用户名: 密码: 验证码:
MIL-101负载金属纳米催化剂的制备及其绿色催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机骨架(MOFs)是通过有机配体与金属离子自组装而成的一类新型有机-无机杂化多孔材料。与其它多孔材料相比,MOFs具有大的比表面积、高的孔隙率以及结构和性质可调等特性,这些优良性质使其在非均相催化领域具有良好的应用前景。但是,具有高效高活性的MOFs催化剂的设计制备仍然是该领域的一个难题。本论文基于MOFs材料的结构特点和性质,探索了在这类材料上修饰催化活性位的方法,旨在设计合成出应用于一些绿色催化合成反应的新型高效MOFs基催化剂,并研究揭示MOFs基催化剂的结构性质与催化性能之间的构效关系。论文的主要研究内容和研究结果如下:
     (1)以PVP为保护剂,HAuCl_4为原料,通过简单的溶胶凝胶法制备出MIL-101负载Au材料(Au/MIL-101(CD/PVP))。该催化剂在不添加碱的条件下能够高效催化一系列醇的有氧氧化反应。在160°C和无溶剂条件下,Au/MIL-101(CD/PVP)催化1-苯乙醇选择性氧化的TOF高达29300h-1,在相同的反应条件下其TOF值高于文献报道的最活泼的Au催化剂。这也是首次在溶液条件下制备出具有催化活性的MOFs负载Au催化剂。而且,Au/MIL-101(CD/PVP)具有良好的稳定性,重复使用多次后催化活性几乎没有发生改变,Au也没有发生团聚或流失现象。而另外采用葡萄糖作保护剂的溶胶凝胶法、沉淀沉积法和浸渍法三种液相方法负载的Au粒子高度聚集,在不添加碱的条件下对醇的有氧氧化反应不具有催化活性。机理研究表明,Au/MIL-101(CD/PVP)具有高催化活性的原因主要归因于高分散的Au纳米粒子以及MIL-101上芳环对装填在MIL-101孔道内的粒径小的Au纳米粒子的供电效应。
     (2) MIL-101具有很强的Lewis酸性,通过简单的浸渍法负载Pd,制备出既具有Lewis酸性又具有加氢活性的双功能Pd/MIL-101催化剂。研究发现,Pd/MIL-101在常温、常压条件下即可高效地催化苯酚加氢生成环己酮,苯酚的转化率达>99.9%,同时环己酮选择性也>99.9%。而且催化剂具有良好的稳定性,重复使用5次后催化活性没有改变。催机理研究表明,Pd纳米粒子可以活化H2;Lewis酸位可以活化苯环促进苯酚加氢反应,并通过与环己酮发生Lewis酸碱相互作用可有效抑制环己酮进一步加氢而获得高的环己酮选择性。Lewis酸和Pd的协同作用是催化剂具有优良反应活性和选择性的原因。
     (3)基于氧化催化剂的设计以及Lewis酸对芳香化合物的活化作用的发现,采用溶胶凝胶法制备出双金属负载的Au-Pd/MIL-101催化剂,并将其应用于芳香烃的SP~3C-H键选择性氧化制备芳香酯的反应。反应结果表明,Au-Pd/MIL-101能够有效地活化芳香烃,展现出良好的底物兼容性,在相同条件下所获得的TON值是文献报道催化剂的3-10倍,而且反应产物中没有检测到苯甲醇和苯甲酸,显示出优异的芳香酯选择性。机理研究表明,Au-Pd的双金属协同效应使其比单金属Au、Pd能够更加有效地活化O_2形成过氧物种;而Lewis酸位与芳香烃的相互作用使芳香烃上的甲基更易被过氧物种进攻生成苯甲醇;同时Lewis酸位与反应中间体苯甲醛的C=O基发生酸碱作用,不仅抑制了苯甲醛进一步氧化生成苯甲酸,而且也使苯甲醛的羰基C原子更容易发生亲核进攻形成半缩醛,随后半缩醛被进一步氧化成苯甲酸苄酯。
     (4) Au-Pd/MIL-101催化剂可以催化芳香烃与脂肪醇的直接氧化酯化合成芳香羧酸酯。反应结果显示,在120°C,底物/金属=2000,O_2为氧化剂的条件下,Au-Pd/MIL-101可催化各种烷基芳香烃与一系列脂肪醇的直接氧化酯化生成对应的芳香羧酸酯,烷基芳香烃转化率高达99%,目标产物选择性高达98.0%。机理研究表明,该催化反应历程没有自由基参与,主要经历SP~3C-H活化生成苯甲醇;苯甲醇进一步被氧化成苯甲醛;苯甲醛和甲醇形成半缩醛以及半缩醛被氧化得到芳香羧酸酯等四个反应步骤。
     (5)以MOF-253为催化剂,研究了其催化非活化芳烃的直接芳基化反应性能。结果发现,当配体2,2-联吡啶-5,5-二羧酸构建成MOF-253后,4-甲氧基联苯的收率从<1%提高到了50%。与文献报道的其它催化剂相比,用MOF-253作催化剂,产物的选择性得到了显著提高,尤其是位置选择性提高更为明显,位置选择性可达91%。机理研究表明,配体构建成MOF后,改变了配体中联吡啶的电子分布,从而提高了其催化活性;MOF结构中的联吡啶与反应中间体(芳基自由基)之间的π,π-堆积作用,以及MOF-253的空间位阻效应,有利于化学选择性的提高;MOF-253的孔径大小和反应分子的尺寸决定了反应分子进入孔道的方向以及方式,从而提高了目标产物的位置选择性。
Metal-organic frameworks (MOFs) are a new class of porous organic-inorganic hybridmaterials formed by the self-assembly of organic bridging ligands and metal ions. Theypossess large specific surface area and porosity as well as tunable structure and propertiescompared to other porous materials. Due to these outstanding properties, MOFs could behighly desirable and promising materials for applications in heterogeneous catalysis. However,the design and preparation of highly-efficient MOF-based catalysts remains a challengingresearch target. Based on the structural features and chemical properties of MOFs, a numberof efficient preparation methods have been developed in this thesis for tuning the catalyticactive sites of MOFs to synthesize new and highly active MOF-based catalysts. Theircatalytic performances in green synthesis reactions were investigated in detail and thestructure-performance relationships were explored. The main research contents andexperimental results are as follow:
     1) Au/MIL-101(CD/PVP) was prepared by a simple colloidal method withpolyvinylpyrrolidone (PVP) as protecting agent using HAuCl_4as the Au precursor. Thesupported gold catalyst has been shown to be highly efficient for liquid-phase aerobic alcoholoxidation in the absence of base. Au/MIL-101(CD/PVP) afforded a very high TOF of25000h-1for the conversion of1-phenylethanol under the solvent-free conditions at160°C, whichwas even higher than the values obtained on the most active Au catalysts reported in thecurrent literature under the same reaction conditions. This work also represents the firstexample of an active MOF supported Au catalyst prepared by a liquid-phase synthesis method.Moreover, the catalyst was highly stabilized against metal agglomeration and leaching,maintaining the high activities during a number of recycles. In contrast, the Au/MIL-101catalysts prepared by CD/glucose (colloidal deposition with glucose as protecting agent),DPSH (deposition-precipitation with sodium hydroxide), and IMP (impregnation) caused theagglomeration of Au nanoparticles, which were inactive for liquid-phase aerobic alcoholoxidation under base-free condition. Mechanistic studies indicate that the high catalyticperformance may be attributed to the high dispersion of Au NPs as well as the electron donation effects of aryl rings of MIL-101to the Au NPs in the large cages of the MIL-101support.
     2) The deposition of Pd nanoparticles on MIL-101with a strong Lewis acidity couldrender a bifunctional catalyst that combines Lewis acidity and hydrogenation activity. Theresults showed that Pd/MIL-101was able to effectively catalyze the selective hydrogenationof phenol to cyclohexanone in water even at atmospheric pressure and room temperaturewith>99.9%selectivity to cyclohexanone at phenol conversions>99.9%. Moreover, thecatalyst was found to be highly reusable, giving identical activities and selectivities after>5uses. Mechanistic studies indicated that Lewis acids activated aromatic rings of phenol whilePd activated H2, thereby facilitating the hydrogenation of phenol. Furthermore, acid-baseinteraction between the Lewis acid and cyclohexanone inhibited further hydrogenation tocyclohexanol. The exceptional catalytic activity and selectivity in phenols hydrogenationcould be attributed to the synergistic effect between the Lewis acidic sites and Pd on thecatalyst.
     3) Based on our previous findings on the effect of Lewis acidity on the activation ofaromatic rings, we designed and prepared a multifunctional Au-Pd/MIL-101catalyst by usinga colloidal method for the selective oxidation of SP~3C-H bonds to aromatic ester. The resultsshowed that Au-Pd/MIL-101was particularly active for aromatic hydrocarbons oxidation witha broad substrate tolorance. The TONs achieved on this catalyst were3-100times greater thanthose of previously reported catalysts under milder or at least comparable conditions. Inaddition, neither benzyl alcohol nor benzoic acid was detected in Au-Pd/MIL-101catalyzedtoluene. Mechanistic studies indicated that the synergistic effect for the Au-Pd made it morefavorable for the activation of O_2to form superoxo-like species than the correspondingmonometallic Au or Pd. At the same time, an interaction between the aromatic ring of toluenewith the Lewis acidic sites rendered toluene to be more easily attacked by the activatedoxygen species to form benzyl alcohol. On the other hand, the acid-base interaction betweenthe Lewis acid and benzaldehyde effectively suppressed the formation of benzoic acid, andalso facilitated a nucleophilic attack of the carbon atom of the carbonyl group by benzylalcohol to form the corresponding hemiacetal. Finally, the hemiacetal was further oxidized tobenzyl benzoate.
     4) Au-Pd/MIL-101could effectively catalyze the direct oxidative synthesis of aromaticmethyl esters from methyl aromatics with alcohols. The results showed that Au-Pd/MIL-101was able to accomplish the oxidative esterification of various methyl aromatics with alcoholto the corresponding ester products, up to99%conversions and98%selectivity to esters.Mechanistic studies indicated that free radical wasn’t involved in this transformation.Moreover, possible pathway for this oxidative esterification reaction involved four steps.Firstly, toluene was oxidised to benzyl alcohol via SP~3C-H bond activation over thebimetallic Au-Pd nanoparticles. The formed benzyl alcohol then undergoes a β-hydrideelimination to generate benzaldehyde. The intermediate aldehyde reacted with methanol toform the corresponding hemiacetal species which upon further oxidation provided thearomatic methyl esters.
     5) The catalytic performance of MOF-253in the direct arylation of unactivated areneswas studied. The results showed that the efficiency of bpydc ligands was dramaticallyincreased by assembling them within a MOF-253structure, and the yield of4-methoxybiphenyl increased from1%to50%. MOF-253afforded higher chemo-and regioselectivitiescompared to the other catalysts reported in related literature. Mechanistic studies indicatedthat the electron configuration of the2,2’-bipyridine moieties was changed after the ligandwas assembled into the MOF, and hence catalytic activity was improved. The improvement ofchemo-selectivity could be attributed to the steric hindrance of the micropores as well as theπ,π-stacking interactions between the2,2’-bipyridine moieties of MOF-253and the aromaticring of anisole. The pore size of the MOF-253and the dimensions of reactant moleculescaused reactant molecules to enter the pores along a certain direction, and hence theregioselectivities could be enhanced.
引文
[1] Férey G., Hybrid porous solids: past, present, future[J]. Chem. Soc. Rev.2008,37(1):191-214.
    [2] Morris R. E., Wheatley P. S., Gas storage in nanoporous materials[J]. Angew. Chem. Int. Ed. Engl.2008,47(27):4966-4981.
    [3] Wang Z., Chen G., Ding K., Self-Supported Catalysts[J]. Chem. Rev.2009,109(2):322-359.
    [4] Li J.R., Kuppler R. J., Zhou H. C., Selective gas adsorption and separation in metal-organicframeworks[J]. Chem. Soc. Rev.2009,38(5):1477-1504.
    [5] Jüntgen H., Activated carbon as catalyst support: A review of new research results[J].1986,65(10):1436-1446.
    [6] Moon S. H., Shim J. W., A novel process for CO2/CH4gas separation on activated carbon fibers-electricswing adsorption[J]. J Colloid Interf. Sci.2006,298(2):523-528.
    [7] Yaghi O. M., Keeffe M. O, Ockwig N. W., et al. Reticular synthesis and the design of new materials[J].Nature,2003,423(6941):705-714.
    [8] Dhakshinamoorthy A., Garcia H., Catalysis by metal nanoparticles embedded on metal-organicframeworks[J]. Chem. Soc. Rev.,2012,41(15):5262-5284.
