显著降低(P<0.01),CD4+/CD8+倒置情况有显著改善。通过对血清相关细胞因子进行测定,荷瘤小鼠血清IFN-γ和IL-2水平均显著升高,IL-4水平显著降低(P<0.01,P<0.05),部分逆转Th1/Th2的Th2漂移;同时,SNL-P1a处理可降低血清TNF-α水平,使肿瘤细胞失去生长和转移的必要基质条件。
     SNL-P1a处理在体内可显著提高荷瘤小鼠血清总超氧化物歧化酶(T-SOD)和总抗氧化能力(T-AOC)水平(P<0.05,P<0.01),显著降低血清丙二醛(MDA)水平(P<0.05)。对其处理后荷瘤小鼠肝脏、肾脏进行分析,组织中T-SOD、T-AOC和谷胱甘肽还原酶(GR)水平都有所提高,但对肾脏GR水平无显著影响(P>0.05)。对荷瘤小鼠胸腺、脾脏组织进行测定,胸腺T-AOC、T-SOD和GR水平均显著提高(P<0.05,P<0.01),但对脾脏组织T-SOD水平无显著作用(P>0.05)。对小鼠肿瘤组织和血清进行分析,T-AOC、T-SOD、GR和乳酸脱氢酶(LDH)水平均显著降低(P<0.01),但对碱性磷酸酶(AKP)活性无显著影响(P>0.05);通过对相关自由基测定,SNL-P1a在体外对·OH自由基、O2·-自由基和DPPH自由基均有显著清除作用。
     SNL-P1a处理后,肿瘤组织细胞核增殖抗原(PCNA)、c-myc、突变型p53和cyclinD1蛋白的表达显著下调,p21蛋白的表达显著上调,从而使肿瘤组织出现G2/M期阻滞;同时,小鼠肿瘤组织细胞的Fas、FasL、Bax和Caspase-3蛋白表达显著上调,Bcl-2蛋白表达显著下调,进一步可使更多的肿瘤组织细胞通过死亡受体和线粒体两条途径同时发生凋亡。
     本论文对SNL-P1a抗小鼠宫颈癌和免疫调节作用进行了研究,对其作用机理和调控途径进行了较为深入的探讨,为SNL-P1a作为天然抗宫颈癌药物的进一步开发提供了理论依据。
Uterine cervical carcinoma is one of the most common gynecologic malignant tumors in the world, and its occurrence ratio has taken the first place in the developing countries. Because it has the trend of rejuvenation in cervical cancer emergence, and the rate of cervical adenocarcinoma is increasing, find a feasible method to enhance the efficacy of radiotherapy and chemotherapy becomes increasingly attractive. Recently, natural-derived antitumor agents have attracted more attention for less side effects and no-drug-resistance.
     Solanum nigrum Linne is a kind of traditional Chinese medicine, and it has the effects of antibacteria, antivirus and antitumor. Polysaccharides of Solanum nigrum L. (SNL-P) was got by water-extraction and alcohol precipitation, and a sub-fraction 1a (SNL-P1a) was got through further purification which was homogeneous in molecular weight and stable in quality. After the cervical cancer-bearing mice models were established, the effects of SNL-P1a on body’s immune system, antioxidant defense system, cell cycle and apoptosis of tumor tissue cells were studied by methods of flow cytometry, immunohistochemistry, enzyme linked immunosorbent assay (ELISA), transmission electron microscopy (TEM) and reverse transcription-polymerase chain reaction (RT-PCR).
     After oral administrated tumor-bearing models with SNL-P1a for 13 days, the growth of solid tumor was inhibited significantly (P<0.05). The weight inhibition rate was 37.65 and 52.52%, and the volume inhibition rate was 36.75 and 50.19% for low and high dose treatment, respectively. SNL-P1a inhibited the growth of ascites tumor (P<0.01), and the inhibition rate was 40.00 and 53.68% for low and high dose treatment. It also prolonged the survival time of tumor–bearing mice (P<0.05, P<0.01), and the life span increasing rate was 43.95 and 76.43% respectively. Furthermore, it inhibited the lung metastasis of uterine cervical cancer (P<0.05, P<0.01), and the inhibition rate was 38.92 and 53.89%, respectively.
     SNL-P1a treatment enhanced the thymus weight of tumor-bearing mice (P<0.05), and the thymus index increasing rate was 220.11 and 179.89% for low and high dose respectively. SNL-P1a could ameliorate the atrophy, structure destruction and cell apoptosis of thymus tissue caused by tumor onslaught by elevating Bcl-2/Bax ratio and further repressing cell apoptosis. But the protection effect of SNL-P1a on spleen tissue was not significant.
     SNL-P1a treatment could increase the proportion of peripheral blood CD4+ T lymphocyte subpopulation and decrease the proportion of CD8+ T lymphocyte subpopulation significantly (P<0.01), so ameliorate the reversion status of CD4+/CD8+ of tumor-bearng mice. It could also up-regulate the levels of serum IFN-γand IL-2, but down-regulate the level of serum IL-4 (P<0.01, P<0.05), then reverse the shift of Th1/Th2 toward Th2 partially. Meanwhile, SNL-P1a treatment could also decrease the level of serum TNF-αsignificantly, which deprived the necessary conditions of the growth and metastasis of tumor cells.
     SNL-P1a treatment could increase the levels of serum T-SOD and T-AOC (P<0.05, P<0.01), but decrease the MDA level in tumor-bearing mice significantly (P<0.05). It also improved the T-SOD and T-AOC levels in liver and kidney of tumor-bearing mice, and improved the GR level in liver but did not influence the GR level in kidney (P>0.05). Furthermore, SNL-P1a could increase the T-AOC level in thymus and spleen tissue (P<0.05, P<0.01), increase T-SOD level in thymus (P<0.05), but not in spleen (P>0.05). It could also enhance GR level in thymus and spleen tissues. To tumor tissues, SNL-P1a treatment decreased T-AOC, T-SOD and GR levels significantly (P<0.01). Besides that, the serum LDH level of tumor-bearing mice was suppressed by the treatment of SNL-P1a markedly (P<0.01), but the serum AKP level remained unchanged (P>0.05). Experiments in vitro further showed that SNL-P1a had strong effects on scavenging·OH radical, O2·- radical and DPPH radical.
     The tumor cell cycle was arrested in G2/M phase by SNL-P1a treatment, which might cause by the down-regulation of proteins of proliferating cell nuclear antigen (PCNA), c-myc, mutant p53 and cyclinD1 and the up-regulation of protein p21. Meanwhile, SNL-P1a treatment also caused the up-regulation of proteins Fas, FasL, Bax and Caspase-3 and down-regulation of Bcl-2 protein in tumor tissue cells, which might lead to the apoptosis of tumor tissue cells.
     The studies of anti-cervical cancer and immunomodulating effects of SNL-P1a on tumor-bearing mice provided theoretical supports for further development of SNL-P1a as an anti-cervical cancer agent.
