用户名: 密码: 验证码:
淀粉基食品包装材料结构与增塑剂迁移的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们食品安全和环境保护等意识的不断提高,开发具有良好安全性和包装性能的环境友好型食品包装材料已成为当前食品包装领域的研究热点,基于可再生资源的生物降解天然高分子包装也越来越受到关注,其中,以来源丰富、价格低廉的淀粉制备的淀粉基食品包装材料被认为是最具应用前景的新型包装之一。然而,增塑剂作为这类新型包装材料设计制造中必需的加工助剂,在包装材料与食品接触后,不可避免地向食品体系中迁移,导致食品包装结构性能改变而逐渐丧失对食品的保护功能。因此,本论文以增塑剂迁移与淀粉基膜材内部微观结构、包装材料/食品模拟体系界面结构以及热加工过程参数等的相互影响为突破口,探讨在不同食品模拟体系及热加工过程中,淀粉基膜材内分子相互作用、结晶结构、微区有序聚集态结构等不同尺度结构的变化规律以及由此带来的对增塑剂迁移的影响,获得了制约增塑剂迁移的淀粉基膜材微观结构因素。
     选择高取代度酯化淀粉(DS=2.49)为基材,以三乙酸甘油酯为增塑剂,运用现代分析技术深入研究了增塑剂分布状态及增塑剂与淀粉分子的相互作用以及由此导致的膜材结晶结构、微区有序聚集态结构和热力学性能的变化规律。结果表明,增塑剂添加到淀粉基膜材后,增塑剂和酯化淀粉之间产生了以范德华力为主的相互作用,导致增塑剂与酯化淀粉的醚键增强,而分子本身更活跃。同时,增塑剂扩大了淀粉分子链间距离,增大链段运动性,致使部分链段相互靠近并排列更规整,在原本相对有序的微区中形成分散的微晶结构,对分子链运动产生一定的限制作用。此外,微晶形成过程中,增塑剂分子被挤到临近无定形区域形成了“增塑剂富集区”,通过扩张无定形区给大分子运动提供更多的空间,促进了膜材内不同尺度的松弛过程,参与玻璃化转变的分子链段聚集体的尺度变大。
     当淀粉基膜材与食品模拟体系接触后,基于食品模拟体系/增塑剂/膜材基体之间的亲和性差异,食品模拟体系溶剂对膜材产生不同溶胀作用后,导致增塑剂迁移过程不同。在亲和性小的蒸馏水和4%乙酸中,增塑剂前期迁移首先遵循菲克第二扩散定律,随着溶胀作用增强,迁移过程逐渐转变为非菲克扩散,整体迁移过程较符合一级动力学;而在亲和性大的65%乙醇和正己烷体系中,溶胀作用更剧烈,膜材松弛与增塑剂迁移速度相当,增塑剂迁移呈现非菲克扩散特征。
     随着增塑剂迁出和食品模拟体系溶剂分子渗透,增塑剂/酯化淀粉间的相互作用力发生改变,增塑剂分子所处化学环境改变,醚键变得不稳定,增塑剂分子稳定性增强。同时,淀粉分子链内/间作用力加强,无定形链段发生收缩聚拢,有序微区整体被挤压,尺寸减小且呈现出多分散性,且微区内部微晶结构收缩。此外,增塑剂迁出弱化不同尺度上的分子链运动性,致密的聚集态结构和有序微区中微晶聚集对膜材中各级松弛过程产生更大限制。也就是说,在食品模拟体系的浸泡过程中,增塑剂分子受到的整体作用力增大,膜材形成更致密聚集态结构,增塑剂分子迁移和溶剂渗透需克服的内摩擦阻力增大,因此,淀粉基膜材增塑剂迁移过程受到抑制。据此,提出了不同食品模拟体系下淀粉基膜材结构变化对增塑剂影响迁移的机制模型。
     在热加工过程中,更多水分子进入膜材内加剧溶胀作用,导致膜材聚集态结构发生改变,加速增塑剂迁出。而且,由于膜材有序微区分子链段排列紧密,热加工促进更多水分子渗透扩散到无定形区域,延缓了增塑剂迁移导致的分子链收缩。此外,热加工增强无定形链段运动性,导致有序微区边界的分子链排列成无定形态,有序微区整体缩小,且其内部微晶被轻微破坏,因此,对增塑剂迁出和水分子渗透的阻隔性减弱,更多水分子可进入膜材内溶解增塑剂分子。另外,增塑剂受热后分子运动强烈,因而增塑剂迁移在加热过程中加剧。据此,提出了热加工过程中膜材结构变化对增塑剂迁移影响的机制模型。
     本论文提出了增塑剂迁移与膜材微结构、膜材/食品界面结构的关系及其在热加工过程中变化的模型,掌握了在不同食品模拟体系及热加工过程中食品包装材料多尺度结构变化以及由此带来的增塑剂迁移变化的规律,为进一步实现抑制淀粉基生物降解食品包装材料中增塑剂迁移、合理设计及安全使用淀粉基材料提供了基础数据和理论参考。
Alongwith increasing attention focused on food safety and protecting environment, theeco-friendly food packaging material with favorable safety and qualified performance hasbecome the research hotspot in the food packaging industry. Consequently, biodegradablenatural polymer packaging based on renewable resources has attracted more and moreinteresting. Thereinto, as an abundant natural resource with low price, starch has been appliedto produce the starch-based food packaging material, which is considered as one of the mostpromising novel packaging. However, it is hardly possible to avoid plasticizer, which is anessential processing agent involved in the design and manufacture of this novel packagingmaterial, migrating from the matrix into the food system. The plasticizer migration wouldchange the structure and performance of the packaging material, which could lead to thegradual decay of the protection to the food inside. Therefore, in this academic dissertation, itwas proposed as the breakthrough that the relations between plasticizer migration andstructural changes of the starch-based film, including the microstructure and the interfacecontacted with food system, as well as during thermal processing. Moreover, the interaction,crystalline structure and ordered aggregation structure on multiple scales, which changedwhen the material contacted with different food simulants and involved in thermal processingwere discussed, as well as the effect from these structural changes. Finally, themicro-structural factors of starch-based film that restricted the plasticizer migration wereobtained.