    [9] Rosi N. L., Eckert J., Eddaoudi M., et al. Hydrogen storage in microporous metal-organicframeworks[J]. Science,2003,30(5622):1127-1129.
    [10] Li Y., Yang R. T., Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover[J]. J.Am. Chem. Soc.,2006,128(25):8136-8137.
    [11] Ma S. Q., Sun D. F., Simmons J. M., et al. Metal-organic framework from an anthracene derivativecontaining nanoscopic cages exhibiting high methane uptake[J]. J. Am. Chem. Soc.,2008,130(3):1012-1016.
    [12] Couck S., Gobechiya E., Kirschhock C. E., et al. Adsorption and separation of light gases on anamino-functionalized metal-organic framework: an adsorption and in situ XRD study[J]. ChemSusChem,2012,5(4):740-750.
    [13] Zhao Y. G., Wu H. H., Emge T. J., et al. Enhancing Gas Adsorption and Separation Capacity throughLigand Functionalization of Microporous Metal-Organic Framework Structures[J]. Chem. Eur. J.,2011,17(18):5101-5109.
    [14] Yuan B. Z., Ma D. Y., Wang X., et al. A microporous, moisture-stable, and amine-functionalizedmetal-organic framework for highly selective separation of CO2from CH4[J]. Chem. Comm.,2012,48(8):1135-1137.
    [15] Sun C. Y., Qin C., Wang X. L., et al. Metal-organic frameworks as potential drug delivery systems[J].Expert Opin. Drug. Deliv.,2013,10(1):89-101.
    [16] Keskin S., K z lel S., Biomedical Applications of Metal Organic Frameworks[J]. Ind. Eng. Chem. Res.,2011,50(4):1799-1812.
    [17] Della Rocca J, Liu D, Lin W., Nanoscale metal-organic frameworks for biomedical imaging and drugdelivery[J]. Acc Chem. Res.2011,44(10):957-968.
    [18] Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as apotential platform for drug delivery and imaging[J]. Nat Mater.2010,9(2):172-178.
    [19] Wang M. S., Guo S. P., Li Y., et al. A Direct White-Light-Emitting Metal-Organic Framework withTunable Yellow-to-White Photoluminescence by Variation of Excitation Light[J]. J. Am. Chem. Soc.,2009,131(38):13572-13573.
    [20] Yanai N, Sindoro M, Yan J, Granick S, Electric field-induced assembly of monodisperse polyhedralmetal-organic framework crystals[J]. J. Am. Chem. Soc.2013,135(1):34-37.
    [21] Liu J. X., Lukose B., Shekhah O., A novel series of isoreticular metal organic frameworks: realizingmetastable structures by liquid phase epitaxy[J]. Sci. Rep.,2012,2(921):1-5.
    [22] Kreno L. E., Leong K., Farha O. K., et al. Metal-Organic Framework Materials as Chemical Sensors[J].Chem. Rev.,2012,112(2):1105-1124.
    [23] Drag sser A, Shekhah O, Zybaylo O, et al. Redox mediation enabled by immobilised centres in thepores of a metal-organic framework grown by liquid phase epitaxy[J]. Chem. Commun.,2012,48(5):663-665.
    [24] Inoue K., Imai H., Ghalsasi P. S., et al. A Three-Dimensional Ferrimagnet with a High MagneticTransition Temperature (TC) of53K Based on a Chiral Molecule[J]. Angew. Chem. Int. Ed.,2001,40(22):4242-4245.
    [25] M. M. Wanderley, C. Wang, C. D. Wu, et al. A Chiral Porous Metal-Organic Framework for HighlySensitive and Enantioselective Fluorescence Sensing of Amino Alcohols[J]. J. Am. Chem. Soc.,2012,134(22):9050-9053.
    [26] Padmanaban M, Müller P, Lieder C, et al. Application of a chiral metal-organic framework inenantioselective separation[J]. Chem. Commun.,2011,47(44):12089-12091.
    [27] Das M. C., Guo Q., He Y., et al. Interplay of Metalloligand and Organic Ligand to Tune Microporeswithin Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation ofChiral and Achiral Small Molecules[J]. J. Am. Chem. Soc.,2012,134(20):8703-8710.
    [28] Wang W. J., Dong X. L., Nan J. P., et al. A homochiral metal-organic framework membrane forenantioselective separation[J]. Chem. Commun.,2012,48(56):7022-7024.
    [29] Farrusseng D., Aguado S., Pinel C., Meta-Organic Frameworks: Opportunities for Catalysis[J]. Angew.Chem. Int. Ed.2009,48(41):7502-7513.
    [30] Dhakshinamoorthy A., Alvaro M., Garcia H., Commercial metal-organic frameworks as heterogeneouscatalysts[J]. Chem. Commun.,2012,48(92):11275-1288.
    [31] Isaeva V. I., Kustov L. M., The application of metal-organic frameworks in catalysis[J]. Petrol. Chem.2010,50(3):167-180.
    [32] Shi D. B., Ren Y. W., Jiang H. F., et al. A new three-dimensional metal-organic framework constructedfrom9,10-anthracene dibenzoate and Cd(II) as a highly active heterogeneous catalyst for oxidation ofalkylbenzenes[J]. Dalton Trans.,2013,42(2):484-491.
    [33] Srirambalaji R., Hong S., Natarajan R., et al. Tandem catalysis with a bifunctional site-isolated Lewisacid-Bronsted base metal-organic framework, NH2-MIL-101(Al)[J]. Chem. Commun.,2012,48(95):11650-11652.
    [34] Xu R., Pang W., Yu J., et al. Chemistry of Zeolites and Related Porous Materials: Synthesis andStructure[M]. Singapore: John Wiley and Sons,2007:1-616.
    [35] Bansal R. C., Goyal M., Activated Carbon Adsorption; Taylor&Francis Group CRC Press: BocaRaton, FL,2005.
    [36] Li J. R., Sculley J., Zhou H. C., MetalOrganic Frameworks for Separations[J]. Chem. Rev.2012,112(2):869-932.
    [37] Park K. S., Ni Z., Cote A. P., et al. Exceptional chemical and thermal stability of zeolitic imidazolateframeworks[J]. Proc. Natl. Acad. Sci. U.S.A.2006,103(27):10186-10191.
    [38] Wang Z. Q., Cohen S. M., Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev.2009,38(5):1315-1329.
    [39] Tanabe, K. K.; Cohen, S. M. Postsynthetic modification of metal-organic frameworks-a progressreport[J]. Chem. Soc. Rev.2011,40(2):498-519.
    [40] Bradshaw D., Claridge J. B., Cussen E. J., et al. Design, chirality, and flexibility in nanoporousmolecule-based materials[J]. Acc. Chem. Res.2005,38(4):273-282.
    [41] Horike S., Shimomura S., Kitagawa S., Soft Porous Crystal[J]. Nat. Chem.2009,1(9):695-704.
    [42] Kitagawa S., Kitaura R., Noro S., Functional Porous Coordination Polymers[J]. Angew. Chem. Int. Ed.2004,43(18):2334-2375.
    [43] Ma S. Q., Zhou H. C., a metal-organic framework with entatic metal centers exhibiting high gasadsorption affinity[J]. J. Am. Chem. Soc.2006,128(36):11734-11735.
    [44] Cychosz K. A., Wong-Foy A. G., Matzger A. J., Liquid phase adsorption by microporous coordinationpolymers: removal of organosulfur compounds[J]. J. Am. Chem. Soc.2008,130(22):6938-6939.
    [45] Liu Y. L., Kravtsov V. C., Larsen R., et al. Molecular building blocks approach to the assembly ofzeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities[J]. Chem. Commun.2006,(14):1488-1490.
    [46] Mantion A., Massuger L., Rabu P., et al. Metal-peptide frameworks (MPFs):"Bioinspired" metalorganic frameworks[J]. J. Am. Chem. Soc.2008,130(8):2517-2526.
    [47] Ferey G., Mellot-Draznieks C., Serre C., et al. A Chromium Terephthalate-Based Solid with UnusuallyLarge Pore Volumes and Surface Area[J]. Science2005,309(5743):2040-2042.
    [48] Chui S. S. Y., Lo S. M. F., Charmant J. P. H., et al. A chemically functionalizable nanoporousmaterial[J]. Science1999,283(5405):1148-1150.
    [49] Harbuzaru B. V., Corma A., Rey F., et al. Metal-Organic Nanoporous Structures with AnisotropicPhotoluminescence and Magnetic Properties and Their Use as Sensors[J]. Angew. Chem., Int. Ed.2008,47(6):1080-1083.
    [50] Park H. J., Suh M. P., Mixed-Ligand Metal-Organic Frameworks with Large Pores: Gas SorptionProperties and Single-Crystal-to-Single-Crystal Transformation on Guest Exchange[J]. Chem.-Eur. J.2008,14(29):8812-8821.
    [51] Qiu S. L., Zhu G. S., Molecular engineering for synthesizing novel structures of metal-organicframeworks with multifunctional properties[J]. Coord. Chem. Rev.,2009,253(23-24):2891-2911.
    [52] Humphrey S. M., Chang J. S., Jhung S. H., et al. Porous Cobalt(II)-Organic Frameworks withCorrugated Walls: Structurally Robust Gas-Sorption Materials[J]. Angew. Chem., Int. Ed.2007,46(1-2):272-275.
    [53] Seo J. S., Whang D., Lee H., et al. A homochiral metal-organic porous material for enantioselectiveseparation and catalysis[J]. Nature,2000,404(6781):982-986.
    [54] Ockwig N. W., Delgado-Friedrichs O., O’Keeffe M., et al. Reticular chemistry: occurrence andtaxonomy of nets and grammar for the design of frameworks[J]. Acc. Chem. Res.2005,38(3):176-182.
    [55] O’Keeffe M., Peskov M. A., Ramsden S. J., et al. The Reticular Chemistry Structure Resource (RCSR)database of, and symbols for, crystal nets[J]. Acc. Chem. Res.2008,41(12):1782-1789.
    [56] Batten S. R., Neville S. M., Turner D. R., Coordination Polymers: Design, Analysis andApplication[M]. Cambridge: The Royal Society of Chemistry,2009:1-471.
    [57] O’Keeffe M., Yaghi O. M., Deconstructing the crystal structures of metal-organic frameworks andrelated materials into their underlying nets[J]. Chem. Rev.2012,112(2):675-702.
    [58] Hoskins B. F., Robson R., Design and construction of a new class of scaffolding-like materialscomprising infinite polymeric frameworks of3D-linked molecular rods. A reappraisal of the zinc cyanideand cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks
    [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. J. Am.Chem. Soc.1990,112(4):1546-1554.
    [59] Li H., Eddaoudi M., O’Keeffe M., et al. Design and synthesis of an exceptionally stable and highlyporous metal-organic framework[J]. Nature1999,402(6759):276-279.
    [60] Furukawa H., Ko N., Go Y. B., et al. Ultrahigh Porosity in Metal-Organic Frameworks[J]. Science2010,329(5990):424-428.
    [61] Czaja A.U., Trukhan N., Müller U., Industrial applications of metal-organic frameworks[J]. Chem. Soc.Rev.2009,38(35):1284-1293.
    [62] Yaghi O. M., Jernigan R., Li H., et al. Construction of a new open-framework solid from1,3,5-cyclohexanetricarboxylate and zinc(II) building blocks[J]. J. Chem. Soc., Dalton Trans.,1997,(14):2383-2384
    [63] Yaghi O. M., Davis C. E., Li G. M., et al. Selective Guest Binding by Tailored Channels in a3-DPorous Zinc(Ⅱ)-Benzenetricarboxylate Network[J]. J. Am. Chem. Soc.,1997,119(12):2861-2868.
    [64] Zhao D, Timmons D. J., Yuan D., et al. Tuning the Topology and Functionality of Metal-OrganicFrameworks by Ligand Design[J]. Acc. Chem. Res.,2011,44(2):123-133.
    [65] Klinowski J., Paz F. A. A., Silva P., et al. Microwave-Assisted Synthesis of Metal-OrganicFrameworks[J]. Dalton Trans.2011,40(2):321-330.
    [66] Jin L. N., Liu Q., Lu Y., Sun, et al. Ultrasonic-assisted solution-phase synthesis of gadoliniumbenzene-1,4-dicarboxylate hierarchical architectures and their solid-state thermal transformation[J].CrystEngComm,2012,14(10):3515-3520.
    [67] Zaworotko M. J., Metal-organic materials: A reversible step forward[J]. Nat. Chem.2009,1(4):267.