引文
1曹泽毅,宋鸿照,江森.妇科肿瘤学.北京:北京出版社,1998,646
    2曹泽毅.子宫颈癌治疗的变迁和思考.中华妇产科杂志,2004,359(3):212-215
    3 A. Duenas-Gonzalez, L. Cetina, I. Mariscal, J. de la Garza. Modern Management of Locally Advanced Cervical Carcinoma. Cancer Treat Rev, 2003,29(2):389-399
    4 K. Vermeulen, D.R. van Bockstaele, Z.N. Berneman. The Cell Cycle: a Review of Regulation, Deregulation and Therapeutic Targets in Cancer. Cell Prolif, 2003, 6:131-49
    5 K. Vermeulen, Z.N. Berneman, D.R. van Bockstaele. Cell Cycle and Apoptosis. Cell Prolif, 2003, 36:165-175
    6 L.H. Hartwell, M.B. Kastan. Cell Cycle and Cancer. Science, 1994,266:1821-1828
    7 R.A. Weinberg. How Cancer Arises. Sci Am, 1996,275(3):62-70
    8 P.J. Bergman, D. Harris. Radioresistance, Chemoresistance and Apoptosis Resistance: The Past, Present and Future. Vet Clin North Am Small Anim Pract, 1997:27(1):47-57
    9 Y. Arima, T. Hirota, C. Bronner, M. Mousli, T. Fujiwara, S. Niwa, et al. Down Regulation of Nuclear Protein ICBP90 by P53/P21Cip1/WAF1-dependent DNA Damage Checkpoint Signals Contributes to Cell Cycle Arrest at G1/S Transition. Genes Cells, 2004,9:131-142
    10 K. Latham, G.L. Baker, K. Musunuru, Y.L. Chen, S.W. Eastman, A. Wong, et al. Cell Cycle Control and Differentiation: Mechanisms of Proliferative Dysfunction in Cancer Cells. Cancer Detect Prev, 1996,20(5):121-134
    11 H. Hattori, M. Kuroda, T. Ishida, K. Shinmura, S. Nagal, K. Mukal, et al. Human DNA Damage Checkpoints and Their Relevance to Soft Tissue Sarcoma. Pathol Int, 2004,54:26-31
    12 T. Marumoto, T. Hirota, T. Morisaki, N. Kunitoku, D. Zhang, Y. Ichikawa, et al. Roles of Aurora-A Kinase in Mitotic Entry and G2 Checkpoint in Mammalian Cells. Genes Cells, 2002,7: 1173-1182
    13 C. Golias, A. Charalabopoulos, K. Charalabopoulos. Cell Proliferation and Cell Cycle Control: a Mini Review. Int J Clin Pract, 2004,58:1134-1141
    14 N. Zamzami, G. Kroemer. Apoptosis: Mitochondrial Membrane Permeabilization—the (W)hole Story? Curr Biol, 2003,13:R71-R73
    15 S.C. Shen, C.H. Ko, S.W. Tseng, S.H. Tsai, Y.C. Chen. Structurally Related Antitumor Effects of Flavanones in Vitro and in Vivo: Involvement of Caspase 3 Activation, P21 Gene Expression, and Reactive Oxygen Species Production. Toxicol Appl Pharm, 2004,197:84-95
    16 A. Krueger, S. Baumann, P.H. Krammer. ICE Inhibitory Proteins: Regulators of Death Receptor Mediated Apoptosis. Mol Cell Biol, 2001,21:8247-8254
    17 E.C. Ledgerwood, J.G. Pober, J.R. Bradley. Recent Advances in the Molecular Basis of TNF Signal Transduction. Lab Invest, 1999,79:1041-1050
    18 P.L. Oliveira, S. Garcia, H. Lecoeur. Increased Sensitivity of T Lymphocytes to Tumor Necrosis Factor Receptor (TNFR1) and TNFR2 Mediated Apoptosis in HIV Infections: Relation to Expression of Bcl-2 and Active Caspase-8 and Caspase-3. Blood, 2002,99:1666-1675
    19 S. Gupta. Molecular Steps of Tumor Necrosis Factor Receptor Mediated Apoptosis. Curr Mol Med, 2001,1:317-324
    20 U. Sartorius, I. Schmitz, P.H. Krammer. Molecular Mechanism of Death Receptor Mediated Apoptosis. Biochem, 2001,2:20-29
    21 W.L. Snearwin, N.L. Harvey, S. Kumar. Subcelular Localization and CARD Dependent Oligomerization of the Death Adaptor RAIDD. Cell Death Differ, 2000,7: 155-165
    22 I.K. Kim, S. Gupta. Expression of TRAIL, DR4 (TRAIL receptor 1), DR5(TRAIL receptor 2) and TRID (TRAIL receptor 3) Genes in Multidrug Resistant Human Acute Myeloid Leukemia Cell Lines that Over Expression MDR1 (HL 60/79X) or MRP (HL60/AR). Biochem Biophys Res Commun, 2000,277: 311-316
    23刘光伟,龚守良.细胞信号传到途径的研究进展.吉林大学学报,2004,30:485-488
    24 H. Thomadaki. BCL2 Family of Apoptosis-related Genes: Functions and Clinical Implications in Cancer. Crit Rev in Clin Lab Sci, 2006,43:1-67
    25 Y. Zhu, Y.I. Xu, K. Huang. Mitochondrial Permeability Transition and Cytochrome C Release Induced by Selenite. J Inorg Biochem, 2002,90:43-50
    26 C. Cande, I. Cohen, E. Daugas, L. Larochette, N. Zamzami, G. Kroemer. Apoptosis Inducing Factor (AIF): A Novel Caspase-Independent Death Effector Released from Mitochondria. Biochimie, 2002,84:215-222
    27 N.N. Danial. Bcl-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death. Clin Cancer Res, 2007,13:7254-7263
    28张洪波,曹贵方,胡燕玲,刘林英.细胞凋亡基因调控.畜牧与饲料科学,2004,2:49-51
    29巴桑卓玛.细胞凋亡与肿瘤.西藏科技,2004,12:47-50
    30王瑞延,申兴斌,许倩,等.黄芩茎叶总黄酮对人宫颈癌Hela细胞株体外生长的影响.山东医药,2005,45(2):15-16
    31龙玲,李青旺.皂刺抑制小鼠宫颈癌U14的生长及对PCNA和p53表达的影响.中国中药杂志, 2006,31(2):150-153
    32 T. Zhang, Q.W. Li, K. Li, Y.R. Li, J. Li. Anti-tumor Effects of Saponin Extract from Patrinia villosa (Thunb.) Juss on Mice Bearing U14 Cervical Cancer. Phytother Res, 2008,22(5):640-645
    33 K. Li, Q.W. Li, Z.S. Han, J. Li Alkaloid from Angelicae Dahuricae Inhibits HeLa Cell Growth by Inducing Apoptosis and Increasing Caspase-3 Activity. Lab Med. 2008, 39(9):540-546
    34钟志宏,李秋瑾,田红,等.葡萄籽提取物对Hela细胞的生长抑制作用.疾病控制杂志, 2005,9(1):80-81
    35谭朝阳,何迎春,田道法,等.茜草提取物对宫颈癌Hela细胞杀伤动力学研究.中医药学刊, 2004,22(12):2213-2214
    36 K. Li, Q.W. Li, J. Li et al. Antitumor Activity of the Procyanidins from Pinus koraiensis Bark on Mice Bearing U14 Cervical Cancer. Yakugaku Zasshi, 2007,127(7):1145-1151