     Hydrophobic starch ester with high substitute degree (DS=2.49) and triacetin were chosenas the base material and plasticizer. Modern analytical techniques were applied to detect theeffect from plasticizer distribution and plasticizer-starch ester interaction on the crystallinestructure, microstructure and thermodynamics properties. Results showed that new interaction(mainly as Van der Waals force) formed to enhance C-O in plasticizer and starch estermolecules and activate the whole molecules. Meanwhile, the distance betweenmacromolecular chains was enlarged, and the chain mobility was increased to approach toeach other and arranged in more order, which facilitated crystallite formation dispersed withinthe ordered microregion, restricting the chain mobility to some extent. Simultaneously, the plasticizer molecules previously distributed within crystallite were squeezed to formamorphous “plasticizer-rich domain”. The amorphous region was enlarged to provide largerfree volume for macromolecular chains, thus promoting relaxations on different scale. Inaddition, the dimension of chain aggregation involved in glass-rubber transition increased.
     When starch-based film contacted with the food stimulants, based on the different affinityamong simulants, plasticizer and film matrix, the diverse swelling behavior occurred,resulting in different migration process. Distilled water and4%acetic acid aqueous with lowaffinity exerted mild swelling effect on the films, and the migration obeyed the Fick’s secondlaw. The non-Fickian model of diffusion then began with the enhanced swelling, while thewhole plasticizer migration obeyed first-order kinetics. Comparatively, the swelling effectfrom65%ethanol aqueous and n-hexane was more obvious, which caused the comparablefilm relaxation and plasticizer diffusion, non-Fickian diffusion thus occurred.
     Alongwith the plasticizer migration and the permeation of solvent in food simulants, theplasticizer-starch ester interaction and the chemical surroundings for plasticizer were changed,reducing the stability of C-O and stabilizing the plasticizer molecules. At the same time, theinter-and intra-macromolecular interaction was enhanced to make the amorphous chainsshrink, which compressed the whole ordered microregion with smaller and polydispersed size,the crystallite inside was compressed as well. The mobility of macromolecular chains wasdirectly weakened because of the plasticizer migration. The formed compact aggregationstructure and the crystallite exerted more intense restriction on the relaxations within the film.It was meant that when immersed in food simulants, more compact aggregation structureformed to exert more intense effort on plasticizer molecules. Consequently, it was moredifficult for solvent diffusion and further plasticizer migration. Accordingly, the physicalmodel of influencing mechanism was established to describe the structural changes affectingplasticizer migration in different food simulants.
     During the thermal processing, more distilled water entered into the film matrix toaggravate the swelling, result in aggregation structural changes and thus accelerate theplasticizer migration. Due to the compact structure within the ordered microregion, morewater molecules were promoted to permeate the amorphous region, so as to delaying themacromolecular shrink after plasticizer migration. On the other hand, the chains mobility was enhanced by thermal treatment, which caused the macromolecules at the edge of the orderedmicroregion to become amorphous. The whole ordered microregion was decreased withslightly destructive crystallite inside, the blocking effect on plasticizer migration and waterpermeation was thus weakened. More water entered the film matrix to dissolve plasticizer,and thermal treatment increased the plasticizer mobility as well, consequently, the plasticizermigration was facilitated. Accordingly, the mechanism model describing the structuralchanges affecting plasticizer migration during thermal processing was proposed.
     The relevance connected plasticizer migration with microstructure and interface structurethe starch-based film, as well as the changes during thermal processing, was proposed in thisdissertation. Moreover, the multilevel structural changes of the material and its effect onplasticizer migration were understood, which could provide basic data and theory forrestraining plasticizer migration from biodegradable starch-based food packaging material andguiding the reasonable design and safe application of this novel packaging material.