    [68] Eddaoudi M., Kim J., Rosi N., Systematic Design of Pore Size and Functionality in Isoreticular MOFsand Their Application in Methane Storage[J]. Science2002,295(5554):469-472.
    [69] J. Rogan, D. Poleti, L. Karanovic, Mixed ligand Co(II), Ni(II) and Cu(II) complexes containingterephthalato ligands. Crystal structures of diaqua (2,2%-dipyridylamine)(terephthalato)metal(II)trihydrates (metal-cobalt or nickel)[J]. Polyhedron2000,19(11):1415-1421.
    [70] Chae H. K., Siberio-Pérez D. Y., Kim J., et al. A route to high surface area, porosity and inclusion oflarge molecules in crystals[J]. Nature,2004,427(6974):523-527.Kaye S. S., Dailly A., Yaghi O. M., et al. Impact of Preparation and Handling on the Hydrogen StorageProperties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5)[J]. J. Am. Chem. Soc.,2007,129(46):14176-14177.
    [71] H. Furukawa, M. A. Miller, O. M. Yaghi, Independent verification of the saturation hydrogen uptakein MOF-177and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks[J]. J.Mater. Chem.,2007,17(30):3197-3204.
    [72] Rowsell J. L. C., Millward A. R., Park K. S., et al. Hydrogen Sorption in FunctionalizedMetal-Organic Frameworks[J]. J. Am. Chem. Soc.,2004,126(18):5666-5667.
    [73] Rowsell, J. L. C., Yaghi O. M., Effects of functionalization, catenation, and variation of the metaloxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organicframeworks[J]. J. Am. Chem. Soc.,2006,128(4):1304-1315.
    [74] Latroche, M.; Surbl, S.; Serre, C., et al. Hydrogen storage in the giant-pore metal-organic frameworksMIL-100and MIL-101[J]. Angew. Chem. Int. Ed.,2006,45(48):8227-8231.
    [75] Li Y. W., Yang R. T., Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks viaSpillover[J]. J. Am. Chem. Soc.2006,128(3):726-727.
    [76] Li Y. W., Yang R. T., Hydrogen Storage in Metal-Organic Frameworks by Bridged HydrogenSpillover[J]. J. Am. Chem. Soc.2006,128(25):8136-8137.
    [77] Liu Y. Y., Zeng J. L., Sun L. X., et al. Improved hydrogen storage in the modified metal-organicframeworks by hydrogen spillover effect[J]. Int. J. Hydrogen. Energ.,2007,32(16):4005-4010.
    [78] Wang L. F., Yang R. T., New sorbents for hydrogen storage by hydrogen spillover-a review[J]. EnergyEnviron. Sci.,2008,1(2):268-279.
    [79] Kondo M., Yoshitomi T., Matsuzaka H., et al. Three-Dimensional Framework with ChannelingCavities for Small Molecules:{[M2(4,4’-bpy)3(NO3)4]·xH2O}n(M=Co, Ni, Zn)[J]. Angew. Chem., Int. Ed.,1997,36(16):1725-1727.
    [80] Düren T., Sarkisov L., Yaghi O. M., et al. Design of New Materials for Methane Storage[J]. Langmuir2004,20(7):2683-2689.
    [81] Ma S. Q., Sun D. F., Simmons J. M., et al. Metal-Organic Framework from an Anthracene DerivativeContaining Nanoscopic Cages Exhibiting High Methane Uptake[J]. J. Am. Chem. Soc.2008,130(3):1012-1016.
    [82] Dybtsev D. N., Chun H., Yoon S. H., et al. Microporous manganese formate: A simple metal-organicporous material with high framework stability and highly selective gas sorption properties[J]. J. Am. Chem.Soc.2004,126(1):32-33.
    [83] Wang B., Cote A. P., Furukawa H., et al. Colossal cages in zeolitic imidazolate frameworks asselective carbon dioxide reservoirs[J]. Nature2008,453(7192):207-211.
    [84] Pan L., Adams K. M., Hernandez H. E., et al. Porous lanthanide-organic frameworks: synthesis,characterization, and unprecedented gas adsorption properties[J]. J. Am. Chem. Soc.2003,125(10):3062-3067.
    [85] Banerjee R., Furukawa H., Britt D., et al. Control of pore size and functionality in isoreticular zeoliticimidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc.2009,131(11):3875-3877.
    [86] Demessence A., D’Alessandro D. M., Foo M. L., et al. Strong CO2Binding in a Water-Stable,Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine[J]. J. Am. Chem. Soc.2009,131(25):8784-8786.
    [87] Bloch E. D., Britt D., Lee C., et al. Metal Insertion in a Microporous Metal-Organic Framework Linedwith2,2-Bipyridine[J]. J. Am. Chem. Soc.2010,132(41):14382-14384.
    [88]Vaidhyanathan R., Iremonger S. S., Shimizu G. K. H., et al. Direct Observation and Quantification ofCO2Binding Within an Amine-Functionalized Nanoporous Solid[J]. Science2010,330(6004):650-653.
    [89] Loiseau T., Serre C., Huguenard C., et al. A Rationale for the Large Breathing of the Porous AluminumTerephthalate (MIL-53) Upon Hydration[J]. Chem.-Eur. J.2004,10(6):1373-1382.
    [90] Cychosz K. A., Wong-Foy A. G., Matzger A. J. Enabling cleaner fuels: Desulfurization by adsorptionto microporous coordination polymers[J]. J. Am. Chem. Soc.2009,131(40):14538-14543.
    [91] Lee E Y, Suh M P., A Robust Porous Material Constructed of Linear Coordination Polymer Chains:Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration[J]. Angew.Chem. Int. Ed.,2004,43(21):2798-2801.
    [92] Miller S. R., Heurtaux D., Baati T., et al. Biodegradable therapeutic MOFs for the delivery of bioactivemolecules[J]. Chem. Commun.2010,46(25):4526-4528.
    [93] Horcajada P., Serre C., Vallet-RegíM., et al. Metal-Organic Frameworks as Efficient Materials forDrug Delivery[J]. Angew. Chem., Int. Ed.2006,45(36):5974-5978.
    [94] He Q., Shi J., Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlleddrug release and delivery, pharmacokinetics and biocompatibility[J]. J. Mater. Chem.2011,21(16):5845-5855.
    [95] Horcajada, P.; Márquez-Alvarez C., Rámila A., et al. Controlled release of Ibuprofen fromdealuminated faujasitesOriginal[J]. Solid State Sci.2006,8(12):1459-1465.
    [96] Horcajada P., Serre C., Maurin G., et al. Flexible Porous Metal-Organic Frameworks for a ControlledDrug Delivery[J]. J. Am. Chem. Soc.,2008,130(21):6774-6780.
    [97] Rieter W. J., Taylor K. M. L., An H., et al. Nanoscale Metal-Organic Frameworks as PotentialMultimodal Contrast Enhancing Agents[J]. J. Am. Chem. Soc.2006,128(28):9024-9025.
    [98] Rowe M, Thamm D, Kraft S, et al. Polymer-Modified Gadolinium Metal-Organic FrameworkNanoparticles Used as Multifunctional Nanomedicines for the Targeted Imaging and Treatment ofCancer[J]. Biomacromolecules,2009,10(4):983-993.
    [99] Taylor K., Rieter W., Lin W., Manganese-Based Nanoscale Metal-Organic Frameworks for MagneticResonance Imaging[J]. J. Am. Chem. Soc.,2008,130(44):14358-14359.
    [100] Thunus L., Lejeune R., Overview of transition metal and lanthanide complexes as diagnostic tools[J].Coord. Chem. Rev,1999,184(1):125-155.
    [101] Petit C., Bandosz T. J., MOF-graphite oxide nanocomposites: surface characterization and evaluationas adsorbents of ammonia[J]. J. Mater. Chem.,2009,19(36):6521-6528.
    [102] Banerjee A., Gokhale R., Bhatnagar S., et al. MOF derived porous carbon-Fe3O4nanocompositeas a high performance, recyclable environmental superadsorbent[J]. J. Mater. Chem.,2012,22(37):19694-19699.
    [103] Zacher D., Shekhah O., W ll C., et al. Thin films of metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1418-1429
    [104] Evans O. R., Xiong R. G., Wang Z. Y., et al. Crystal Engineering of Acentric DiamondoidMetal-Organic Coordination Networks[J]. Angew. Chem. Int. Ed.,2004,38(4):536-538.
    [105] Evans, O. R.; Lin, W. Crystal engineering of NLO materials based on metal-organic coordinationnetworks[J]. Acc. Chem. Res.,2002,35(7):511-522.
    [106] Liu T., Liu Y., Xuan W., et al. Chiral Nanoscale Metal-Organic Tetrahedral Cages: DiastereoselectiveSelf-Assembly and Enantioseleetive Separation[J]. Angew. Chem. Int. Ed.,2010,49(24):4121-4124.
    [107] Xiong R. G., You X. Z., Abrahams B. F., et al. Enantiose Paration of raeemic organic moleeules by azeolite analogue[J]. Angew. Chem. Int. Ed.,2001,40(23):4422-4425.
    [108] Parker D., Luminescent lanthanide sensors for PH, PO2and selected anions[J]. Coord. Chem. Rev.,2000,205(1):109-130.
    [109] Allendorf M. D., Bauer C. A., Bhakta R. K., et al. Lumineseent Meta-Organic Frameworks[J]. Chem.Soc. Rev.,2009,38(5):1330-1352.
    [110] Sadakiyo M., Yamada T., Kitagawa H. Rational Designs for Highly Proton-Conductive Metal OrganicFrameworks[J]. J. Am. Chem. Soc.,2009,131(29):9906-9907.
    [111] Cui Y. J., Yue Y. F., Qian G. D., et al. Luminescent Functional MetalOrganic Frameworks[J]. Chem.Rev.2012,112(2):1126-1162.
    [112] Zhang W., Xiong R. G., Ferroelectric Metal-Organic Frameworks[J]. Chem. Rev.2012,112(2):1163-1195.
    [113] Yoon M., Srirambalaji R., Kim K., Homochiral MetalOrganic Frameworks for AsymmetricHeterogeneous Catalysis[J]. Chem. Rev.2012,112(2):1196-1231.
    [114] Fujita M., Kwon Y. J., Preparation, Clathration Ability, and Catalysis of a Two-Dimensional SquareNetwork Material Composed Of Cadmium(Ⅱ) and4,4-Bipyridine[J]. J. Am. Chem. Soc.,1994,116(3):1151-1152
    [115] Ma L. Q., Lin W. B., Designing Metal-Organic Frameworks for Catalytic Applications[J]. Top. Curr.Chem.,2009,203:175-205.
    [116] Dhakshinamoorthy A., Alvaro M., Garcia H., Claisen-Schmidt Condensation Catalyzed byMetal-Organic Frameworks[J]. Adv. Synth. Catal.2010,352(4):711-717.
    [117] Vermoortele F., Ameloot R., Vimont A., et al. An amino-modified Zr-terephthalate metal-organicframework as an acid-base catalyst for cross-aldol condensation[J]. Chem. Commun.,2011,47(5):1521-1523
    [118] Yadnum S., Choomwattana S., Khongpracha P., et al. Comparison of Cu-ZSM-5Zeolites andCu-MOF-505Metal-Organic Frameworks as Heterogeneous Catalysts for the Mukaiyama Aldol Reaction:A DFT Mechanistic Study[J]. Chemphyschem.2013,14(5):923-928.
    [119] Dinca M., Dailly A., Liu Y., et al. Hydrogen Storage in a Microporous Metal-Organic Frameworkwith Exposed Mn2+Coordination Sites[J]. J. Am. Chem. Soc.2006,128(51):16876-16883.
    [120] Horike S., Dinca M., Tamaki K., et al. Size-Selective Lewis-Acid Catalysis in a MicroporousMetal-Organic Framework with Exposed Mn2+Coordination Sites-Link[J]. J. Am. Chem. Soc.2008,130(18):5854-5855.
    [121] Ladrak T., Smulders S., Roubeau O., et al. Manganese-Based Metal-Organic Frameworks asHeterogeneous Catalysts for the Cyanosilylation of Acetaldehyde[J]. Eur. J. Inorg. Chem.,2010,2010(24):3804-3812.
    [122] Schelichte K., Kratzke T., Kaskel S., Improved synthesis, thermal stability and catalytic properties ofthe metal-organic framework compound Cu3(BTC)2[J]. Micropor. Mesopor. Mat.,2004,73(1-2):81-88.
    [123] Gomez-Lor B., Gutierrez-Puebla E., Iglesias M., et al.In2(OH)3(BDC)1.5(BDC=1,4-Benzendicarboxylate): An In(III) Supramolecular3D Framework withCatalytic Activity[J]. Inorg. Chem.2002,41(9):2429-2432.