    37黄桂林.肉桂酸锗不同给药途径对小鼠宫颈癌Ul4抑制作用研究.中国病理生理杂志, 2001,17(8):813-815
    38 K.S. Heo, K.T. Lim. Glycoprotein Isolated from Solanum nigrum L. Modulates the Apoptotic Related Signals in 12-O-tetradecanoylphorbol 13-acetate-stimulated MCF-7 Cells. J Med Food, 2005,8(1):69-77
    39 K. Raju, G. Anbuganapathi, V. Gokulakrishnan, B. Rajkapoor, B. Jayakar, S. Manian. Effect of Dried Fruits of Solanum nigrum L against CCl4—Induced Hepatic Damage in Rats. Bilo Pharm Bul1, 2003,26(11):1618-1619
    40 P.F. Moundipa, F.M. Domngang. Effect of the Leafy Vegetable Solanum on the Activities of Meliver Drug—Metabolizing Enzymes after Aflatoxin B1 Treatment in Female Rats. Br J Nutr, 1991,65(1):81-91
    41常艳杰.五味子粗多糖对H22、S180荷瘤小鼠抑制作用的实验研究.中医药信息,2007, 24(5):18-20
    42邓槐春,谭章光,谢姣娥等.海带多糖的药理作用.中草药,1987,18(2):15-17
    43 S.D. Park, Y.S. Lai, C.H. Kim. Immunopotentiating and Antitumor Activities of the Purified Polysaccharides from Phellodendron Chinese SCHNEID. Life Sci, 2004,75:2621-2632
    44 M. Zhang, P.C.K. Cheung, L.C.M. Chiu, E.Y.L. Wong, V.E.C. Ooi. Cell Cycle Arrest and Apoptosis Induction in Human Breast Carcinoma MCF-7 Cells by Carboxymethylatedβ-glucan from the Mushroom Sclerotia of Pleurotus tuber-regium. Carbohyd Polym, 2006,66:455-462
    45 L.Q. Jin, Z.J. Zheng, Y. Peng, W.X. Li, X.M. Chen, J.X. Lu. Opposite Effects on Tumor Growth Depending on dose of Achyranthes bidentata Polysaccharides in C57BL/6 Mice. Int Immunopharmacol, 2007,7:568-577
    46吕晓英,曾令福.红毛五加多糖对体外人胃癌细胞抑制作用及其作用机制研究.实用癌症杂志, 2000,15:21-25
    47 K. Umemura, K. Yanase, M. Suzuki, K. Okutani, T. Yamori, T. Andoh. Inhibition of DNA TopoisomerasesⅠandⅡ, and Growth Inhibition of Human Cancer Cell Lines by a Marine Microalgal Polysaccharide. Biochem Pharmacol, 2003,66:481-487
    48 I. Lavi, D. Friesem, S. Geresh, Y. Hadar, B. Schwartz. An Aqueous Polysaccharide Extract from the Edible Mushroom Pleurotus ostreatus Induces Anti-proliferative and Pro-apoptotic Effects on HT-29 Colon Cancer Cells. Cancer Lett, 2006,244:61-70
    49 M.J. Kwon, T.J. Nam. A Polysaccharide of the Marine Alga Capsosiphon fulvescens Induces Apoptosis in AGS Gastric Cancer Cells via an IGF-ⅠR-mediated PI3K/Akt Pathway. Cell Biol Int, 2007,31(8):768-775
    50 M. Zhang, H.X. Chen, J. Huang, Z. Li, C.P. Zhu, S.H. Zhang. Effect of lycium barbarum Polysaccharide on Human Hepatoma QGY7703 Cells: Inhibition of Proliferation and Induction of Apoptosis. Life Sci, 2005,76:2115-2124
    51周永.多糖类抗肿瘤作用的研究进展.中外医学卫生学分册,2001,28(3):129-132
    52杨江苏,秦旭平,张娜,颜卉君.两种真菌多糖对HL-60细胞酪氨酸蛋白磷酸化作用的影响.中国药学杂志,2000,35(5):303-305
    53 J. Chen, W. Zhang, T. Lu, J. Li, Y. Zheng, L. Kong. Morphological and Genetic Characterization of a Cultivated Cordyceps sinensis Fungus and Its Polysaccharide Component Possessing Antioxidant Property in H22 Tumor-bearing Mice. Life Sci, 2006,78(23):2742-2748
    54 T. Kanoh, K. Matsunaga, K. Saito, T. Fujii. Suppression of in Vivo Tumor-induced Angiogenesis by the Protein-bound Polysaccharide PSK. In Vivo, 1994,8:247-255
    55 Q.P. Wu, Y.Z. Xie, S.Z. Li, D.P.L. Pierre, Z.Q. Deng, Q. Chen, et al. Tumor Cell Adhesion and Integrin Expression Affected by Ganoderma lucidum. Enzyme Microb Tech, 2006,40:32-41
    56 S.B. Han, C.W. Lee, M.R. Kang, Y.D. Yoon, J.S. Kang, K.H. Lee, et al. Pectic Polysaccharide Isolated from Angilica gigas Nakai Inhibits Melanoma Cell Metastasis and Growth by Directly Preventing Cell Adhesion and Activating Host Immune Functions. Cancer Lett, 2006, 243(2):264-273
    57 I. Foster. Cancer: A Cell Cycle Defect. Radiography, 2008, 14: 144-149
    58 A. Gewies. Introduction to Apoptosis. ApoReview, 2003,1:1-26
    59 S. Sultana, S. Perwaiz, M. Iqbal, M. Athar. Crude Extracts of Hepatoprotective Plants, Solanum nigrum and Cichorium intybus Inhibit Free Radical-mediated DNA Damage. J Ethnopharmacol, 1995,45:189-192
    60 K.V. Prashanth, S. Shashidhara, M.M. Kumar, B.Y. Sridhara. Cytoprotective Role of Solanum nigrum Against Gentamicin-induced Kidney Cell (Vero Cells) Damage in Vitro. Fitoterapia, 2001,72:481-486
    61 R. Saijo, K. Murakami, T. Nohara, T. Tomimatsu, A. Sato, K. Matsuoka. Studies on the Constituents of Solanum Plants. II. On the Constituents of the Immature Berries of Solanum nigrum. Yakugaku Zasshi, 1982,102:300-305
    62 J.A. Duke. Handbook of Medicinal Herbs. Florida, USA: CRC Press Inc., 1985,67-68
    63 R.L. Sun, Q.X. Zhou, X. Wang. Relationship between Cadmium Accumulation and Organic Acids in Leaves of Solanum nigrum L. as a Cadmium-hyperaccumulator. Huan Jing Ke Xue, 2006,27(4):765-769
    64 Y.O. Son, J. Kim, J.C. Lim, Y. Chung, G.H. Chung, J.C. Lee. Ripe Fruit of Solanum nigrum L. Inhibits Cell Growth and Induces Apoptosis in MCF-7 Cells. Food Chem Toxicol, 2003,41:1427-1428
    65 S.J. Lee, K.T. Lim. 150KDa Glycoprotein Isolated from Solanum nigrum Linne Stimulates Caspase-3 Activation and Reduces Inducible Nitric Oxide Production in HCT-116 Cells. Toxicol in vitro, 2006,20:1088-1097