引文
[1] Marsh K., Bugusu B. Food Packaging—Roles, Materials, and Environmental Issues [J].Journal of Food Science,2007,72(3): R39-R55
    [2] Gali K., etar M., Kurek M. The benefits of processing and packaging [J]. Trends inFood Science&Technology,2011,22:127-137
    [3] Siracusa V., Rocculi P., Romani S., et al. Biodegradable polymers for food packaging:a review [J]. Trends in Food Science&Technology,2008,19:634-643
    [4] Tharanathan R.N. Biodegradable films and composite coatings: past, present and future[J]. Trends in Food Science&Technology,2003,14:71-78
    [5] Sorrentino A., Gorrasi G., Vittoria V. Potential perspectives of bio-nanocomposites forfood packaging applications [J]. Trends in Food Science&Technology,2007,18:84-95
    [6] Kirwan M.J., Strawbridge J.W. Plastics in food packaging [J]. Food PackagingTechnology,2003,6:174-240
    [7] Chandra R., Rustgi R. Biodegradable polymers [J]. Progress in Polymer Science,1998,23:1273-1335
    [8] Ma X., Chang P.R., Yu J., et al. Properties of biodegradable citric acid-modifiedgranular starch/thermoplastic pea starch composites [J]. Carbohydrate Polymers,2009,75(1):1-8
    [9] Shepherd M.J. Trace contamination of foods by migration from plastics packaging-Areview [J]. Food Chemistry,1982,8:129-145
    [10]Helmroth E., Rijk R., Dekker M., et al. Predictive modelling of migration frompackaging materials into food products for regulatory purposes [J]. Trends in FoodScience&Technology,2002,13:102-109
    [11]Lau O., Wong S. Contamination in food from packaging material [J]. Journal ofChromatography A,2000,882:255-270
    [12]Po as F.M., Hogg T. Exposure assessment of chemicals from packaging materials infoods: a review [J]. Trends in Food Science&Technology,2007,18:219-230
    [13]Jackson L.S. Chemical food safety issues in the United States: past, present, and future[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8161-8170
    [14]王志伟.食品包装技术[M].北京:化学工业出版社,2008
    [15]Davis G., Song J.H. Biodegradable packaging based on raw materials from crops andtheir impact on waste management [J]. Industrial Crops and Products,2006,23:147-161
    [16]王利兵等.食品包装安全学[M].北京:科学出版社,2011,35
    [17]科尔斯,麦克道尔,科万著,蔡和平等译.食品包装技术[M].北京:中国轻工业出版社,2012,135
    [18]杨福馨,吴龙奇.食品包装实用新材料新技术[M].第2版.北京:化学工业出版社,2009,40-52
    [19]章建浩.食品包装学[M].北京:中国农业出版社,2005
    [20]Guilbert S., Gontard N., Gorris L.G.M. Prolongation of the shelf-life of perishable foodproducts using biodegradable films and coatings [J]. LWT-Food Science andTechnology,1996,29(1-2):10-17
    [21]Debeaufort F., Quezada-Gallo J.A., Voilley A. Edible films and coatings: tomorrow’spackagings: a review [J]. Critical Reviews in Food Science and Nutrition,1998,38(4):299-313
    [22]Tharanathan R.N. Food derived carbohydrates—structural complexity and functionaldiversity [J]. Critical Reviews in Biotechnology,2002,22:65-84
    [23]Yu L., Dean K., Li L. Polymer blends and composites from renewable resources [J].Progress in Polymer Science,2006,31(6):576-602
    [24]Averous L., Boquillon N. Biocomposites based on plasticized starch: thermal andmechanical behaviors [J]. Carbohydrate Polymers,2004,56:111-122
    [25]Bordes P., Pollet E., Avérous L. Nano-biocomposites: biodegradablepolyester/nanoclay systems [J]. Progress in Polymer Science,2009,34:125-155
    [26]Mensitieri G., Di Maio E., Buonocore G.G., et al. Processing and shelf life issues ofselected food packaging materials and structures from renewable resources [J]. Trendsin Food Science&Technology,2011,22:72-80
    [27]陈宇等.食品包装材料用添加剂使用手册[M].北京:中国轻工业出版社,2010,8
    [28]Kechichian V., Ditchfield C., Veiga-Santos P., et al. Natural antimicrobial ingredientsincorporated in biodegradable films based on cassava starch [J]. LWT-Food Scienceand Technology,2010,43:1088-1094
    [29]Robertson G.L. Food packaging: principles and practice [M]. Boca Raton (FL): CRCPress,2006
    [30]Chen J., Brody A.L. Use of active packaging structures to control the microbial qualityof a ready-to-eat meat product [J]. Food Control,2013,30:306-310
    [31]Ozdemir M., Floros J.D. Active food packaging technologies [J]. Critical Reviews inFood Science and Nutrition,2004,44(3):185-193
    [32]Munro I.C., Haighton L.A., Lynch B.S., et al. Technological challenges of addressingnew and more complex migrating products from novel food packaging materials [J].Food Additives and Contaminants,2009,26(12):1534-1546
    [33]del Nobile M.A., Conte A., Buonocore G.G., et al. Active packaging by extrusionprocessing of recyclable and biodegradable polymers [J]. Journal of Food Engineering,2009,93:1-6