    [124] Dybtsev D. N., Nuzhdin A. L., Chun H., et al. A Homochiral Metal-Organic Material with PermanentPorosity, Enantioselective Sorption Properties, and Catalytic Activity[J]. Angew. Chem. Int. Ed.2006,45(6):916-920.
    [125] Kim J., Bhattacharjee S., Jeong K.-E., et al. Selective oxidation of tetralin over a chromiumterephthalate metal organic framework, MIL-101[J]. Chem. Commun.2009,(26):3904-3906.
    [126] Kato C. N., Hasegawa M., Sato T., et al. Microporous dinuclear copper(II)trans-1,4-cyclohexanedicarboxylate: heterogeneous oxidation catalysis with hydrogen peroxide and X-raypowder structure of peroxo copper(II) intermediate[J]. J. Catal.2005,230(1):226-236.
    [127] Han J. W., Hill C. L., A Coordination Network That Catalyzes O2-Based Oxidations[J]. J. Am. Chem.Soc.2007,129(49):15094-15095.
    [128] Xamena F. X. L. i., Abad A., Corma A., et al. MOFs as catalysts: Activity, reusability andshape-selectivity of a Pd-containing MOF[J]. J. Catal.2007,250(2):294-298.
    [129] Dhakshinamoorthy A., Alvaro M., Garcia H., Metal-Organic Frameworks (MOFs) as HeterogeneousCatalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine[J]. Adv.Synth. Catal.2009,351(14-15):2271-2276.
    [130] Gascon J., Hernandez-Alonso M. D., Almeida A. R., et al. Isoreticular MOFs as efficientphotocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation ofpropylene[J]. ChemSusChem2008,1(12):981-983.
    [131] Mahata P., Madras G., Natarajan S., Novel Photocatalysts for the Decomposition of Organic DyesBased on Metal-Organic Framework Compounds[J]. J. Phys. Chem. B2006,110(28):13759-13768.
    [132] Fu Y. H., Sun D. R., Chen Y. J., et al. An Amine-Functionalized Titanium Metal-Organic FrameworkPhotocatalyst with Visible-Light-Induced Activity for CO2Reduction[J]. Angew. Chem., Int. Ed.2012,51(14):3364-3367.
    [133] Bernini M. C., Gandara F., Iglesias M., et al. Reversible Breaking and Forming of Metal-LigandCoordination Bonds: Temperature-Triggered Single-Crystal to Single-Crystal Transformation in aMetal-Organic Framework[J]. Chem.-Eur. J.2009,15(19):4896-4905.
    [134] Gandara F., Gutierrez-Puebla E., Iglesias M., et al. Controlling the Structure of Arenedisulfonatestoward Catalytically Active Materials[J]. Chem. Mater.2009,21(4):655-661.
    [135] Zhou Y., Song J., Liang S., et al. Metal-organic frameworks as an acid catalyst for the synthesis ofethyl methyl carbonate via transesterification[J]. J. Mol. Catal. A-Chem.,2009,308(1-2):68-72.
    [136] Selva M., NoèM., Perosa A., et al. Carbonate, acetate and phenolate phosphonium salts as catalystsin transesterification reactions for the synthesis of non-symmetric dialkyl carbonates[J]. Org. Biomol.Chem.,2012,10(32):6569-6578.
    [137] Zhou X., Zhang H. P., Wang G. Y., et al. Zeolitic imidazolate framework as efficient heterogeneouscatalyst for the synthesis of ethyl methyl carbonate[J]. J. Mol. Catal. A-Chem.,2013,(366):43-47.
    [138] Seo J. S., Whang D., Lee H., A homochiral metal-organic porous material for enantioselectiveseparation and catalysis[J]. Nature2000,404(6781):982-986.
    [139] Hasegawa S., Horike S., Matsuda R., et al. Three-Dimensional Porous Coordination PolymerFunctionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis[J]. J. Am.Chem. Soc.2007,129(9):2607-2614.
    [140] Gascon J., Aktay U., Hernandez-Alonso M. D., et al. Amino-based metal-organic frameworks asstable, highly active basic catalysts[J]. J. Catal.2009,261(1):75-87.
    [141] Akiyama G., Matsuda R., Sato H., et al. Cellulose Hydrolysis by a New Porous CoordinationPolymer Decorated with Sulfonic Acid Functional Groups[J]. Adv. Mater.2011,23(29):3294-3297.
    [142] Li B., Zhang Y., Ma D., A strategy toward constructing a bifunctionalized MOF catalyst:post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites[J].Chem. Commun.,2012,48(49):6151-6153.
    [143] Djakovitch L., Koehler K., de Vries J. G., in The role of palladium nanoparticles as catalysts forcarbon-carbon coupling reactions in Nanoparticles and Catalysis, ed. D. Astruc, Wiley-VCH, Weinheim,2008.
    [144] Moreno-Ma as M., Pleixats R., Formation of Carbon-Carbon Bonds under Catalysis byTransition-Metal Nanoparticles[J]. Acc. Chem. Res.,2003,36(8):638-643.
    [145] Sabo M., Henschel A., Frode H., et al. Solution infiltration of palladium into MOF-5: synthesis,physisorption and catalytic properties[J]. J. Mater. Chem.,2007,17(36):3827-3832.
    [146] Opelt S., Turk S., Dietzsch E., et al. Preparation of palladium supported on MOF-5and its use ashydrogenation catalyst[J]. Catal. Commun,2008,9(6):1286-1290.
    [147] Gao S., Zhao N., Shu M., et al. Palladium nanoparticles supported on MOF-5: A highly activecatalyst for a ligand-and copper-free Sonogashira coupling reaction[J]. Appl. Catal., A,2010,388(1-2):196-201.
    [148] Dang T. T., Zhu Y., Ghosh S. C., et al. Atmospheric pressure aminocarbonylation of aryl iodidesusing palladium nanoparticles supported on MOF-5[J]. Chem. Commun.,2012,48(12):1805-1807.
    [149] Zhang M., Guan J., Zhang B., et al. Chemical Vapor Deposition of Pd(C3H5)(C5H5) to SynthesizePd@MOF-5Catalysts for Suzuki Coupling Reaction[J]. Catal. Lett.,2012,142(3):313-318.
    [150] Huang Y., Zheng Z., Liu T., et al. Palladium nanoparticles supported on amino functionalizedmetal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction[J].Catal. Commun,2011,14(1):27-31.
    [151] Huang Y., Gao S., Liu T., et al. Palladium Nanoparticles Supported on Mixed-Linker Metal-OrganicFrameworks as Highly Active Catalysts for Heck Reactions[J]. ChemPlusChem,2012,77(2):106-112.
    [152] Henschel A., Gedrich K., Kraehnert R., Catalytic properties of MIL-101[J]. Chem. Commun.,2008,(35):4192-4194.
    [153] Hwang Y. K., Hong D. Y., Chang J. S., et al. Amine grafting on coordinatively unsaturated metalcenters of MOFs: consequences for catalysis and metal encapsulation[J]. Angew. Chem., Int. Ed.2008,47(22):4144-4148.
    [154] Pan Y., Yuan B., Li Y., et al. Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methylisobutyl ketone over palladium nanoparticles deposited on a metal-organic framework[J]. Chem. Commun.,2010,46(13):2280-2282.
    [155] Hermannsdorfer J., Kempe R., Selective Palladium-Loaded MIL-101Catalysts[J]. Chem.-Eur. J.,2011,17(29):8071-8077.
    [156] Liu H., Li Y., Luque R. et al. A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst forthe Selective Aqueous Hydrogenation of Phenols[J]. Adv. Synth. Catal.,2011,353(17):3107-3113.
    [157] Yuan B., Pan Y., Li Y., et al. A Highly Active Heterogeneous Palladium Catalyst for theSuzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew. Chem.,Int. Ed.,2010,49(24):4054-4058.
    [158] Huang Y., Lin Z., Cao R., Palladium Nanoparticles Encapsulated in a Metal-Organic Framework asEfficient Heterogeneous Catalysts for Direct C2Arylation of Indoles[J]. Chem.-Eur. J.,2011,17(45):12706-12712.
    [159] Li H., Zhu Z., Zhang F., et al. Palladium Nanoparticles Confined in the Cages of MIL-101: AnEfficient Catalyst for the One-Pot Indole Synthesis in Water[J]. ACS Catal.,2011,1(11):1604-1612.
    [160] Abad A., Corma A., Garcia H., Supported gold nanoparticles for aerobic, solventless oxidation ofallylic alcohols[J]. Pure Appl. Chem.,2007,79(11):1847-1854.
    [161] Ishida T., Nagaoka M., Akita T., et al. Deposition of Gold Clusters on Porous Coordination Polymersby Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols[J]. Chem.-Eur. J.,2008,14(28):8456-8460.
    [162] Muller M., Turner S., Lebedev O. I., et al. Au@MOF-5and Au/MOx@MOF-5(M=Zn, Ti; x=1,2):Preparation and Microstructural Characterisation[J]. Eur. J. Inorg. Chem.,2011,(12):1876-1887.
    [163] Ishida T., Kawakita N., Akita T., et al. One-pot N-alkylation of primary amines to secondary aminesby gold clusters supported on porous coordination polymers[J]. Gold Bull.,2009,42(4):267-274.
    [164] Liu H., Liu Y., Li Y., et al. Metal-Organic Framework Supported Gold Nanoparticles as a HighlyActive Heterogeneous Catalyst for Aerobic Oxidation of Alcohols[J]. J. Phys. Chem. C,2010,114(31):13362-13369.
    [165] Esken D., Turner S., Lebedev O. I., et al. Au@ZIFs: Stabilization and Encapsulation of Cavity-SizeMatching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs[J]. Chem. Mater.,2010,22(23):6393-6401.
    [166] Jiang H. L., Akita T., Ishida T., et al. Synergistic Catalysis of Au@Ag Core-Shell NanoparticlesStabilized on Metal-Organic Framework[J]. J. Am. Chem. Soc.,2011,133(5):1304-1306.
    [167] Esken D., Turner S., Lebedev O. I., et al. Au@ZIFs: Stabilization and Encapsulation of Cavity-SizeMatching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs[J]. Chem. Mater.,2010,22(23):6393-6401.
    [168] Muller M., Turner S., Lebedev O. I., et al. Au@MOF-5and Au/MOx@MOF-5(M=Zn, Ti; x=1,2):Preparation and Microstructural Characterisation[J]. Eur. J. Inorg. Chem.,2011,(12):1876-1887.
    [169] Schroder F., Esken D., Cokoja M., et al. Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] byHydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-StabilizedRuthenium Colloids[J]. J. Am. Chem. Soc.,2008,130(19):6119-6130.
    [170] Zhao Y., Zhang J., Song J., et al. Ru nanoparticles immobilized on metal-organic frameworknanorods by supercritical CO2-methanol solution: highly efficient catalyst[J]. Green Chem.,2011,13(8):2078.
    [171] Hermes S., Schroter M. K., Schmid R., et al. Metal@MOF: Loading of Highly Porous CoordinationPolymers Host Lattices by Metal Organic Chemical Vapor Deposition[J]. Angew. Chem., Int. Ed.,2005,44(38):6237-6241.
    [172] Proch S., Herrmannsdorfer J., Kempe R., et al. Pt@MOF-177: Synthesis, Room-TemperatureHydrogen Storage and Oxidation Catalysis[J]. Chem.-Eur. J.,2008,14(27):8204-8212.
    [173] Zhao H., Song H., L. Chou, Nickel nanoparticles supported on MOF-5: Synthesis and catalytichydrogenation properties[J]. Inorg. Chem. Commun.,2012,(15):261-265.
    [174] Park Y. K., Choi S. B., Nam H. J., et al. Catalytic nickel nanoparticles embedded in a mesoporousmetal-organic framework[J]. Chem. Commun.,2010,46(18):3086-3088.
    [175] Wang S., He X., Song L., et al. Silver Nanoparticles Supported by Novel Nickel Metal-OrganicFrameworks: An Efficient Heterogeneous Catalyst for an A3Coupling Reaction[J]. Synlett,2009,(3):447-450.
    [176] Mehmet Z., Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis,structural properties and catalytic performance[J]. Dalton Trans.,2012,41(41):12690-12696
    [177] Hermannsd rfer J., Friedrich M., Miyajima N., Ni/Pd@MIL-101: Synergistic Catalysis withCavity-Conform Ni/Pd Nanoparticles[J].2012,51(46):11473-11477.