    66 J. Li, Q.W. Li, T. Feng, K. Li. Aqueous Extract of Solanum nigrum Linne Inhibit Growth of Cervical Carcinoma (U14) via Modulating Immune Response of Tumor Bearing Mice and Inducing Apoptosis of Tumor cells. Fitoterapia, 2008, 80:497-506
    67方积年.多糖的分离纯化及其纯度鉴别与分子量测定.药学通报,1984,19(10),46-49
    68梁忠岩,张冀伸.斜顶菌中水溶性多糖的研究(Ⅰ):分离纯化和结构确定.高等学校化学学报, 1983,4(3):364-370
    69林颖,吴敏,吴雯.天然产物中的糖含量测定方法及确定的研究.天然产物研究与开发, 1996,8(3):5-9
    70李小定.灰树花多糖的结构及其生物活性.[华中农业大学博士论文].2002:47
    71 Q.Y. Yang, Y.F. Zhou. A protein bound polysaccharide-PSP. In Q. Y. Yang & C. Y. Kwok (Eds.), Proceedings of PSP International Symposium. Shanghai, China: Fundan University Press. 1993:22-34
    72 X.T. Yang, J.M.F. Wan, K. Mi, H.Q. Feng, D.K.O. Chan, Q.Y. Yang. The Quantification of (1,3)-β-glucan in Edible and Medicinal Mushroom Polysaccharides by Using Limulus G Test. Mycosystema, 2003,2:296-302
    73 C.L. Lee, X. Yang, J.M. Wan. The Culture Duration Affects the Immunomodulatory and Anticancer Effect of Polysaccharide Derived from Coriolus versicolor. Enzyme Microb Tech, 2006,38:14-21
    74肖桂武,曾和平.龙葵多糖的分离、纯化和鉴定.药物生物技术,1998,5(3):157-160
    75 S.B. Han, Y.D. Yoon, H.J. Ahn, H.S. Lee, C.W. Lee, W.K. Yoon, et al. Toll-like Receptor -mediated Activation of B Cells and Macrophages by Polysaccharide Isolated from Cell Culture of Acanthopanax senticosus. Int Immunopharmacol, 2003,3:1301-1312
    76 H.M. Kim, S.B. Han, G.T. Oh, Y.H. Kim, D.H. Hong, N.D Hong. Stimulation of Humoral and Cell Mediated Immunity by Polysaccharide from Mushroom Phellinus linteus. Int J Immunopharmacol, 1996,18(5):295-303
    77 A.T. Borchers, J.S. Stern, R.M. Hackman, C.L. Keen, M.E. Gershwin. Mushrooms, Tumors and Immunity. Proc Soc Exp Biol Med, 1999,221(4):281-293
    78 F. Liu, V.E. Ooi, M.C. Fung. Analysis of Immunomodulating Cytokine mRNAs in the Mouse Induced by Mushroom Polysaccharides. Life Sci, 1999,64(12): 1005-1011
    79 S.B. Han, Y.H. Kim, C.W. Lee, S.M. Park, H.Y. Lee, K.S. Ahn. Characteristic Immunostimulation by Angelan Isolated from Angilica gigas Nakai. Immunopharmacol, 1998,40(1):39-48
    80 Y.J. Jeon, S.B. Han, K.S. Ahn, H.M. Kim. Activation of NF-kappaB/Rel in Angelan and LPS. Immunopharmacol, 2000,49(3):275-284
    81 S.B. Han, C.W. Lee, Y.J. Jeon, N.D. Hong, I.D. Yoo, K.H. Yang. The Inhibitory Effect of Polysaccharides Isolated from Phellinus linteus on Tumor Growth and Metastasis. Immunopharmacol, 1999,41(2):157-164
    82 K. Kim, E. Seo, Y. Lee, T. Lee, Y. Cho, O. Ezaki. Effect of Dietary Platycodon grandiflorum on the Improvement of Insulin Resistance in Obese Zucker Rats. 2000, 11(9): 420-424
    83陈奇.中药药理研究方法学.北京:人民卫生出版社,1994:1085-1086
    84 D. Zou, M. Shibuya, K. Shinoda, S. Hibino, K. Matsuda, K. Takenaka, et al. The Difference of Angiogenesis in Human Lung Adenocarcinoma Cell Lines with Different Metastatic Potency. J Nippon Med Sch, 2004,71(3):181-189
    85全国抗癌药物研究协会.抗肿瘤药物体内筛选规程(草案).北京:人民卫生出版社,1987:47-51
    86李桂圆,陈龙邦,臧静,等.C57BL/6小鼠黑色素瘤B16细胞株在ICR小鼠肿瘤模型的建立.医学研究生学报,2003,16(4):262-265
    87高进.肿瘤学基础与研究方法.北京:人民卫生出版社,1998:67-97
    88薛克勋,高岩,高进.小鼠子宫颈癌U14移植到近交系小鼠后生长特性和转移规律的研宄.中华病理学杂志,1987,16(2):140
    89徐叔云,卞如濠,陈修.药理实验方法学.北京:人民卫生出社,2001:202-204
    90 V.E. Ooi, F. Liu. Immunomodulation and Anti-cancer Activity of Polysaccharide-protein Complexes. Curr Med Chem, 2000,7:715-729
    91 Y.O. Kim, H.W. Park, J.H. Kim, J.Y. Lee, S.H. Moon, C.S. Shin. Anti-cancer Effect and Structural Characterization of Endo-polysaccharide from Cultivated Mycelia of Inonotus obliquus. Life Sci, 2006,79:72-81
    92 R. Kato, T. Ishikawa, S. Kamiya, F. Oguma, M. Ueki, S. Goto, et al. A New Type of Antimetastatic Peptide Derived from Fibronectin. Clin Cancer Res, 2002,8:2455-2462
    93 G. Hannigan, A.A. Troussard, S. Dedhar. Integrin-linked Kinase: A Cancer Therapeutic Target Unique among Its ILK. Nat Rev Cancer, 2005,5:51-63
    94 M.P. Playford, M.D. Schaller. The Interplay between Src and Integrins in Normal and Tumor Biology. Oncogene, 2004,23:7928-46
    95 S.A. Stacker, M.G. Achen, L. Jussila, M.E. Baldwin, K. Alitalo. Lymphangiogenesis and Cancer Metastasis. Nat Rev Cancer, 2002,2:573-83
    96 T. Furukawa, T. Kubota, M. Watanabe, T.H. Kuo, S. Kase, Y. Saikawa, et al. Immunochemotherapy Prevents Human Colon Cancer Metastasis after Orthotopic Onplantation of Histologicallyintact Tumor Tissue in Nude Mice. Anticancer Res, 1993,13:287-291
    97 H. Mushiake, T. Tsunoda, M. Nukatsuka, K. Shimao, M. Fukushima, H. Tahara. Dendritic Cells Might Be One of Key Factors for Eliciting Antitumor Effect by Chemoimmunotherapy in Vivo. Cancer Immunol Immunother, 2005,54:120-128
    98 M.L. Salgaller, P.A. Lodge. Use of Cellular and Cytokine Adjuvants in the Immunotherapy of Cancer. J Surg Oncol, 1998,68:122-138
    99 I.W. Hadden. Immunodeficiency and Cancer Prospects for Correction. Int Immunopharmacol, 2003,3:1061-1071
    100 D.M. Lopez, V. Charyulu, B. Adkins. Influence of Breast Cancer on Thymus Function in Mice. J Mammary Gland Biol Neoplasia, 2002,7:191-199
    101 M. Kanazawa, K. Yoshihara, H. Abe, M. Iwadate, W K. Atanabe, S. Suzuki, et al. Effects of PSK on T and Dendritic Cells Differentiation in Gastric or Colorectal Cancer Patients. Anticancer Research, 2005,25:443-449