    [34]Rhim J.W., Ng P.K.W. Natural biopolymer-based nanocomposite films for packagingapplications [J]. Critical Reviews in Food Science and Nutrition,2007,47(4):411-433
    [35]de Azeredo H.M.C. Nanocomposites for food packaging applications [J]. FoodResearch International,2009,42:1240-1253
    [36]Duncan T.V. Applications of nanotechnology in food packaging and food safety:Barrier materials, antimicrobials and sensors [J]. Journal of Colloid and InterfaceScience,2011,363:1-24
    [37]de Azeredo H.M.C. Antimicrobial Nanostructures In Food Packaging [J]. Trends inFood Science&Technology,2013,30(1):56-69
    [38]Salafranca J., Pezo D., Nerín C. Assessment of specific migration to aqueous simulantsof a new active food packaging containing essential oils by means of an automaticmultiple dynamic hollow fibre liquid phase microextraction system [J]. Journal ofChromatography A,2009,1216:3731-3739
    [39]Fankhauser-Noti A., Grob K. Migration of plasticizers from PVC gaskets of lids forglass jars into oily foods: Amount of gasket material in food contact, proportion ofplasticizer migrating into food and compliance testing by simulation [J]. Trends inFood Science&Technology,2006,17:105-112
    [40]Biedermann M., Fiselier K., Grob K. Testing migration from the PVC gaskets in metalclosures into oily foods [J]. Trends in Food Science&Technology,2008,19:145-155
    [41]Sanches-Silva A., Andre C., Castanheira I., et al. Study of the migration ofphotoinitiators used in printed food-packaging materials into food simulants [J].Journal of Agricultural and Food Chemistry,2009,57:9516-9523
    [42]Bomfim M.V.J., Zamith H.P.S., Abrantes S.M.P. Migration of ε-caprolactam residuesin packaging intended for contact with fatty foods [J]. Food Control,2011,22:681-684
    [43]Muncke J. Endocrine disrupting chemicals and other substances of concern in foodcontact materials: An updated review of exposure, effect and risk assessment [J].Journal of Steroid Biochemistry and Molecular Biology,2011,127:118-127
    [44]Fasano E., Bono-Blay F., Cirillo T., et al. Migration of phthalates, alkylphenols,bisphenol A and di(2-ethylhexyl)adipate from food packaging [J]. Food Control,2012,27:132-138
    [45]Triantafyllou V.I., Akrida-Demertzi K., Demertzis P.G. A study on the migration oforganic pollutants from recycled paperboard packaging materials to solid food matrices[J]. Food Chemistry,2007,101:1759-1768
    [46]Biedermann-Brem S., Grob K., Fjeldal P. Release of bisphenol A from polycarbonatebaby bottles: mechanisms of formation and investigation of worst case scenarios [J].European Food Research and Technology,2008,227:1053-1060
    [47]Cao X.L., Dufresne G., Belisle S., et al. Levels of bisphenol A in canned liquid infantformula products in Canada and dietary intake estimates [J]. Journal of Agriculturaland Food Chemistry,2008,56:7919-7924
    [48]Tovar L., Salafranca J., Sánchez C., et al. Migration studies to assess the safety in useof a new antioxidant active packaging [J]. Journal of Agricultural and Food Chemistry,2005,53:5270-5275
    [49]O’Riordan T.C., Voraberger H., KerryJ.P., et al. Study of migration of activecomponents of phosphorescent oxygen sensors for food packaging applications [J].Analytica Chimica Acta,2005,530:135-141
    [50]Jamshidian M., Tehrany E.A., Desobry S. Release of synthetic phenolic antioxidantsfrom extruded poly lactic acid (PLA) film [J]. Food Control,2012,28:445-455
    [51]Pezo D., Navascués B., Salafranca J., et al. Analytical procedure for the determinationof Ethyl Lauroyl Arginate (LAE) to assess the kinetics and specific migration from anew antimicrobial active food packaging [J]. Analytica Chimica Acta,2012,745:92-98
    [52]Li S.D., Huang L. Pharmacokinetics and biodistribution of nanoparticles [J]. MolecularPharmaceutics,2008,5(4):496-504
    [53]Elias L., Fenouillot F., MajestéJ.C., et al. Migration of Nanosilica Particles in PolymerBlends [J]. Journal of Polymer Science: Part B: Polymer Physics,2008,46:1976-1983
    [54]Lloret E., Picouet P., Fernández A. Matrix effects on the antimicrobial capacity ofsilver based nanocomposite absorbing materials [J]. LWT-Food Science andTechnology,2012,49(2):333-338
    [55]López-Cervantes J., Sánchez-Machado D.I., Pastorelli S., et al. Evaluating themigration of ingredients from active packaging and development of dedicated methods:a study of two iron-based oxygen absorbers [J]. Food Additives and Contaminants,2003,20(3):291-299
    [56]San Martin M.F., Barbosa-Canovas G.V., Swanson B.G. Food processing by highhydrostatic pressure [J]. Critical Reviews in Food Science and Nutrition,2002,42(6):627-645