    [178] Gu X., Lu Z. H., Jiang H. L., et al. Synergistic Catalysis of MetalOrganic Framework-ImmobilizedAu-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage[J]. J. Am. Chem.Soc.2011,133(31):11822-11825.
    [179] El-Shall M. S., Abdelsayed V., Khder A. El R. S., et al. Metallic and bimetallic nanocatalystsincorporated into highly porous coordination polymer MIL-101[J]. J. Mater. Chem.,2009,19(41):7625-7631.
    [180] Moon H. R., Kim J. H., Suh M. P., Redox-Active Porous Metal-Organic Framework Producing SilverNanoparticles from AgIIons at Room Temperature[J]. Angew. Chem. Int. Ed.2005,44(8):1261-1265.
    [1] Sheldon R. A., Kochi J. K., Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, NewYork,1981.
    [2] Cainelli G., Cardillo G., Chromium Oxidants in Organic Chemistry, Springer, Berlin,1984.
    [3] Mallat T., Baiker A., Oxidation of alcohols with molecular oxygen on solid catalysts[J]. Chem. Rev.2004,104(6):3037-3058.
    [4] Bond G. C., Thompson D. T., Catalysis by Gold[J]. Catal. Rev. Sci. Eng.1999,41(3&4):319-388.
    [5] Daniel M. C., Astruc D., Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem.Rev.2004,104(1):293-246.
    [6] Corma A., Garcia H., Supported gold nanoparticles as catalysts for organic reactions[J]. Chem. Soc. Rev.2008,37(9):2096-2126.
    [7] Enache D. I., Edwards J. K., Landon P., Solvent-Free Oxidation of Primary Alcohols to AldehydesUsing Au-Pd/TiO2Catalysts[J]. Science2006,311(5759):362-365.
    [8] Choudhary V. R., Dhar A., Jana P., et al. A green process for chlorine-free benzaldehyde from thesolvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst[J].Green Chem.2005,7(11):768-770.
    [9] Choudhary V. R., Jha R., Jana P., Solvent-free selective oxidation of benzyl alcohol by molecularoxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-freebenzaldehyde[J]. Green Chem.2007,9(3):267-272.
    [10] Zheng N. F., Stucky G. D., Promoting gold nanocatalysts in solvent-free selective aerobic oxidation ofalcohols[J]. Chem. Commun.2007,(37):3862-3864.
    [11] Prati L., Rossi M., Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols[J].J. Catal.1998,176(2):552-560.
    [12] Tsunoyama H., Sakurai H., Negishi Y., et al. Size-Specific Catalytic Activity of Polymer-StabilizedGold Nanoclusters for Aerobic Alcohol Oxidation in Water[J]. J. Am. Chem. Soc.2005,127(26):9374-9375.
    [13] Miyamura H., Matsubara R., Miyazaki Y., et al. Aerobic Oxidation of Alcohols at Room Temperatureand Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings ofPolystyrene Derivatives[J]. Angew. Chem. Int. Ed.2007,46(22):4151-4154.
    [14] Long J. R., Yaghi O. M., The pervasive chemistry of metal-organic frameworks[J]. Chem. Soc. Rev.2009,38(5):1213.
    [15] Kitagawa S., Kitaura R., Noro S., Functional Porous Coordination Polymers[H]. Angew. Chem. Int.Ed.2004,43(18):2334-2375.
    [16] Banerjee R., Phan A., Wang B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworksand Application to CO2Capture[J]. Science,2008,319(5865):939-943.
    [17] Trung T. K., Trens P., Tanchoux N., et al. Hydrocarbon Adsorption in the Flexible Metal OrganicFrameworks MIL-53(Al, Cr)[J]. J. Am. Chem. Soc.2008,130(50):16926-16932.
    [18] Li Y. W., Yang R. T., Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks viaSpillover[J]. J. Am. Chem. Soc.2006,128(3):726-727.
    [19] Corma A., Garcia H., Llabres Xamena F. X., Engineering metal organic frameworks for heterogeneouscatalysis[J]. Chem. Rev.2010,110(8):4606-4655.
    [20] Lee J. Y., Farha O. K., Roberts J., et al. Metal-organic framework materials as catalysts[J]. Chem. Soc.Rev.2009,38(5):1450-1459.
    [21] Farrusseng D., Aguado S., Pinel C., Metal-organic frameworks: opportunities for catalysis[J]. Angew.Chem. Int. Ed.2009,48(41):7502-7513.
    [22] Zhang X., Llabres Xamena F. X., Corma A., Gold(III)-metal organic framework bridges the gapbetween homogeneous and heterogeneous gold catalysts[J]. J. Catal.2009,265(2):155-160.
    [23] Henschel A., Gedrich K., Kraehnert R., et al. Catalytic properties of MIL-101[J]. Chem. Commun.2008,(35):4192-4194.
    [24] Schr der F., Esken D., Cokoja M., et al. Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] byHydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-StabilizedRuthenium Colloids[J]. J. Am. Chem. Soc.2008,130(19):6119-6130.
    [25] Hermes S., Schroter M. K., Schmid R., et al. Metal@MOF: Loading of Highly Porous CoordinationPolymers Host Lattices by Metal Organic Chemical Vapor Deposition[J]. Angew. Chem. Int. Ed.2005,44(38):6237-6241.
    [26] Jiang H., Liu B., Akita T., et al. Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited toMetal-Organic Framework[J]. J. Am Chem. Soc.2009,131(32):11302-11303.
    [27] Ishida T., Nagaoka M., Akita T., et al. Deposition of Gold Clusters on Porous Coordination Polymersby Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols[J]. Chem. Eur. J.2008,14(28):8456-8460.[28] Ishida, T.; Kawakita, N.; Akita, T.; Haruta, M. One-pot N-Alkylation of PrimaryAmines to Secondary Amines by Gold ClustersSupported on Porous Coordination Polymers[J]. Gold Bull.2009,42(4):267-274.
    [29] Hwang Y. K., Hong D. Y., Chang J. S., et al. Amine grafting on coordinatively unsaturated metalcenters of MOFs: consequences for catalysis and metal encapsulation [J]. Angew. Chem. Int. Ed.,2008,47(22):4144-4148.
    [30] Comotti M., Pina, C. D., Matarrese, R., et al. The Catalytic Activity of―Naked‖Gold Particles[J].Angew. Chem. Int. Ed.,2004,43(43):5812-5815.
    [31] Zanella R., Giorgio S., Henry C. R., et al. Alternative Methods for the Preparation of GoldNanoparticles Supported on TiO2[J]. J. Phys. Chem. B,2002,106(31):7634-7642.
    [32] Delannoy L., EI Hassan N., Musi, A., et al. Preparation of Supported Gold Nanoparticles by aModified Incipient Wetness Impregnation Method[J]. J. Phys. Chem. B,2006,110(45),22471-22478.
    [33] Jiang H., Liu B., Akita T., et al. Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited toMetal Organic Framework[J]. J. Am Chem. Soc.,2009,131(32):11302-11303.
    [34] Turner S., Lebedev O. I., Schroder F., et al. Direct Imaging of Loaded Metal Organic FrameworkMaterials (Metal@MOF-5)[J]. Chem. Mater.,2008,20(17):5622-5627.
    [35] Yuan B. Z., Pan Y. Y., Li Y. W., et al. A Highly Active Heterogeneous Palladium Catalyst for theSuzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew. Chem.Int. Ed.2010,49(24):4054-4058.
    [36] El-Shall M. S., Abdelsayed V., Khder A. E. R. S., et al. Metallic and bimetallic nanocatalystsincorporated into highly porous coordination polymer MIL-101[J]. J. Mater. Chem.2009,19:7625-7631.
    [37] Mirescu A., Prü e U., Selective glucose oxidation on gold colloids[J]. Catal. Commun.2006,7(1):11-17.
    [38] Zanella R., Giorgio S., Shin C. H., et al. Characterization and reactivity in CO oxidation of goldnanoparticles supported on TiO2prepared by deposition-precipitation with NaOH and urea[J]. J. Catal.2004,222(2):357-367.
    [39] Hutchings G. J., Catalysis by gold[J]. Catal. Today2005,100(1-2):55-61.
    [40] Valden M., Lai X., Goodman D. W., Onset of Catalytic Activity of Gold Clusters on Titania with theAppearance of Nonmetallic Properties [J]. Science1998,281(5383):1647-1650.
    [41] Maciejewski M., Fabrizioli P., Grunwaldt J. D., et al. Supported gold catalysts for CO oxidation:Effect of calcination on structure, adsorption and catalytic behaviour[J]. Phys. Chem. Chem. Phys.2001,3,3846-3855.
    [42] Abad A., Corma A., García H., Catalyst Parameters Determining Activity and Selectivity of SupportedGold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism[J]. Chem.Eur. J.2008,14(1):212-222.
    [43] Haruta M., Size-and support-dependency in the catalysis of gold[J]. Catal. Today1997,36(1):153-166.
    [44] Klitgaard S. K., Andrew T. D. R., Stig H., et al. Aerobic Oxidation of Alcohols over Gold Catalysts:Role of Acid and Base[J]. Catal. Lett.2008,126(3-4):213-217.
    [45] Wigington B. N., Drummond M. L., Cundari T. R., et al. A Biomimetic Pathway forVanadium-Catalyzed Aerobic Oxidation of Alcohols: Evidence for a Base-Assisted DehydrogenationMechanism[J]. Chem. Eur. J.2012,18(47):14981-14988.
    [46] Liu L., Ji L.Y., Wei Y. Y. Base promoted aerobic oxidation of alcohols to corresponding aldehydes orketones catalyzed by CuCl/TEMPO[J]. Catal. Commun.,2008,9(6):1379-1382.
    [47] Abad A., Concepción P., Corma A., et al. A Collaborative Effect between Gold and a Support Inducesthe Selective Oxidation of Alcohols[J]. Angew. Chem. Int. Ed.2005,44(26):4066-4069.
    [48] Su F. Z., Liu Y. M., Wang L. C., et al. Ga-Al Mixed-Oxide-Supported Gold Nanoparticles withEnhanced Activity for Aerobic Alcohol Oxidation[J]. Angew. Chem. Int. Ed.2008,47(2):334-343.
    [49]Salisbury B. E., Wallace W. T., Whetten R. L., Low-temperature activation of molecular oxygen bygold clusters: a stoichiometric process correlated to electron affinity Original Research Article[J]. Chem.Phys.2000,262(1):131-141.
    [50] Okumura M., Kitagawa Y., Haruta M., et al. DFT studies of interaction between O2and Au clusters.The role of anionic surface Au atoms on Au clusters for catalyzed oxygenation[J]. Chem. Phys. Lett.2001,346(1-2):163-168.
    [51] Stiehl J. D., Kim T. S., McClure S. M., et al. Evidence for Molecularly Chemisorbed Oxygen on TiO2Supported Gold Nanoclusters and Au(111)[J]. J. Am. Chem. Soc.2004,126(6):1606-1607.
    [52] Chowdhury B., Bravo-Suárez J. J., Mimura, N., et al. In Situ UV-vis and EPR Study on the Formationof Hydroperoxide Species during Direct Gas Phase Propylene Epoxidation over Au/Ti-SiO2Catalyst[J]. J.Phys. Chem. B2006,110(46):22995-22999.
    [53] Okumura M., Haruta M., Kitagawa, Y. et al. Theoretical study of H2O and O2adsorption on Au smallclusters[J]. Gold Bull.2007,40(1):40-44.
    [54] Haruta M., Tsubota S., Kobayashi T. et al. Low-Temperature Oxidation of CO over Gold Supported onTiO2,-Fe2O3, and Co3O4[J]. J. Catal.1993,144(1):175-192.
    [55] Comotti M., Della Pina C., Falletta E. et al. Aerobic Oxidation of Glucose with Gold Catalyst:Hydrogen Peroxide as Intermediate and Reagent[J]. Adv. Synth. Catal.2006,348(3):313-316.
    [1] I. Dodgson, K. Griffen, G. Barberis, F. Pignataro and G. Tauszik, Chem. Ind.,1989,1989:830.
    [2] World Nylon6and66Supply/Demand Report, PCI fibers and raw Materials (Seaford, UK,1998).
    [4] Wang Y., Zhang J. S., Wang X. C., et al. Boron-and Fluorine-Containing Mesoporous Carbon NitridePolymers: Metal-Free Catalysts for Cyclohexane Oxidation[J]. Angew. Chem., Int. Ed.,2010,49(19):3356-3359.
    [5] Xu L. X., He C. H., Zhu M. Q., et al. Surface stabilization ofgold by sol-gel post-modification ofalumina support withsilica for cyclohexane oxidation[J]. Catal Commun,2008,9(5):816-820.