    102 M. Okamoto, G. Ohe, S. Furuichi, H. Nishikawa, T. Oshikawa, T. Tano, et al. Enhancement of Anti-tumor Immunity by Lipoteichoic Acid-related Molecule Isolated from OK-432, aStreptococcal Agent, in Athymic Nude Mice Bearing Human Salivary Adenocarcinoma: Role of Natural Killer Cells. Anticancer Research, 2002,22:3229-3239
    103 T.P. Wustrow, C.G. Mahnke. Causes of Immunosuppression in Aquamous Cell Carcinoma of the Head and Neck. Anticancer Res, 1996,16:2433-2468
    104 B.Z., Zaidman,M. Yassin, J. Mahajna, S.P. Wasser. Medicinal Mushroom Modulators of Molecular Targets as Cancer Therapeutics. Appl Microbiol Biotechnol, 2005,67(4): 453-68
    105 L. Long, Q.W. Li. The effect of Alkaloid from Oxytropis ochrocephala on Growth Inhibition and Expression of PCNA and P53 in Mice Bearing H22 Hepatocellular Carcinoma. Yakugaku Zasshi, 2005,125:665-670
    106 V.E.C. Ooi, F. Liu. Immunomodulation and Anticancer Activity of Polysaccharide Protein Complexes. Curr Med Chem, 2000,7:715-729
    107 S.K. Han, S.C. Yee, K. Taeseok, B. Seungmin, Y.O. Tae, W. Jing, et al. Enhancement of Antitumor Immunity of Dendritic Cells Pulsed with Heat-treated Tumor Lysate in Murine Pancreatic Cancer. Immunol Lett, 2006,103,142-148
    108 H. Fujiwara, M. Fukuzawa, T. Yoshioka, H. Nakajima, T. Hamaoka. The Role of Tumor-specific Lyt-1+2-T Cells in Eradicating Tumor Cells in Vivo. I. Lyt-1+2-T Cells do not Necessarily Require Recruitment of Host’s Cytotoxic T cell Precursors for Implementation of in Vivo Immunity. J Immunol, 1984,133:1671-1676
    109 D. Mumberg, P.A. Monach, S. Wanderling, M. Philip, A.Y. Toledano, R.D. Schreiber, et al. CD4+ T Cells Eliminate MHC Class II-negative Cancer Cells in Vivo by Indirect Effects of IFN-γ. Immunology, 1999,96:8633-8638
    110 H.I. Levitsky, A. Lazenby, R.J. Hayashi, D.M. Pardoll. In Vivo Priming of Two Distinct Antitumor Effector Populations: the Role of MHC Class I Expression. J Exp Med, 1994,179:1215-1224
    111 K. Hung, R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll, H. Levitsky. The Central Role of CD4+ T Cells in the Antitumor Immune Response. J Exp Med, 1998,188:2357-2368
    112 E.A.K. Alsabti. The Immunostatus of Untreated Cervical Carcinoma. Gynecol Oncol, 1980,9:6-11
    113 T. Ishiguro, I. Sugitachi, K. Katoli. Tand B Lymphocytes in Patients with Squamous Cell Carcinoma of the Uterine Cervix. Gynecol Oncol, 1980,9:80-85
    114 V.K. Saxena, S. Chander, M. Chandra, S. Sachdeva, D. Ghosh, H.M. Saxena. A Study of T Lymphocyte Population in Cancer of the Cervix: Effects of Pelvis Irradiation. Int J Cancer, 1985,22:173-177
    115 S. Monnier-Benoit, F. Maung, D. Riethmuller, J.S. Guerrini, M. Capilna, S. Felix, et al. Immunohistochemical Analysis of CD4+ and C8+ T-cell Subsets in High Risk Human Papillomavirus-associated Pre-malignant and Malignant Lesions of the Uterine Cervix. Gynecol Oncol, 2006,102:22-31
    116 A.N. Fiander, M. Adams, A.S. Evans, A.J. Bennett, L.K. Borysiewicz. Immunocompetent for Immunotherapy? A Study Immunocompetence of Cervical Cancer Patients. Int J Gynecol Cancer, 1995,5:438-442
    117 S. Das, S. Karim, C.D. Ray, A.K. Maiti, S.K. Ghosh, K. Chaudhury. Pheripheral Blood Lymphocyte Subpopulations in Patients with Cervical Cancer. Int J Gynecol Obstet, 2007,98:143-146
    118 D. Mumberg, P.A. Monach, S. Wanderling, M. Philip, A.Y. Toledano, R.D. Schreiber, et al. CD4(+) T Cells Eliminate MHC Class II-negative Cancer Cells in Vivo by Indirect Effects of IFN-gamma. Immunology, 1999,96:8633-8638
    119 T. Schüler, Z. Qin, S. Ibe, N. Noben-Trauth, T. Blankenstein. T Helper Cell Type 1-associated and Cytotoxic T Lymphocyte-mediated Tumor Immunity Is Impaired in Interleukin 4-deficient Mice. J Exp Med, 1999,189:803-810
    120 S.H. Baek, K.H. Cho, B.S. Moon, Y.M. Lee. Reduced IL-2 but Elevated IL-4, IL-6, and IgE Serum Levels in Patients with Cerebral Infarction During the Acute Stage. J Mol Neurosci, 2000,14,191-196
    121 H.J. Jeong, B.S. Kim, J.G. Oh, K.S. Kim, H.M. Kim. Regulatory Effect of Cytokine Production in Asthma Patients by SOOJICHIM (Koryo Hand Acupuncture Therapy). Immunopharmacol Immunotoxicol, 2002,24,265-274
    122 L.C. van Kempen, D.J. Ruiter, G.N. van Muijen, L.M. Coussens. The Tumor Microenvironment: Acritical Determinant of Neoplastic Evolution. Eur J Cell Biol, 2003,82:539-548
    123 R.M. Locksley, N. Killeen, M.J. Lenardo. The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, 2001,104:487-501
    124 T. Horie, K. Dobashi, K. Iizuka, A. Yoshii, Y. Shimizu, T. Nakazawa. Interferon-gamma Rescues TNF-alpha-induced Apoptosis Mediated by Up-regulation of TNFR2 on EoL-1 Cells. Exp Hematol, 1999,27:512-519
    125 G. Sethi, B. Sung, B.B. Aggarwal. TNF: A Master Switch for Inflammation to cancer. Front Biosci, 2008,13:5094-5107
    126 R. Montesano, P. Soulie, J.A. Eble, F. Carrozzino. Tumour Necrosis Factor alpha Confers an Invasive, Transformed Phenotype on Mammary Epithelial Cells. J Cell Sci, 2005,118:3487-3500