    [57]Farkas J. Irradiation for better foods [J]. Trends in Food Science&Technology,EFFoST Warsaw2004.2006,17(4):148-152
    [58]Guillard V., Mauricio-Iglesias M., Gontard N. Effect of Novel Food ProcessingMethods on Packaging: Structure, Composition, and Migration Properties [J]. CriticalReviews in Food Science and Nutrition,2010,50:969-988
    [59]Galotto M.J., Guarda A. Suitability of Alternative Fatty Food Simulants to Study theEffect of Thermal and Microwave Heating on Overall Migration of Plastic Packaging[J]. Packaging Technology Science,2004,17:219-223
    [60]Buchala R., Schüttler C., Bogl K.W. Effects of ionizing radiation on plastic foodpackaging materials: a review. Part2. Global migration, sensory changes and the fateof additives [J]. Journal of Food Protection,1993,56:998-1005
    [61]Bureau G. Ionizing treatment and packaging-preservation of foodstuffs packed inflexible packaging [J]. Food Packaging Technology,1996,2:65-84
    [62]Zygoura P.D., Paleologos E.K., Kontominas M.G. Migration levels of PVC plasticisers:Effect of ionising radiation treatment [J]. Food Chemistry,2011,128:106-113
    [63]Parra D.F., Rodrigues J.A.F.R., Lug o A.B. Use of gamma-irradiation technology inthe manufacture of biopolymer-based packaging films for shelf-stable foods [J].Nuclear Instruments and Methods in Physics Research B,2005,236:563-566
    [64]López-Rubio A., Lagarón J.M., Hernández-Mu oz P., et al. Effect of high pressuretreatments on the properties of EVOH-based food packaging materials [J]. InnovativeFood Science and Emerging Technologies,2005,6:51-58
    [65]European Commission. Commission Directive82/711/EEC(amended by93/8/EEC and97/48/EEC): Laying down the basic rules necessary for testing migration of theconstituents of plastic materials and articles intended to come into contact withfoodstuffs [S]. Official Journal,1982, L297:26-36
    [66]刘志刚,王志伟,胡长鹰.塑料包装材料化学物迁移试验中食品模拟物的选用[J].食品科学,2006,27(6):271-274
    [67]Grob K., Pfenninger S., Pohl W., et al. European legal limits for migration from foodpackaging materials:1. Food should prevail over simulants;2. More realisticconversion from concentrations to limits per surface area. PVC cling films in contactwith cheese as an example [J]. Food Control,2007,18:201-210
    [68]GB/T5009.156-2003,中华人民共和国国家标准:食品用包装材料及其制品的浸泡试验方法通则[S].中华人民共和国卫生部2003年8月11日发布
    [69]Koszinowski J. Diffusion and solubility of n-alkanes in polyolefins [J]. Journal ofApplied Polymer Science,1986,31:1805-1826
    [70]Reynier A., Dole P., Feigenbaum A. Prediction of worst case migration: presentationof a rigorous methodology [J]. Food Additives and Contaminants,1999,16:137-152
    [71]Helmroth I.E., Dekker M., Hankemeier T. Influence of solvent absorption on themigration of Irganox1076from LDPE [J]. Food Additives and Contaminants,2002,19:176-183
    [72]李波平.塑料食品包装中化学物的测定与迁移研究[D].山西大学硕士论文,2008
    [73]巴恩斯,辛克莱,沃森主编;宋欢,林勤保主译.食品接触材料及其化学迁移[M].北京:中国轻工业出版社,2011
    [74]胡法,杨勇,者东梅等.塑料食品包装材料化学物迁移的分析方法发展动态[J].塑料工业,2011,39(8):18-21
    [75]Fankhauser-Noti A., Biedermann-Brem S., Grob K. PVC plasticizers/additivesmigrating from the gaskets of metal closures into oily food: Swiss market survey June2005[J]. European Food Research Technology,2006,223:447-453
    [76]Fankhauser-Noti A., Grob K. Migration of plasticizers from PVC gaskets of lids forglass jars into oily foods: Amount of gasket material in food contact, proportion ofplasticizer migrating into food and compliance testing by simulation [J]. Trends inFood Science&Technology,2006,17:105-112
    [77]McCombie G., Harling-Vollmer A., Morandini M., et al. Migration of plasticizers fromthe gaskets of lids into oily food in glass jars: a European enforcement campaign [J].European Food Research and Technology,2012,235:129-137
    [78]Goulas A.E., Zygoura P., Karatapanis A., Georgantelis D., Kontominas M.G.Migration of di(2-ethylhexyl) adipate and acetyltributyl citrate plasticizers fromfood-grade PVC film into sweetened sesame paste (halawa tehineh): Kinetic andpenetration study [J]. Food and Chemical Toxicology,2007,45:585-591
    [79]刘志刚,王志伟.塑料包装材料化学物向食品迁移的模型研究进展[J].高分子材料科学与工程,2007,23(5):19-23
    [80]刘志刚,王志伟.塑料食品包装材料化学物迁移的数值模拟[J].化工学报,2007,58(8):21259-2132
    [81]刘志刚,卢立新,王志伟.塑料包装材料内的小分子物质扩散系数模型[J].高分子材料科学与工程,2008,24(12):25-33
    [82]皮林格,巴纳主编;范家起,张玉霞译.食品用塑料包装材料-阻隔功能、传质、品质保证和立法[M].北京:化学工业出版社,2004
    [83]Po as M.F., Oliveira J.C., Pereira J.R., et al. Modelling migration from paper into afood simulant [J]. Food Control,2011,22:303-312