    [6] Narayanan S., Krishna K., Hydrotalcite-supported palladium catalysts: Part I: Preparation,characterization of hydrotalcites and palladium on uncalcined hydrotalcites for CO chemisorption andphenol hydrogenation[J]. Appl. Catal. A: Gen.1998,174(1-2):221-229.
    [7] ScirèS., MinicòS., Crisafulli C., Selective hydrogenation of phenol to cyclohexanone over supportedPd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors[J]. Appl.Catal. A: Gen.2002,235(1-2):21-31.
    [8] Shore S. G., Ding E., Park C., et al. Vapor phase hydrogenation of phenol over silica supported Pd andPd-Yb catalysts[J]. Catal. Commun.2002,3(2):77-88.
    [9] Claus P., Berndt H., Mohr C., et al. Pd/MgO: Catalyst Characterization and Phenol HydrogenationActivity[J]. J. Catal.2000,192:88-97.
    [10] Mahata N., Raghavan K. V., Vishwanathan V., Influence of alkali promotion on phenol hydrogenationactivity of palladium/alumina catalysts[J]. Appl. Catal. A: Gen.1999,182(1):183-187.
    [11] Mahata N., Vishwanathan V., Influence of Palladium Precursors on Structural Properties and PhenolHydrogenation Characteristics of Supported Palladium Catalysts[J]. J. Catal.2000,196(2):262-270.
    [12] Xiang Y., Ma L., Lu C., et al. Aqueous system for the improved hydrogenation of phenol and itsderivatives[J].Green Chem.2008,10:939-943.
    [13] Makowski P., Cakan R. D., Antonietti M., et al. Selective partial hydrogenation of hydroxy aromaticderivatives with palladium nanoparticles supported on hydrophilic carbon[J]. Chem. Commun.2008,999-1001.
    [14] Lu F., Liu J., Xu J., Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity forhydrogenation of phenol in aqueous media[J]. Mater. Chem. Phys.2008,108(2-3):369-374.
    [15] Morales J., Hutcheson R., Noradoun C., et al. Hydrogenation of Phenol by the Pd/Mg and Pd/FeBimetallic Systems under Mild Reaction Conditions[J]. Ind. Eng. Chem. Res.2002,41(13):3071-3074.
    [16] Díaz E., Mohedano A. F., Calvo L., et al. Hydrogenation of phenol in aqueous phase with palladium onactivated carbon catalysts[J]. Chem. Eng. J.2007,131(1-3):65-71.
    [17] Chatterjee M., Kawanami H., Sato M., et al. Hydrogenation of phenol in supercritical carbon dioxidecatalyzed by palladium supported on Al-MCM-41: A facile route for one-pot cyclohexanone formation [J].Adv. Synth. Catal.2009,351(11-12):1912-1924.
    [18] Liu H., Jiang T., Han B., et al. Selective Phenol Hydrogenation to Cyclohexanone Over a DualSupported Pd–Lewis Acid Catalyst[J]. Science2009,326(27):1250-1252.
    [19] Li H., Liu J., Xie S. H., et al. Vesicle-Assisted Assembly of Mesoporous Ce-Doped Pd Nanosphereswith a Hollow Chamber and Enhanced Catalytic Efficiency[J]. Adv. Funct. Mater.2008,18(20):3235-3241.
    [20] Motoyama Y., Takasaki M., Yoon S., et al. Rhodium Nanoparticles Supported on Carbon Nanofibers asan Arene Hydrogenation Catalyst Highly Tolerant to a Coexisting Epoxido Group[J]. Org. Lett.2009,11(21):5042-5045.
    [21] Wang Y., Yao J., Li H., et al. Highly selective hydrogenation of phenol and derivatives over aPd@carbon nitride catalyst in aqueous media[J]. J. Am. Chem. Soc.,2011,133(8):2362-2365.
    [22] Talukdar A. K., Bhattacharyya K. G., Sivasanker, S., Hydrogenation of phenol over supportedplatinum and palladium catalysts[J]. Appl. Catal. A: General1993,96(2):229-239.
    [23] Mahata N., Vishwanathan, V., Gas phase hydrogenation of phenol over supported palladiumcatalysts[J]. Catal. Today1999,49(1-3):65-69.
    [24] Mantri K., Komura K., Kubota Y., et al. Friedel–Crafts alkylation of aromatics with benzyl alcoholscatalyzed by rare earth metal triflates supported on MCM-41mesoporous silica[J]. J. Mol. Catal. A,2005,236(1-2):168-175.
    [25] Hwang Y. K., Hong D. Y., Chang J. S., et al. Amine grafting on coordinatively unsaturated metalcenters of MOFs: consequences for catalysis and metal encapsulation [J]. Angew. Chem. Int. Ed.,2008,47(22):4144-4148.
    [26] Penner S., Bera P., Pedersen S., et al. Interactions of O(2) with Pd nanoparticles onalpha-Al(2)O(3)(0001) at low and high O(2) pressures[J]. J. Phys. Chem. B2006,110(48):24577-24584.
    [27] Ferey G., Mellot-Draznieks C., Serre C., et al. A Chromium Terephthalate-Based Solid with UnusuallyLarge Pore Volumes and Surface Area[J]. Science2005,309(5743):2040-2042.
    [28] Young D. A., Freedman T. B., Lipp E. D., et al. Vibrational circular dichroism in transition-metalcomplexes.2. Ion association, ring conformation, and ring currents of ethylenediamine ligands[J]. J. Am.Chem. Soc.1986,108(23):7255-7263.
    [29] Campelo J. M., Luna D., Luque R., et al. Synthesis of acidic Al-MCM-48: influence of the Si/Al ratio,degree of the surfactant hydroxyl exchange, and post-treatment in NH4F solution[J]. J. Catal.,2005,230(2):327-338.
    [30] White R. J., Luque R., Budarin V., et al. Tuneable porous carbonaceous materials from renewableresources[J]. Chem. Soc. Rev.,2009,38(12):3401-3418.
    [31] Clark J. H., Solid Acids for Green Chemistry[J]. Acc. Chem. Res.,2002,35(9):791-797.
    [32] Yuan B. Z., Pan Y. Y., Li Y. W., et al. A Highly Active Heterogeneous Palladium Catalyst for theSuzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew. Chem.Int. Ed.2010,49(24):4054-4058.
    [33] Zhuang L., Li H. X., Dai W. L., et al. Liquid Phase Hydrogenation of Phenol to Cyclohexenone OverA Pd-La-B Amorphous Catalyst[J]. Chem. Lett.,2003,32(11):1072-1073.
    [1] Shilov A. E., Shul’pin G. B., Activation of C-H Bonds by Metal Complexes[J]. Chem. Rev.1997,97(8):2879-2932.
    [2] Jia C. G., Kitamura T., Fujiwara Y., Catalytic Functionalization of Arenes and Alkanes via C-H BondActivation[J]. Acc. Chem. Res.2001,34(8):633-639.
    [3] Sheldon R. A., Bekkum H., Fine Chemicals through Heterogeneous Catalysis, Wiley-VCH, Weinheim,2001.
    [4] Konietzni F., Kolb U., Dingerdissen U. et al. AMM-MnxSi-Catalyzed Selective Oxidation of Toluene[J].J. Catal.1998,176(2):527-535.
    [5] Kamata K., Yonehara K., Nakagawa Y. et al. Efficient stereo-and regioselective hydroxylation ofalkanes catalysed by a bulky polyoxometalate[J]. Nat. Chem.2010,2:478-483.
    [6] Bergman R. G., Organometallic chemistry: C-H activation[J]. Nature2007,446:391-393.
    [7] Punniyamurthy T., Velusamy S., Iqbal J., Recent Advances in Transition Metal Catalyzed Oxidation ofOrganic Substrates with Molecular Oxygen[J].Chem. Rev.2005,105(6):2329-2364.
    [8] Bastock T. W., Clark J. H., Matin K., et al. Mild, solvent-free oxidation of toluene and subsitutedtoluenes to their benzoic acids using carboxylic acid-promoted heterogeneous catalysis[J]. Green Chem.2002,4:615-617.
    [9] Borgaonkar H. V., Raverkar S. R., Chandalia, S. B., Liquid phase oxidation of toluene to benzaldehydeby air[J]. Ind. Eng. Chem. Prod. Res. Dev.1984,23(3):455-458.
    [10] Li X., Xu J., Zhou L., et al. Liquid-phase oxidation of toluene by molecular oxygen over coppermanganese oxides[J]. Catal. Lett.,2006,110(1-2):149-154.
    [11] Nomiya K., Hashino K., Nemoto Y. et al. Oxidation of toluene and nitrobenzene with30%aqueoushydrogen peroxide catalyzed by vanadium(V)-substituted polyoxometalates[J]. J. Mol. Catal. A: Chem.,2001,176(1-2):79-86.
    [12] Kesavan L., Tiruvalam R., Ab Rahim M. H., et al. Solvent-Free Oxidation of PrimaryCarbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles[J]. Science,2011,331(14):195-199.
    [13] Singh A. P., Selvam T., Liquid phase oxidation reactions over chromium silicalite-1(CrS-1) molecularsieves[J]. J. Mol. Catal. A: Chem.,1996,113(3):489-497.
    [14] Aguadero A., Falcon H., Campos-Martin J. M., et al. An Oxygen-Deficient Perovskite as SelectiveCatalyst in the Oxidation of Alkyl Benzenes[J]. Angew. Chem. Int. Ed.,2011,50(29):6557-6561.
    [15] Brutchey R. L., Drake I. J., Bell A. T. et al. Liquid-phase oxidation of alkylaromatics by a H-atomtransfer mechanism with a new heterogeneous CoSBA-15catalyst[J]. Chem. Commun.,2005,29:3736-3738.
    [16] Centi G., Perathoner S., Tonini S., In situ DRIFT study of the reactivity and reaction mechanism ofcatalysts based on iron-molybdenum oxides encapsulated in Boralite for the selective oxidation ofalkylaromatics[J]. Catal. Today,2000,61(1-4):211-221.
    [17] Raja R., Thomas J. M., Dreyer V., Benign oxidants and single-site solid catalysts for the solvent-freeselective oxidation of toluene[J]. Catal. Lett.,2006,110(3-4):179-183.
    [18] Rajabi F., Clark J. H., Karimi B. et al. The selective aerobic oxidation of methylaromatics tobenzaldehydes using a unique combination of two heterogeneous catalysts[J]. Org. Biomol. Chem.,2005,3:725-726.
    [19] Liu H. L., Li Y. W., Luque R., et al. A Tuneable Bifunctional Water-Compatible HeterogeneousCatalyst for the Selective Aqueous Hydrogenation of Phenols[J]. Adv. Synth. Catal.,2011,353(17):3107-3173.
    [20] Yuan B. Z., Pan Y. Y., Li Y. W., et al. A Highly Active Heterogeneous Palladium Catalyst for theSuzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew. Chem.Int. Ed.2010,49(24):4054-4058.
    [21] Wang D., Villa A., Porta F., et al. Single-phase bimetallic system for the selective oxidation of glycerolto glycerate[J]. Chem. Commun.,2006,18:1956-1958.
    [22] Dimitratos N., Lopez-Sanchez J. A., Lennon D., et al. Effect of Particle Size on Monometallic andBimetallic (Au, Pd)/C on the Liquid Phase Oxidation of Glycerol [J]. Catal. Lett.,2006,108(3-4):147-153.
    [23] Hermans S., Deffernez A., Devillers M., Preparation of Au-Pd/C catalysts by adsorption of metallicspecies in aqueous phase for selective oxidation[J]. Catal. Today,2010,157(1-4):77-82.
    [24] Enache D. I., Edwards J. K., Landon P., et al. Solvent-Free Oxidation of Primary Alcohols toAldehydes Using Au-Pd/TiO2Catalysts[J]. Science,2006,311(5759):362-365.
    [25] Férey G., Mellot-Draznieks C., Serre C., et al. A Chromium Terephthalate-Based Solid with UnusuallyLarge Pore Volumes and Surface Area[J]. Science,2005,309(23):2040-2042.
    [26] Hwang Y. K., Hong D. Y., Chang J. S., et al. Amine grafting on coordinatively unsaturated metalcenters of MOFs: consequences for catalysis and metal encapsulation [J]. Angew. Chem. Int. Ed.,2008,47(22):4144-4148。
    [27] Gu X. J., Lu Z. H., Jiang H. L., et al. Synergistic catalysis of metal-organic framework-immobilizedAu-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. J. Am. Chem.Soc.2011,133(31):11822-11825.