    127 F. Balkwill. Tumor Necrosis Factor or Tumor Promoting Factor? Cytokine Growth Factor Rev, 2002,13:135-141
    128 P. Szlosarek, K.A. Charles, F.R. Balkwill. Tumor Necrosis factor-αAs a Tumor Promoter. Eur J Cancer, 2006,42:745-759
    129 C. Tselepis, I. Perry, C. Dawson. Tumour Necrosis Factor-αin Barrett’s Oesophagus: A Potential Novel Mechanism of Action. Oncogene, 2002,21:6071-6081
    130 E.J. Whitney, R.A. Krasuski, B.E. Personius. A Randomized Trial of a Strategy for Increasing High Density Lipoprotein Cholesterol Levels: Effects on Progression of Coronary Heart Disease and Clinical Events. Ann Intern Med, 2005,142:45-104
    131 M. Poupot, F. Pont, J.J. Fournie. Profiling Blood Lymphocyte Interactions with Cancer Cells Uncovers the Innate Reactivity of Human gamma delta T Cells to Anaplastic Large Cell Lymphoma. J Immunol, 2005,174:1717-1722
    132 J.W. Hadden. Immunodeficiency and Cancer Prospects for Correction. Int Immunopharmacol, 2003,3:1061-1071
    133 D.M. Lopez, V. Charyulu, B. Adkins. Influence of Breast Cancer on Thymus Function in Mice. J Mammary Gland Biol Neoplasia, 2002,7:191-199
    134 R.M. Prins, M.R. Graf, R.E. Merchant, K.L. Black, C.J. Wheeler. Thymus Function and Output of Recent Thymus Emigrant T Cells During Intracranial Glioma Progression. J Neurooncol, 2003,64:45-54
    135 A. Shanker, S.M. Singh. Immunopotentiation in Mice Bearing a Spontaneous Transplantable T-cell Lymphoma: Role of Thymic Extract. Neoplasma, 2003,50:272-279
    136 A. Shanker. Is Thymus Redundant Affect Adulthood? Immunol Lett, 2004,91:79-86
    137 M.J. Ehrke, S. Verstovsek, C.M. Krawezyk, P. Ujhazy, G. Zaleskis, D.L. Mac-cubbin. Cytophosphamide Plus Tumor Necrosis Factor a Chemoimmunotherapy Cured Mice: Life-long Immunity and Rejection of Re-implanted Primary Lymphoma. Int J Cancer, 1995,63:463-471
    138 J.E. Ohm, D.I. Gabrilovich, G.D. Sempowski, E. Kisseleva, K.S. Parman, S. Nadaf. VEGF Inhibits T-cell Development and May Contribute toTumor-induced Immune Suppression. Blood, 2003,101:4878-4886
    139 A. Shanker, S.M. Singh, A. Sodhi. Ascitic Growth of a Spontaneous Transplantable T Cell Lymphoma Induces Thymic Involution 2: Induction of Apoptosis in Thymocytes. Tumour Biol, 2000,21: 315-327
    140 M. Ghosh, U. Sadhu, S. Bhattacharya, S. Dutta, B. Bhattacharya, U. Sanyal. Evaluation of Toxicity of Beta-tethymustine, a New Anticancer Compound, in Mice. Cancer Lett, 1999, 138:107-114
    141 H. Honda, T. Inaba, T. Suzuki, H. Oda, Y. Ebihara, K. Tsuiji, et al. Expression of E2A-HLF Chimeric Protein Induced T-cell Apoptosis, B-cell Maturation Arrest, and Development of Acute Lymphoblastic Leukemia. Blood, 1999,93:2780-2790
    142 A. Bhattacharyya, D. Mandal, L. Lahiry, G. Sa, T. Das. Black Tea Protects Immunocytes From Tumor-induced Apoptosis by Changing Bcl-2/Bax Ratio. Cancer letters, 2004,209:147-154
    143 C.M. Knudson, K.S. Tung, W.G. Tourtellotte, G.A. Brown, S.J. Korsmeyer. Bax-deficient Mice with Lymphoid Hyperplasia and Male Germ Cell Death. Science, 1995,270:96-101
    144 D. Acton, H. Jacobs, J. Domen, A. Berns. Bcl-2 Reduces Lymphomagenesis in DeltaⅤ-TCR beta Transgenic Mice. Oncogene, 1997,14:2497-2501
    145 T. Naka, T. Matsumoto, M. Narazaki, M. Fujimoto, Y. Morita, Y. Ohsawa. Accelerated Apoptosis of Lymphocytes by Augmented Induction of Bax in SSI-1 (STAT-induced STAT Inhibitor-1) Deficient Mice. Proc Natl Acad Sci USA, 1998,95:15577-15582
    146 V.E.C. Ooi, F. Liu. Immunomodulation and Anticancer Activity of Polysaccharide protein complexes. Curr Med Chem, 2000,7:715-729
    147秦涛余,陈志伟.机体内活性氧生理功能研究进展.生命科学仪器,2008,6(2):12-16
    148 M. Bradford. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal Biochem, 1976,72:248-254
    149 B. Halliwell, J. M. C. Gutteride, O.I. Arumoa. The Deoxyribose Method: A Simple“Test Tube”Assay for Determination of Rate Constants for Reactions of Hydroxyl Radicals. Anal Biochem, 1987,165:215-219
    150许伸鸿,杭瑚,李运平.超氧化物歧化酶邻苯三酚测活法的研究与改进.化学通报, 2001,64(8):516-519
    151刘晓丽,赵谋明.余甘子果汁活性成分与抗氧化活性研究.食品与发酵工业,2006,32(5):151-154
    152 J.G. Eriksen, M.R. Horsman. Tumor Hypoxia—A Characteristic Feature with a Complex Molecular Background. Radiother Oncol, 2006,81:119-121
    153 Z.L. Wang, X.F. Wang. Relationship of Serum Prostate-specific Antigen and Alkaline Phosphatase Levels with Bone Metastases in Patients with Prostate Cancer. Zhonghua Nan Ke Xue, 2005,11(11): 825-827
    154 O. Er, M. Inanc, M. Ozkman, G. G. Dogu, M. Dikilitas, A. Ozturk. Predictive Value of D-dimer and LDH levels in Response to Chemotherapy in Metastatic Colorectal Cancer Patients. J Clin Oncol, 2007,25: 145-168
    155 B. Halliwell, J.M.C. Gutteridge. Protection Against Oxidants in Biological Systems: the Superoxide Theory of Oxygen Toxicity. In: K.H. Cheeseman, T.F. Slater. editors. Free Radicals in Biology and Medicine. Oxford: Clarendon Press, 1989:144-147.
    156 C.D. Upsani, A. Khera, R. Balaraman. Effect of Lead and Vitamin E, C or Spiruline on Malondialdehyde, Conjugated Dienes and Hydroperoxides in Rats. Ind J Exp Biol, 2001,39:70-74.