    [84]Po as M.F., Oliveira J.C., Brandsch R., et al. Analysis of mathematical models todescribe the migration of additives from packaging plastics to foods [J]. Journal ofFood Process Engineering,2012,35:657-676
    [85]张燕萍,谢良.食品加工技术[M].北京:化学工业出版社,2006
    [86]费洛斯著;蒙秋霞,牛宇译.食品加工技术-原理与实践[M].第2版.北京:中国农业大学出版社,2006
    [87]Zuckerman H., Miltz J. Changes in thin-layer susceptors during microwave heating [J].Packaging Technology and Science,1994,7:21-26
    [88]Siripatrawan U., Burgess G., Harte B.R. The effect of repeated microwave heating, filllevel and temperature on the impact resistance of a polypropylene syrup bottle [J].Packaging Technology and Science,2000,13:205-210
    [89]Luo Z., He X., Fu X., et al. Effect of microwave radiation on the physicochemicalproperties of normal maize, waxy maize and amylomaize V starches [J]. Starch-St rke,2006,58:468-474
    [90]Alin J., Hakkarainen M. Migration from polycarbonate packaging to food simulantsduring microwave heating [J]. Polymer Degradation and Stability,2012,97:1387-1395
    [91]Alin J., Hakkarainen M. Microwave heating causes rapid degradation of antioxidantsin polypropylene packaging, leading to greatly increased specific migration to foodsimulants as shown by ESI-MS and GC-MS [J]. Journal of Agricultural and FoodChemistry,2011,59:5418-5427
    [92]Castle L., Jickells S.M., Sharman M., et al. Migration of the plasticizer acetyltributylcitrate from plastic film into foods during microwave cooking and other domestic use[J]. Journal of Food Protection,1988,51(12):916-919
    [93]Choi S.S. Migration of antidegradants to the surface in NR and SBR vulcanizates [J].Journal of Applied Polymer Science,1997,65(1):117-125
    [94]Pennarun P.Y., Dole P., Feigenbaum A. Overestimated diffusion coefficients for theprediction of worst case migration from PET: Application to recycled PET and tofunctional barriers assessment [J]. Packaging Technology and Science,2004,17(6):307-320
    [95]Sun Y.M., Wu C.H., Lin A. Permeation and sorption properties of benzene,cyclohexane, and n-hexane vapors in poly bis(2,2,2-trifluoroethoxy)phosphazene(PTFEP) membranes [J]. Polymer,2006,47(2):602-610
    [96]Badeka A.B., Kontominas M.G. Effect of microwave heating on the migration ofdioctyladipate and acetyltributylcitrate plasticizers from food-grade PVC andPVDC/PVC films into olive oil and water [J]. Zeitschrift FurLebensmittel-Untersuchung Und-Forschung,1999,202(4):313-317
    [97]Badeka A.B., Pappa K., Kontominas M.G. Effect of microwave versus conventionalheating on the migration of dioctyl adipate and acetyltributyl citrate plasticizers fromfood grade PVC and P(VDC/VC) films into fatty foodstuffs [J]. Zeitschrift FurLebensmittel-Untersuchung Und-Forschung a-Food Research and Technology,1999,208(5-6):429-433
    [98]Begley T.H., Hollifield H.C. Migration of dibenzoate plasticizers and polyethyleneterephthalate cyclic oligomers from microwave susceptors packaging intofood-simulating liquids and food [J]. Journal of Food Protection,1990a,53(12):1062-1066
    [99]Begley T.H., Biles J.E., Hollifield H.C. Migration of an epoxy adhesive compound intoa food-simulating liquid and food from microwave susceptor packaging [J]. Journal ofAgricultural and Food Chemistry,1991,39(11):1944-1945
    [100] Sharman M., Honeybone C.A., Jickells S.M., et al. Detection of residues of theepoxy adhesive component bisphenol-a diglycidyl ether (badge) in microwavesusceptors and its migration into food [J]. Food Additives and Contaminants,1995,12(6):779-787
    [101] Tharanathan R.N. Starch—the polysaccharide of high abundance and usefulness [J].Journal of Scientific and Industrial Research,1995,54:452-458
    [102] Tharanathan R.N., Saroja N. Hydrocolloid-based packaging films—alternate tosynthetic plastics [J]. Journal of Scientific and Industrial Research,2001,60:547-559
    [103] Mahalik N.P., Nambiar A.N. Trends in food packaging and manufacturing systemsand technology [J]. Trends in Food Science&Technology,2010,21:117-128
    [104] Brouillet-Fourmann S., Carrot C., Lacabanne C., et al. Evolution of interactionsbetween water and native corn starch as a function of moisture content [J]. Journal ofApplied Polymer Science,2002,86:2860-2865
    [105] Kim M., Lee S. Characteristics of crosslinked potato starch and starch-filled linearlow-density polyethylene films [J]. Carbohydrate Polymers,2002,50:331-337
    [106] Roy S.B., Ramaraj B., Shit S.C., et al. Polypropylene and Potato StarchBiocomposites: Physicomechanical and Thermal Properties [J]. Journal of AppliedPolymer Science,2011,120:3078-3086.