    [28] Liu H. L., Liu Y. L., Li Y. W., et al. Metal-organic framework supported gold nanoparticles as a highlyactive heterogeneous catalyst for aerobic oxidation of alcohols[J]. J. Phys. Chem. C,2010,114(31):13362-13369.
    [29] Koltunov K. Y., Prakash G. K. S., Rasul G. et al. Superacid catalyzed reactions of5-amino-1-naphtholwith benzene and cyclohexane[J]. Tetrahedron,2002,58(27):5423-5426.
    [30] Tarakeshwar P., Lee J. Y., Kim K. S., Role of Lewis Acid(AlCl3)-Aromatic Ring Interactions inFriedel-Craft's Reaction: An ab Initio Study[J]. J. Phys. Chem. A,1998,102(13):2253-2255.
    [31] Liu H., Jiang T., Han B., et al. Selective Phenol Hydrogenation to Cyclohexanone Over a DualSupported Pd-Lewis Acid Catalyst[J]. Science2009,326(27):1250-1252.
    [32] Deshmukh R. R., Lee J. W., Shin U. S., et al. Hydrogenation of Arenes by Dual Activation: Reductionof Substrates Ranging from Benzene to C60Fullerene under Ambient Conditions[J]. Angew. Chem. Int. Ed.2008,47(45):8615-8617.
    [33] Okumura M., Haruta M., Kitagawa, Y. et al. Theoretical study of H2O and O2adsorption on Au smallclusters[J]. Gold Bull.2007,40(1):40-44.
    [34] Stiehl J. D., Kim T. S., McClure S. M., et al. Evidence for Molecularly Chemisorbed Oxygen on TiO2Supported Gold Nanoclusters and Au(111)[J]. J. Am. Chem. Soc.2004,126(6):1606-1607.
    [35] Stolcic D., Fischer M., Gantefor G., et al. Direct Observation of Key Reaction Intermediates on GoldClusters[J]. J. Am. Chem. Soc.,2003,125(10):2848-2849.
    [36] Tsunoyama H., Sakurai H., Ichikuni N., et al. Colloidal Gold Nanoparticles as Catalyst forCarbon-Carbon Bond Formation: Application to Aerobic Homocoupling of Phenylboronic Acid in Water[J].Langmuir,2004,20(26):11293-11296.
    [37] Staykov A., Kamachi T., Ishihara T., et al. Theoretical Study of the Direct Synthesis of H2O2on Pd andPd/Au Surfaces[J]. J. Phys. Chem. C,2008,112(49):19501-19505.
    [38] Cook D., Infrared spectra of xanthone: Lewis acid complexes[J]. Can. J. Chem.,1963,41(2):522-526.
    [39] Mosher W. A., Preiss D. M., The Mechanism of Aldehyde and Primary Alcohol Oxidation[J]. J. Am.Chem. Soc.,1953,75(22):5605-5607.
    [40] Craig J. C., Horning E. C., Preparation of Esters by Hemiacetal Oxidation[J]. J. Org. Chem.,1960,25(12):2098-2102.
    [41] Enache D. I., Knight D. W., Hutchings G. J., Solvent-Free Oxidation of Primary Alcohols toAldehydes Using Supported Gold Catalyst[J]. Catal. Lett.,2005,103(1-2):43-52.
    [1] Otera J., Esterification: Methods, Reactions, and Applications, Wiley-VCH, Weinheim,2003.
    [2] Otera J., Transesterification[J]. Chem. Rev.1993,93(4):1449-1470.
    [3] Larock R. C., Comprehensive Organic Transformations: A Guide to Functional Group Preparations,2nded., Wiley-VCH, New York,1999.
    [4] Abiko A., Roberts J. C., Takemasa T., et al. KMnO4revisited: Oxidation of aldehydes to carboxylicacids in the tert-butyl alcohol-aqueous NaH2PO4system[J]. Tetrahedron Lett.1986,27(38):4537-4540.
    [5] Garegg P. J., Olsson L., Oscarson S., Synthesis of Methyl (Ethyl2-O-acyl-3,4-di-O-benzyl-1-thio-.beta.-D-glucopyranosid)uronates and Evaluation of Their Use asReactive.beta.-Selective Glucuronic Acid Donors[J]. J. Org. Chem.1995,60(7):2200-2204.
    [6] Travis B. R., Sivakumar M., Hollist G. O., et al. Facile Oxidation of Aldehydes to Acids and Esters withOxone[J]. Org. Lett.2003,5(7):1031-1034.
    [7] Gopinath R., Barkakaty B., Talukdar B., et al. Peroxovanadium-Catalyzed Oxidative Esterification ofAldehydes[J]. J. Org. Chem.2003,68(7):2944-2947.
    [8] Karimi B., Rajabi J., An improved protocol for aerobic oxidation of acetals to esters catalyzed byN-hydroxy phthalimide (NHPI) and lipophilic Co(II) complexes[J]. J. Mol. Catal. A: Chem2005,226(2):165-169.
    [9] Gopinath R., Patel B. K., A Catalytic Oxidative Esterification of Aldehydes Using V2O5-H2O2[J]. Org.Lett.2000,2(5),577-579.
    [10] Wu X., Darcel C., Iron-Catalyzed One-Pot Oxidative Esterification of Aldehydes[J]. Eur. J. Org. Chem.2009,2009(8):1144-1147.
    [11] Malik P., Chakraborty D., Bi2O3-catalyzed oxidation of aldehydes with t-BuOOH[J]. Tetrahedron Lett.2010,51(27):3521-3523.
    [12] Liu C., Wang J., Meng L., et al. Palladium-Catalyzed Aerobic Oxidative Direct Esterification ofAlcohols[J]. Angew. Chem. Int. Ed.2011,50(22):5144-5148.
    [13] Gowrisankar S., Neumann H., Beller M., General and Selective Palladium-Catalyzed OxidativeEsterification of Alcohols[J]. Angew. Chem. Int. Ed.2011,50(22):5139-5143.
    [14] Oliveira R. L., Kiyohara P. K., Rossi L. M., Clean preparation of methyl esters in one-step oxidativeesterification of primary alcohols catalyzed by supported gold nanoparticles[J]. Green Chem.2009,11:1366-1370.
    [15] Zweifel T., Naubron J. V., Grützmacher H., Catalyzed dehydrogenative coupling of primary alcoholswith water, methanol, or amines[J]. Angew. Chem. Int. Ed.2009,48(3):559-563.
    [16] Yamamoto N., Obora Y., Ishii Y., Iridium-Catalyzed Oxidative Methyl Esterification of PrimaryAlcohols and Diols with Methanol[J]. J. Org. Chem.2011,76(8):2937-2941.
    [17] Arita S., Koike T., Kayaki Y., et al. Aerobic Oxidative Kinetic Resolution of Racemic SecondaryAlcohols with Chiral Bifunctional Amido Complexes[J]. Angew. Chem. Int. Ed.2008,47(13):2447-2449.
    [18] Owston N. A., Nixon T. D., Parker A. J., et al. Conversion of Primary Alcohols and Aldehydes intoMethyl Esters By Ruthenium-Catalysed Hydrogen Tansfer Reactions[J]. Synthesis2009,(9):1578-1581.
    [19] Zhang J., Leitus G., Ben-David Y., et al. Facile Conversion of Alcohols into Esters and DihydrogenCatalyzed by New Ruthenium Complexes[J]. J. Am. Chem. Soc.2005,127(31):10840-10841.
    [20] Kamata K., Yonehara K., Nakagawa Y., et al. Efficient stereo-and regioselective hydroxylation ofalkanes catalysed by a bulky polyoxometalate[J]. Nat. Chem.2010,2(6):478-483.
    [21] R. G. Bergman, Organometallic chemistry: C-H activation[J]. Nature2007,446(7134):391-393.
    [22] Hirashima S., Nobuta T., Tada N., et al. Direct Aerobic Photo-Oxidative Synthesis of Aromatic MethylEsters from Methyl Aromatics via Dimethyl Acetals[J]. Org. Lett.,2010,12(16):3645-3647.
    [23] Tada N., Ikebata Y., Nobuta T., et al. Direct aerobic photo-oxidative syntheses of aromatic methylesters from methyl aromatics using anthraquinone-2,3-dicarboxylic acid as organophotocatalyst[J].Photochem. Photobiol. Sci.2012,11(4):616-619.
    [24] Wang D., Villa A., Porta F., et al. Single-phase bimetallic system for the selective oxidation of glycerolto glycerate[J]. Chem. Commun.,2006,18:1956-1958.
    [25] Hermans S., Deffernez A., Devillers M., Preparation of Au-Pd/C catalysts by adsorption of metallicspecies in aqueous phase for selective oxidation[J]. Catal. Today,2010,157(1-4):77-82.
    [26] Ketchie W. C., Murayama M., Davis R. J., Selective oxidation of glycerol over carbon-supported AuPdcatalysts Original[J]. J. Catal.2007,250(2):264-273.
    [27] Wang X., Venkataramanan N. S., Kawanami H., et al. Selective oxidation of styrene to acetophenoneover supported Au-Pd catalyst with hydrogen peroxide in supercritical carbon dioxide[J]. Green. Chem.2007,9:1352-1355.
    [28] Balcha T., Strobl J. R., Fowler C., et al. Selective Aerobic Oxidation of Crotyl Alcohol Using AuPdCore-Shell Nanoparticles[J]. ACS Catal.2011,1(5):425-436.
    [29] Deplanche K., Mikheenko I. P., Bennett J. A., et al. Selective Oxidation of Benzyl-Alcohol overBiomass-Supported Au/Pd Bioinorganic Catalysts[J]. Top. Catal.2011,54(16-18):1110-1114.
    [30] Kesavan L., Tiruvalam R., Ab Rahim M. H., et al. Solvent-Free Oxidation of PrimaryCarbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles[J]. Science,2011,331(14):195-199
    [31] Liu H. L., Li Y. W., Jiang H. F., et al. Significant promoting effects of Lewis acidity on Au–Pd systemsin the selective oxidation of aromatic hydrocarbons[J]. Chem. Commun.,2012,48:8431-8433.
    [32] Férey G., Mellot-Draznieks C., Serre C., et al. A Chromium Terephthalate-Based Solid with UnusuallyLarge Pore Volumes and Surface Area[J]. Science,2005,309(23):2040-2042.
    [33] Chastain J., King R. C., Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp., EdenPrairie, MN,1995.
    [34] Dalucu D., Klemberg-Sapieha J. E., Martinu L., Substrate and morphology effects on photoemissionfrom core-levels in gold clusters[J]. Surf. Sci.2001,472(1-2):33-40.
    [35] Voogt E. H., Mens A. J. M., Gijzeman O. L. J., et al. Adsorption of oxygen and surface oxideformation on Pd(111) and Pd foil studied with ellipsometry, LEED, AES and XPS[J]. Surf. Sci.1997,373(2-3):210-220.
    [36] Beutler A., Sandell A., Jaworowski A. J., et al. The influence of preadsorbed oxygen on the adsorptionof CO on two-dimensional Pd islands on a Rh(111) surface[J]. Surf. Sci.1998,418(2):457-465.
    [37] Nascente P. A. P., de Castro S. G. C., Landers R., et al. X-ray photoemission and Auger energy shifts insome gold-palladium alloys[J]. Phys. Rev. B1991,43(6):4659-4666.
    [38] Deki S., Akamatsu K., Hatakenaka Y., et al. Synthesis and characterization of nano-sizedgold-palladium bimetallic particles dispersed in polymer thin film matrix[J]. Nano Struct. Mater.1999,11(1):59-65.
    [39] Xu J., White T., Li P., et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation[J]. J. Am.Chem. Soc.2010,132(30):10398-10406.
    [40] Liu H. L., Liu Y. L., Li Y. W., et al. Metal-organic framework supported gold nanoparticles as a highlyactive heterogeneous catalyst for aerobic oxidation of alcohols[J]. J. Phys. Chem. C,2010,114(31):13362-13369.
    [41] Marx S., Baiker A., Beneficial Interaction of Gold and Palladium in Bimetallic Catalysts for theSelective Oxidation of Benzyl Alcohol[J]. J. Phys. Chem. C2009,113(15):6191-6201.
    [42] Nutt M. O., Heck K. N., Alvarez P., et al. Improved Pd-on-Au bimetallic nanoparticle catalysts foraqueous-phase trichloroethene hydrodechlorination[J]. Appl. Catal. B: Environ.2006,69(1-2):115-125.
    [43] Okumura M., Haruta M., Kitagawa, Y. et al. Theoretical study of H2O and O2adsorption on Au smallclusters[J]. Gold Bull.2007,40(1):40-44.