    157 V.J. Feron, H.P. Til, F. de Vrjer, R.A. Woutersen, F.R. Cassee, P.J. Van Bladern. Aldehydes: Occurrence, Carcinogenic Potential Mechanism of Action and Risk Assessment. Mutat Res, 1991,259:363-385
    158孙存普,张建中,段绍瑾.自由基生物学导论.合肥:中国科学技术大学出版社,1999.
    159 Q.H. Zhang, C.F. Wu, L. Duan, J.Y. Yang. Protective Effects of Total Saponins from Stem and Leaf of Panax ginseng Against Cyclophosphamide—induced Genotoxicity and Apoptosis in Mouse Bone Marrow Cells and Pheripheral Lymphocyte Cells. Food Chem Toxicol, 2008,46:293-302
    160 J.P. Kehrer, S.S. Biswal. The Molecular Effect of Acrolein. Toxicol Sci, 2000,57:6-15
    161 J. R.S.Dai, S. Weinberg, Y. Waxman. Malignant Cells Can Be Sensitized to Undergo Growth Inhibition and Apoptosis by Arsenic Trioxide through Modulation of the Glutathione Redox System. Blood, 1999,93:268-277
    162 S. Kotamraju, S.V. Kalivendi, E. Konorev, C.R. Chitambar, J. Joseph, B. Kalyanaraman. Oxidant-induced Iron Signaling in Doxorubicinmediated Apoptosis. Method Enzymol, 2004,378:362-382
    163 C. Friesen, Y. Kiess, K.M. Debatin. A Critical Role of Glutathione in Determining Apoptosis Sensitivity and Resistance in Leukemia Cells. Cell Death Differ, 2004,11( Suppl. 1 ):S73-S85
    164 H. Kamata, H. Hirata. Redox Regulation of Cellular Signaling. Cell Signal, 1999,11:1-14
    165 S. Papa, V. P. Skulachev. Reactive Oxygen Species, Mitochondria, Apoptosis and Aging. Mol Cell Biochem, 1997,174:305-319
    166 V. J. Thannickal, B. L. Fanburg. Reactive Oxygen Species in Cell Signaling. Am J Physiol Lung Cell Mol Physiol, 2000,279:L1005-L1028
    167 Z. Chen, G.Q. Chen, Z.X. Shen, S.J. Chen, Z.Y. Wang. Treatment of Acute Promyelocytic Leukemia with Arsenic Compounds: in Vitro and in Vivo Studies. Semin Hematol, 2001,38:26-36
    168 J. Kluza, A. Lansiaux, N. Wattez, M.P. Hildebrand, S. Leonce, A. Pierre, et al. Induction of Apoptosis in HL-60 Leukemia and B16 Melanoma Cells by the Acronycine Derivative S23906-1. Biochem Pharmacol, 2002, 63:1443-1452
    169 J.H. Lee, T.H. Koo, B.Y. Hwang, J.J. Lee. Kaurane Diterpene, Kamebakaurin, Inhibits NF-kappa B by Directly Targeting the DNA-binding Activity of P50 and Blocks the expression of Antiapoptotic NF-kappa B Target Genes. J Biol Chem, 2002,277:18411-18420
    170 R.B. Gartenhaus, S.N. Prachand, M. Paniaqua, Y. Li, L.I. Gordon. Arsenic Trioxide Cytotoxicity in Steroid and Chemotherapy-resistant Myeloma Cell Lines: Enhancement of Apoptosis by Manipulation of Cellular Redox State. Clin Cancer Res, 2002,8:566-572
    171 H. Maeda, S. Hori, H. Ohizumi, T. Segawa, Y. Kakehi, O. Ogawa, et al. Effective Treatment of Advanced Solid Tumors by the Combination of Arsenic Trioxide and L-buthionine-sulfoximine. Cell Death Differ, 2004,11:737-746
    172 A.M. Bode, Z. Dong. The Paradox of Arsenic: Molecular Mechanisms of Cell Transformation and Chemotherapeutic Effects. Crit Rev Oncol Hematol, 2002,42:5-24
    173 Y.M. Janssen-Heininger, M.E. Poynter, P.A. Baeuerle. Recent Advances Towards Understanding Redox Mechanisms in the Activation of Nuclear Factor Kappa B. Free Radic Biol Med, 2000,28:1317-1327
    174 G.L. Semenza. Targeting HIF-1 for Cancer Therapy. Nat Rev Cancer, 2003,3:721-732
    175 M. Koritzinsky, R. Seigneuric, M.G. Magagnin, B.T. van den, P. Lambin, B.G. Wouters. The Hypoxic Proteome Is Influenced by Genespecific Changes in mRNA Translation. Radiother Oncol, 2005,76:177-186
    176 J.M. Brown. Tumor Hypoxia in Cancer Therapy. Method Enzymol, 2007,435:295,297-321
    177 J.J. Holbrook, A. Liljas, S.J. Steindel. Lactate Dehydrogenase, in Boyer PD (ed), The Enzymes, Vol XI (ed 3). Academic Press, NY, 1975:191-292
    178 M.I. Koukourakis, A. Giatromanolaki, E. Sivridis, K.C. Gatter, A.L. Harris, Lactate Dehydrogenase 5 Expression in Operable Colorectal Cancer—A Report of the Tumor Angiogenesis Research Group. J Clin Oncol, 2006,24:4301-4308
    179 M.I. Koukourakis, A. Giatromanolaki, E. Sivridis, G. Bougioukas, V. Didilis, K.C. Gatter , et al. Tumour and Angiogenesis Research Group: Lactate Dehydrogenase-5 (LDH-5) Overexpression in Non-small-cell Lung Cancer Tissues Is Linked to Tumour Hypoxia, Angiogenic Factor Production and Poor Prognosis. Br J Cancer, 2003,89:877-885
    180 G. Bacci, A. Longhi, S. Ferrari, A. Briccoli, D. Donati, M.De. Paolis, et al. Prognostic Significance of Serum Lactate Dehydrogenase in Osteosarcoma of the Extremity: Experience at Rizzoli on 1421 PatientsTreated Over the Last 30 years. Tumori, 2004,90:478-484
    181 D. Gupta, C.A. Lammersfeld, P.G. Vashi, J. Burrows, C.G. Lis, J.F. Grutsch. Prognostic Significance of Subjective Global Assessment (SGA) in Advanced Colorectal Cancer. Eur J Clin Nutr, 2005,59:35-40
    182 A. Keshaviah, S. Dellapasqua, N. Rotmensz, J. Lindtner, D. Crivellari, J. Collins, et al. CA15-3 and Alkaline Phosphatase as Predictors for Breast Cancer Recurrence: a Combined Analysis of Seven International Breast Cancer Study Group trials. Ann Oncol, 2007,18(4):701-708
    183 D. Crivellari, K.N. Price, M. Hagen, et al. Routine Tests during Follow-up of Patients after Primary Treatment for Operable Breast Cancer. International (Ludwig) Breast Cancer Study Group (IBCSG). Ann Oncol, 1995,6:8769-8776