    [107] Mir S., Yasin T., Halley P.J., et al. Thermal and rheological effects of sepiolite inlinear low-density polyethylene/starch blend [J]. Journal of Applied Polymer Science,2013,127(2):1330-1337
    [108] Chen G., Geng H., Luo L., et al. Synthesis and properties of starch-graftedpolystyrene-maleic anhydride copolymer [J]. Journal of Applied Polymer Science,2012,126: E109-E115
    [109] Aggarwal P., Dollimore D. The effect of chemical modification on starch studiedusing thermal analysis [J]. Thermochimica Acta,1998,324:1-8
    [110] Volkert B., Lehmann A., Greco T., et al. A comparison of different synthesis routesfor starch acetates and the resulting mechanical properties [J]. Carbohydrate Polymers,2010,79:571-577
    [111] Nejad M.H., Ganster J., Bohn A., et al. Nanocomposites of starch mixed esters andMMT: Improved strength, stiffness, and toughness for starch propionate acetate laurate[J]. Carbohydrate Polymers,2011,84:90-95
    [112] Nejad M.H., Ganster J., Volkert B. Starch Esters with Improved MechanicalProperties through Melt Compounding with Nanoclays [J]. Journal of Applied PolymerScience,2010,118:503-510
    [113] Kim M. Evaluation of degradability of hydroxypropylated potato starch/polyethyleneblend films [J]. Carbohydrate Polymers,2003,54:173-181
    [114] Soares G.A., de Castro A.D., Cury B.S.F., et al. Blends of cross-linked high amylosestarch/pectin loaded with diclofenac [J]. Carbohydrate Polymers,2013,91:135-142
    [115] Petersen K., Nielsen P.V., Olsen M.B. Physical and mechanical properties ofbio-based materials—starch polylactate and polyhydroxybutyrate [J]. Starch-Starke,2001,53:356-361
    [116] Kovács J.G., Tábi T. Examination of Starch Preprocess Drying and WaterAbsorption of Injection-Molded Starch-Filled Poly(lactic acid) Products [J]. PolymerEngineering&Science,2011,51(5):843-850
    [117] Avérous L., Halley P.J. Biocomposites based on plasticized starch [J]. BiofuelsBioproducts&Biorefining-Biofpr,2009,3:329-343
    [118] Arvanitoyannis I.S. Totally and partially biodegradable polymer blends based onnatural synthetic macromolecules: preparation, physical properties, and potential asfood packaging materials [J]. Journal of Macromolecular Science-Reviews inMacromolecular Chemistry and Physics,1999, C39(2):205-271.
    [119] García M.A., Martino M.N., Zaritzky N.E. Lipid Addition to Improve Barrierproperties of edible starch-based films and coatings [J]. Journal of Food Science,2000,65(6):941-947
    [120] Markarian J. Biopolymers present new market opportunities for additives inpackaging [J]. Plastics Additives&Compounding,2008,10(3):22-25
    [121] Vieira M.G.A., Da Silva M.A., Dos Santos L.O., et al. Natural-based plasticizers andbiopolymer films: A review [J]. European Polymer Journal,2011,47:254-263
    [122] Frados J. Plastics engineering handbook [M]. New York: Van Nostrand Reinhold,1976
    [123] Siepmann J., Paeratakul O., Bodmeier R. Modeling plasticizer uptake in aqueouspolymer dispersions [J]. International Journal of Pharmaceutics,1998,165(2):191-200
    [124] Bodmeier R., Paeratakul O. Plasticizer uptake by aqueous colloidal polymerdispersions used for the coating of solid dosage forms [J]. International Journal ofPharmaceutics,1997,152(1):17-26
    [125] Sothornvit R., Krochta J.M. Plasticizers in edible films and coatings. In J. H. Han(Ed.), Innovations in food packaging [M]. London: Elsevier Academic Press,2005
    [126] Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols andRelative Humidity on Material Properties [J]. Biomacromolecules,2002,3:1101-1108
    [127] Majdzadeh-Ardakani K., Nazari B. Improving the mechanical properties ofthermoplastic starch/poly(vinyl alcohol)/clay nanocomposites [J]. Composites Scienceand Technology,2010,70:1557-1563
    [128] Avella M., De Vlieger J.J., Errico M.E., et al. Biodegradable starch/claynanocomposite films for food packaging applications [J]. Food Chemistry,2005,93:467-474
    [129] Angellier H., Molina-Boisseau S., Dole P., et al. Thermoplastic Starch-Waxy MaizeStarch Nanocrystals Nanocomposites, Biomacromolecules,2006,7,531-539.
    [130] Chivrac F., Pollet E., Schmutz M., Luc Avérous. New Approach to ElaborateExfoliated Starch-Based Nanobiocomposites [J]. Biomacromolecules,2008,9:896-900
    [131] Liu H., Chaudhary D., Yusa S., et al. Glycerol/starch/Na+-montmorillonitenanocomposites: A XRD, FTIR, DSC and1H NMR study [J]. Carbohydrate Polymers,2011,83:1591-1597
    [132] Santosa F.X.B., Padua G.W. Tensile properties and water absorption of zein sheetsplasticized with oleic and linoleic acids [J]. Journal of Agricultural and FoodChemistry,1999,47:2070-2074
    [133] Matveev Y.I., Grinberg V.Y., Tolstoguzov V.B. The plasticizing effect of water onproteins, polysaccharides and their mixtures. Glassy state of biopolymers, food andseeds [J]. Food Hydrocolloids,2000,14:425-437
    [134] Suyatma N.E., Tighzert L., Copinet A., et al. Effects of hydrophilic plasticizers onmechanical, thermal, and surface properties of chitosan films [J]. Journal ofAgricultural and Food Chemistry,2005,53:3950-3957