    [44] Stiehl J. D., Kim T. S., McClure S. M., et al. Evidence for Molecularly Chemisorbed Oxygen on TiO2Supported Gold Nanoclusters and Au(111)[J]. J. Am. Chem. Soc.2004,126(6):1606-1607.
    [45] Staykov A., Kamachi T., Ishihara T., et al. Theoretical Study of the Direct Synthesis of H2O2on Pd andPd/Au Surfaces[J]. J. Phys. Chem. C,2008,112(49):19501-19505.
    [46] Miyamura H., Yasukawa T., Kobayashi S., Aerobic oxidative esterification of alcohols catalyzed bypolymer-incarcerated gold nanoclusters under ambient conditions[J]. Green Chem.2010,12:776-778.
    [47] Nielsen I. S., Taarning E., Egeblad K., et al. Direct aerobic oxidation of primary alcohols to methylesters catalyzed by a heterogeneous gold catalyst[J]. Catal. Lett.2007,116(1-2):35-40.
    [48] Enache D. I., Knight D. W., Hutchings G. J., Solvent-free Oxidation of Primary Alcohols to Aldehydesusing Supported Gold Catalysts[J]. Catal. Lett.2005,103(1-2):43-52.
    [49] Owston N. A., Parker A. J., Williams J. M. J., Oxidation of primary alcohols to methyl esters byhydrogen transfer[J]. Chem. Commun.2008,5:624-625.
    [50] Choudhary V. R., Jha R., Jana P., Solvent-free selective oxidation of benzyl alcohol by molecularoxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-freebenzaldehyde[J]. Green Chem.2007,9:267-272.
    [51] Su F., Ni J., Sun H., et al. Gold Supported on Nanocrystalline β-Ga2O3as a Versatile BifunctionalCatalyst for Facile Oxidative Transformation of Alcohols, Aldehydes, and Acetals into Esters[J]. Chem. Eur.J.2008,14(24):7131-7135.
    [1] Corbet J. P., Mignani G., Selected Patented Cross-Coupling Reaction Technologies[J]. Chem. Rev.,2006,106(7):2651-2710.
    [2] Wu C. Y., Tang Z., Fan W. W., et al. In Vivo Positron Emission Tomography (PET) Imaging ofMesenchymal-Epithelial Transition (MET) Receptor[J]. J. Med. Chem.,2010,53(1):139-146.
    [3] Pettit G. R., Thornhill A., Melody N., et al. Antineoplastic Agents.578. Synthesis of Stilstatins1and2and Their Water-Soluble Prodrugs[J]. J. Nat. Prod.,2009,72(3):380-388.
    [4] Kwak G., Kim S., Fujiki M., et al. Versatile and Facile Preparation of Chiral Polyacetylene-Based GelFilm and Organic-Inorganic Composites[J]. Chem. Mater.,2004,16(10):1864-1868.
    [5] de Meijere A., Diederich F., Metal-Catalyzed Cross-Coupling Reactions,2nd ed., Wiley-VCH,Weinheim,2004.
    [6] Martin R., Buchwald S. L., Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions EmployingDialkylbiaryl Phosphine Ligands[J]. Acc. Chem. Res.2008,41(11):1461-1473.
    [7] Denmark S. E., Regens C. S., Palladium-Catalyzed Cross-Coupling Reactions of Organosilanols andTheir Salts: Practical Alternatives to Boron-and Tin-Based Methods[J]. Acc. Chem. Res.2008,41(11):1486-1499.
    [8] Sherry B. D., Fürstner A., The Promise and Challenge of Iron-Catalyzed Cross Coupling[J]. Acc. Chem.Res.2008,41(11):1500-1511.
    [9] Fu G. C., The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of ArylElectrophiles through the Use of P(t-Bu)3and PCy3as Ligands[J]. Acc. Chem. Res.2008,41(11):1555-1564.
    [10] Yuan B. Z., Pan Y. Y., Li Y. W., et al. A Highly Active Heterogeneous Palladium Catalyst for theSuzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew. Chem.Int. Ed.2010,49(24):4054-4058.
    [11] Ackermann L., Vicente R., Kapdi A. R., Transition-metal-catalyzed direct arylation of (hetero)arenesby C-H bond cleavage[J]. Angew. Chem. Int. Ed.2009,48(52):9792-9826;
    [12] McGlacken G. P., Bateman L. M., Recent advances in aryl-aryl bond formation by direct arylation[J].Chem. Soc. Rev.2009,38(8):2447-2464.
    [13] Dyker G., Handbook of C-H Transformations, Wiley-VCH, Weinheim,2005.
    [14] Alberico D., Scott M. E., Lautens M., Aryl-Aryl Bond Formation by Transition-Metal-CatalyzedDirect Arylation[J]. Chem. Rev.2007,107,174-238.
    [15] Wasa M., Worrell B. T., Yu J. Q., Pd0/PR3-Catalyzed Arylation of Nicotinic and Isonicotinic AcidDerivatives[J]. Angew. Chem. Int. Ed.2010,49(7):1275-1277.
    [16] Candito D. A., Lautens M., Palladium-Catalyzed Domino Direct Arylation/N-Arylation: ConvenientSynthesis of Phenanthridines[J]. Angew. Chem. Int. Ed.2009,48(36):6713-6716.
    [17] Campeau L. C., Parisien M., Jean A., et al. Catalytic Direct Arylation with Aryl Chlorides, Bromides,and Iodides: Intramolecular Studies Leading to New Intermolecular Reactions[J]. J. Am. Chem. Soc.2006,128(2):581-590.
    [18] Turner G. L., Morris J. A., Greaney M. F., Direct arylation of thiazoles on water[J]. Angew. Chem. Int.Ed.2007,46(42):7996-8000.
    [19] Proch S., Kempe R., An Efficient Bimetallic Rhodium Catalyst for the Direct Arylation of UnactivatedArenes[J]. Angew. Chem. Int. Ed.2007,46(17):3135-3138.
    [20] Lewis J. C., Berman A. M., Bergman R. G., et al. Rh(I)-catalyzed arylation of heterocycles via C-Hbond activation: Expanded scope through mechanistic insight[J]. J. Am. Chem. Soc.2008,130,2493-2500.
    [21] zdemir I., Demir S., Cetinkaya B., et al. Direct Arylation of Arene C-H Bonds by Cooperative Actionof NHCarbene-Ruthenium(II) Catalyst and Carbonate via Proton Abstraction Mechanism[J]. J. Am. Chem.Soc.2008,130(4):1156-1157.
    [22] Join B., Yamamoto T., Itami K., Iridium Catalysis for C-H Bond Arylation of Heteroarenes withIodoarenes[J]. Angew. Chem. Int. Ed.2009,48(20):3644-3647.
    [23] Phipps R. J., Gaunt M. J., A Meta-Selective Copper-Catalyzed C-H Bond Arylation[J]. Science2009,323(5921):1593-1597.
    [24] Do H. Q., Daugulis O., Copper-Catalyzed Arylation and Alkenylation of Polyfluoroarene C-HBonds[J]. J. Am. Chem. Soc.2008,130(4):1128-1129.
    [25]Valerica P, Davit Z. New pincer-type diphosphinito (POCOP) complexes of NiIIand NiIII[J]. ChemCommun,2007,9:978-980.
    [26] Kobayashi O., Uraguchi D., Yamakawa T., Cp2Ni-KOt-Bu-BEt3(or PPh3) Catalyst System for DirectC-H Arylation of Benzene, Naphthalene, and Pyridine[J]. Org. Lett.2009,11(12):2679-2682.
    [27] Liu W., Cao H., Lei A., Iron-Catalyzed Direct Arylation of Unactivated Arenes with Aryl Halides[J].Angew. Chem. Int. Ed.2010,49(11):2004-2008.
    [28] Vallee F., Mousseau J. J., Charette A. B., Iron-Catalyzed Direct Arylation through an Aryl RadicalTransfer Pathway[J]. J. Am. Chem. Soc.2010,132(47):1514-1516.
    [29] Yanagisawa S., Ueda K., Taniguchi T., et al. Potassium t-Butoxide Alone Can Promote the BiarylCoupling of Electron-Deficient Nitrogen Heterocycles and Haloarenes[J]. Org. Lett.2008,10(20):4673-4676.
    [30] Liu W., Cao H., Zhang H., et al. Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct C-HArylation of Unactivated Benzene[J]. J. Am. Chem. Soc.2010,132(47):16737-16740.
    [31] Sun C. L., Li H., Yu D. G., et al. An efficient organocatalytic method for constructing biaryls througharomatic C-H activation[J]. Nat. Chem.2010,2(12):1044-1049.
    [32] Shirakawa E., Itoh K. i., Higashino T., et al. tert-Butoxide-Mediated Arylation of Benzene with ArylHalides in the Presence of a Catalytic1,10-Phenanthroline Derivative[J]. J. Am. Chem. Soc.2010,132(44):15537-15539.
    [33] Studer A., Curran D. P., Organocatalysis and C-H Activation Meet Radical-and Electron-TransferReactions[J]. Angew. Chem. Int. Ed.2011,50(22):5018-5022.
    [34] Qiu Y., Liu Y., Yang K., et al. New Ligands That Promote Cross-Coupling Reactions between ArylHalides and Unactivated Arenes[J]. Org. Lett.2011,13(14):3556-3359.
    [35] Astruc D., Lu F., Ruiz Aranzaes J. R., Nanoparticles as Recyclable Catalysts: The Frontier betweenHomogeneous and Heterogeneous Catalysis[J]. Angew. Chem. Int. Ed.2005,44(48):7852-7872.
    [36] Herm Z. R., Swisher J. A., Smit B., et al. Metal Organic Frameworks as Adsorbents for HydrogenPurification and Precombustion Carbon Dioxide Capture[J]. J. Am. Chem. Soc.2011,133(15):5664-5667.
    [37] Farha O. K., Yazaydin A.., Eryazici I., et al. De novo synthesis of a metal-organic frameworkmaterial featuring ultrahigh surface area and gas storage capacities[J]. Nat. Chem.2010,2(11):944-948.
    [38] Ma D. Y., Li Y. W., Li Z., Tuning the moisture stability of metal-organic frameworks by incorporatinghydrophobic functional groups at different positions of ligands[J]. Chem. Commun.2011,47:7377-7379.
    [39] Corma A., García H., Llabrés i Xamena F. X., Engineering metal organic frameworks forheterogeneous catalysis[J]. Chem. Rev.2010,110(8):4606-4655.
    [40] Lee J. Y., Farha O. K., Roberts J., et al. Metal-organic framework materials as catalysts[J]. Chem. Soc.Rev.2009,38(5):1450-1459.
    [41] Farrusseng D., Aguado S., Pinel C., Metal-organic frameworks: opportunities for catalysis[J]. Angew.Chem. Int. Ed.2009,48(41):7502-7513.
    [42] Tanabe K. K., Cohen S. M., Engineering a Metal-Organic Framework Catalyst by Using PostsyntheticModification[J]. Angew. Chem. Int. Ed.2009,48(40):7424-7427.
    [43] Ma L., Falkowski J. M., Abney C., et al. A series of isoreticular chiral metal-organic frameworks as atunable platform for asymmetric catalysis[J]. Nat. Chem.2010,2(10):838-846.
    [44] Kitaura R., Kitagawa S., Kubota Y., et al. Formation of a One-Dimensional Array of Oxygen in aMicroporous Metal-Organic Solid[J]. Science2002,298(5602):2358-2361.
    [45] Horike S., Dinc M., Tamaki K., et al. Size-Selective Lewis Acid Catalysis in a MicroporousMetal-Organic Framework with Exposed Mn2+Coordination Sites[J]. J. Am. Chem. Soc.2008,130(18):5854-5855.
    [46] Liu H. L., Liu Y. L., Li Y. W., et al. Metal-organic framework supported gold nanoparticles as a highlyactive heterogeneous catalyst for aerobic oxidation of alcohols[J]. J. Phys. Chem. C,2010,114(31):13362-13369.
    [47] Bloch E. D., Britt D., Lee C., et al. Metal Insertion in a Microporous Metal-Organic Framework Linedwith2,2′-Bipyridine[J]. J. Am. Chem. Soc.,2010,132(41):14382-14384.
    [48] Park K.S., Ni Z., C téA.P., et al. Exceptional chemical and thermal stability of zeolitic imidazolateframeworks[J]. PNAS2006,103(27):10186-10191.
    [49] Banerjee R., Phan A., Wang B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworksand Application to CO2Capture[J]. Science2008,319(5865):939-943.
    [50] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev.2009,38,1330.
    [51] Webster C. E., Drago R. S., Zerner M. C., Molecular Dimensions for Adsorptives[J]. J. Am. Chem.Soc.1998,120(22):5509-5516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700