    184邵春林,齐藤真弘,于增亮.电离辐射诱导DNA链断裂的动力学研究.生物化学与生物物理学报, 2000,32(4):379-382
    185 J.L. Marx. Oxygen Free Radicals Linked to Many Diseases. Science, 1987,235: 529-531
    186 O. Descamps, R. Ricqueline, V. Ducros, A.M. Roussel. Mitochondrial Production of Reactive Oxygen Species and Incidence of Age-associated Lymphoma in OF1 Mice: Effect of Alternate-day Fasting. Mech Ageing and Dev, 2005,126:1185-1191
    187 K.T. Lim. Glycoprotein Isolated from Solanum nigrum L. Kills HT-29 Cells through Apoptosis. J Med Food, 2005,8(2):215-226
    188钦传光,周军,赵文等.泥鳅多糖清除活性氧和保护DNA链的作用.生物化学与生物物理学报, 2001,33(2):215-218
    189 W. Zhong, J. Peng, H. He, D. Wu, Z. Han, X, Bi, et al. Ki-67 and PCNA Expression in Prostate Cancer and Benigh Prostatic Hyperplasia. Clin Invest Med, 2008,31(1):E8-E15
    190郭昕.c-myc和p53蛋白在宫颈癌组织中的表达及临床意义.局部手术学杂志,2005,14(3):17-20
    191 E. Erba, L. Bassano, G. Di. Liberti, I. Muradore, G. Chiorino, P. Ubezio, et al. Cell Cycle Phase Perturbations and Apoptosis in Tumor Cells Induced by Aplidine. Br J Cancer, 2002,86 (9):1510-1517
    192 R.H. Decker, Y. Dai, S. Grant. The Cyclin-Dependent Kinase Inhibitor Flavopiridol Induces Apoptosis in Human Leukemia Cells (U937) Through the Mitochondrial Rather Than the Receptor-mediated Pathway. Cell Death Differ, 2001,8(7):715-724
    193 A. Di Bacco, K. Keeshan, S. L. McKenna, T.G. Cotter. Molecular Abnormalities in Chronic Myeloid Leukemia: Deregulation of Cell Growth and Apoptosis. Oncologist, 2000,5(5):405-415
    194 C.J. Sherr. Cancer Cell Cycle. Science, 1996, 274: 1672-1677
    195 B.D. Dynlacht. Regulation of Transcription by Proteins that Control the Cell Cycle. Nature, 1997,389:149-152
    196 M. Malumbres, M. Barbacid. To Cycle or Not to Cycle: a Critical Decision in Cancer. Nat Rev Cancer, 2001,1:222-231
    197 J.D. Amaral, R.E. Castro, S. Solá, C.J. Steer, C.M.P. Rodrigues. P53 Is a Key Molecular Target of Ursodeoxycholic Acid in Regulating Apoptosis. J Bio Chem, 2007,282:34250-34259
    198 A.J. Levine. P53, the Cellular Gatekeeper for Growth and Division. Cell, 1997,88:323-331
    199 S. Haupt, Y. Haupt. Manipulation of the Tumor Suppressor P53 for Potentiating Cancer Therapy. Semin Cancer Biol, 2004,14:244-252
    200 S. Lucken-Ardjomande, J.C. Matinou. Regulation of Bcl-2 Proteins and of the Permeability of the Outer Mitochondrial Membrane. CR Biology, 2005,328:616-631
    201 W.R. Taylor, G.R. Stark. Regulation of the G2/M Transition by P53. Oncogene, 2001,20:1803-1815
    202 V.M. Adhami, M.H. Aziz, S.R. Reagan-Shaw, M. Nihal, H. Mukhtar, N. Ahmad. Sanguinarine Causes Cell Cycle Blockade and Apoptosis of Human Prostate Carcinoma Cells via Modulation of cyclin Kinase Inhibitor-cyclin-cyclin-dependent Kinase Machinery. Mol Cancer Ther, 2004,3:933-940
    203 W.R. Taylor, G.R. Stark. Regulation of the G2/M Transition by P53. Oncogene, 2001,20: 1803-1815
    204 F. Irene. Cancer: A Cell Cycle Defect. Radiography, 2008,14:144-149
    205 M. Peter, I. Herskowitz. Joining the Complex: Cyclin-dependent Kinase Inhibitory Proteins and the Cell Cycle. Cell, 1994,79:181-184
    206 B.B. Aggarwal, I.D. Bhatt, H. Ichikawa, K.S. Ahn, G. Sethi, S. Sandur, et al. Curcumin-Biological and Medicinal Properties. The CRC Press, Boca Raton, FL, 2006:297-368
    207杨建民,刘连瑞.细胞凋亡的基因调控机制.细胞生物学动态,1997,2:41-47
    208 D.W. Nicholson. ICE/CED3-like Proteases as Therapeutic Targets for the Control of Inappropriate Apoptosis. Nat Biotechnol,1996,14(3):297-301
    209 S.C. Prasad, V.A. Soldatenkov, M.R. Kuettel, P.J. Thraves, X. Zou, A. Dritschilo. Protein Tumor Cells. Electrophoresis,1999,20:1065-1074
    210 F. Chen, V. Val, C. Vince, X.L. Shi. Cell Apoptosis Induced by Carcinogenic Metals. Mol Cell Biochemistry, 2001,222:183-188
    211 S. Gupta. Molecular Steps of Death Receptor and Mitochondrial Pathway of Apoptosis. Life Sci, 2001,69(25-26):2957-2964
    212 A. Krueger, S. Baumann, P.H. Krammer. FLICE Inhibitory Proteins: Regulators of Death Receptor Mediated Apoptosis. Mol Cell Biol, 2001,21(24):8247-8254
    213 N. Papo, Y. Shai. Host Defense Peptides as New Weapons in Cancer Treatment. Cell Mol Life Sci, 2005, 62:784-790.
    214 S.K. Bhutia, S.K. Mallick, S.M. Stevens, L. Prokai, J.K. Vishwanatha, T.K. Maiti. Induction of Mitochondria-dependent Apoptosis by Abrus agglutinin Derived Peptides in Human Cervical Cancer Cell. Toxicol in Vitro, 2008,22:344-351
    215 L. Sun, P. Xie, J. Wada, N. Kashihara, F.Y. Liu, Y.N. Zhao, et al. Rap1b GTPase Ameliorates Glucose-Induced Mitochondrial Dysfunction. J Am Soc Nephrol, 2008,10:1681-1688
    216 J. Li, G.Z. Sun, H.S. Lin, Y.S. Pei, X. Qi, C. An, et al. The Herb Medicine Formula“Yang Wei Kang Liu”Improves the Survival of Late Stage Gastric Cancer Patients and Induces the Apoptosis of Human Gastric Cancer Line through Fas/Fas Ligand and Bax/Bcl-2 Pathways. Int Immunopharmacol, 2008,8:1196-1206
    217 M. Cully, H. You, A.J. Levine, T.W. Mak. Beyond PTEN Mutations: the PI3K Pathway as an Integrator of Multiple Inputs During Tumorigenesis. Nat Rev Cancer, 2006,6(3):184-192
    218 J. Luo, B.D. Manning, L.C. Cantley. Targeting the PI3K-Akt Pathway in Human Cancer: Rationale and Promise. Cancer Cell, 2003,4(4):257-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700