    [135] Han J.H. Packaging for nonthermal processing of food [M]. Oxford: BlackwellPublishing Ltd.,2007
    [136] Mali S., Grossmann M.V.E., García M.A., et al. Mechanical and thermal propertiesof yam starch films [J]. Food Hydrocolloids,2005,19:157-164
    [137] Chen C., Lai L. Mechanical and water vapor barrier properties of tapiocastarch/decolorized hsian-tsao leaf gum films in the presence of plasticizer [J]. FoodHydrocolloids,2008,22:1584-1595
    [138] Tang X., Alavi S., Herald T.J. Effects of plasticizers on the structure and propertiesof starch–clay nanocomposite films [J]. Carbohydrate Polymers,2008,74:552-558
    [139] Van Soest J.J.G., Knooren N. Influence of glycerol and water content on the structureand properties of extruded starch plastic sheets during aging [J]. Journal of AppliedPolymer Science,1997,64(7):1411-1422
    [140] Ma X., Yu J. The plasticizers containing amide groups for thermoplastic starch [J].Carbohydrate Polymers,2004,57(2):197-203
    [141] Huang M., Yu J., Ma X. Ethanolamine as a novel plasticizer for thermoplastic starch[J]. Polymer Degradation and Stability,2005,90(3):501-507
    [142] Smits A.L.M., Kruiskamp P.H., Van Soest J.J.G, et al. Interaction between dry starchand glycerol or ethylene glycol, measured by differential scanning calorimetry andsolid state NMR spectroscopy [J]. Carbohydrate Polymers,2003,53(4):409-416
    [143] Bergo P.V.A., Carvalho R.A., Sobral P.J.A., et al. Physical properties of edible filmsbased on cassava starch as affected by the plasticizer concentration [J]. PackagingTechnology and Science,2008,21(2):85-89
    [144] Mali S., Sakanaka L.S., Yamashita F., et al. Water sorption and mechanicalproperties of cassava starch films and their relation to plasticizing effect [J].Carbohydrate Polymers,2005,60(3):283-289
    [145] Veiga-Santos P., Oliveira L.M., Cereda M.P., et al. Sucrose and inverted sugar asplasticizer. Effect on cassava starch–gelatin film mechanical properties,hydrophilicity and water activity [J]. Food Chemistry,2007,103,255-262
    [146] Galdeano M.C., Grossmann M.V.E., Mali S., et al. Effects of production process andplasticizers on stability of films and sheets of oat starch [J]. Materials Science andEngineering C,2009,29:492-498
    [147] Galdeano M.C., Mali S., Grossmann M.V.E., et al. Effects of plasticizers on theproperties of oat starch films [J]. Materials Science and Engineering C,2009,29:532-538
    [148] Kuorwel K.K., Cran M.J., Sonneveld K., et al. Migration of antimicrobial agentsfrom starch-based films into a food simulant [J]. LWT-Food Science and Technology,2013,50:432-438
    [149] Suppakul P., Sonneveld K., Miltz J., Bigger S.W. Active packaging technologieswith an emphasis on antimicrobial packaging and its applications [J]. Journal of FoodScience,2003,68:408-420
    [150] Weng Y.M., Hotchkiss J.H. Anhydrides as antimycotic agents added to polyethylenefilms for food packaging [J]. Packaging Technology and Science,1993,6:123-128
    [151] Petersen J.H., Naamansen E.T., Nielsen P.A. PVC cling film in contact with cheese:health aspects related to global and specific migration of DEHA [J]. Food Additivesand Contaminants,1995,12:245-253
    [152] Goulas A.E., Kontominas M.G. Migration of dioctyladipate plasticizer fromfood-grade PVC film into chicken meat products: effect of c-radiation [J]. Zeitschriftfur Lebensmittel Untershuchung Forschung,1996,202:250-255
    [153] Goulas A.E., Anifantaki K.I., Kolioulis D.G., et al. Migration of di-(2-ethylhexyl)adipate plasticizer from food-grade polyvinylchloride film into hard and soft cheeses[J]. Journal of Dairy Science,2000,83:1712-1718
    [154] Startin J.R., Sharman M., Rose M.D., et al. Migration from plasticized films intofoods.1. Migration of di-(2-ethylhexyl) adipate from pvc films during home-use andmicrowave cooking [J]. Food Additives and Contaminants,1987,4:385-398
    [155] Park H.J., Bunn J.M., Weller P.J., et al. Water vapour permeability and mechanicalproperties of grain protein-based films as affected by mixtures of polyethylene glycoland glycerin plasticizers [J]. Transactions of the Asae,1994,37(4):1281-1285
    [156] Viroben J., Barbot J., Mouloungui Z., et al. Preparation and characterization of filmfrom pea protein [J]. Journal of Agricultural and Food Chemistry,2000,48:1064-1069
    [157] Hernández P., Rubio A., Del Valle V., et al. Mechanical and water barrier propertiesof glutenin films influenced by storage time [J]. Journal of Agricultural and FoodChemistry,2004,52:79-83
    [158] Anker M., Stading M., Hermansson A.M. Aging of whey protein properties films andthe effect on mechanical and barriers properties [J]. Journal of Agricultural and FoodChemistry,2001,49:989-995
    [159]叶宪曾,张新祥等.仪器分析教程[M].第2版.北京:北京大学出版社,2007,53-77
    [160] Cerqueira M.A., Souza B.W.S., Teixeira J.A., et al. Effect of glycerol and corn oil onphysicochemical properties of polysaccharide films-A comparative study [J]. FoodHydrocolloids,2012,27:175-184
    [161]朱育平.小角X射线散射—理论、测试、计算及应用[M].北京:化学工业出版社,2008
    [162] Liu Z. Edible films and coatings from starch. In J. H. Han (Ed.), Innovations in foodpackaging [M]. London, UK: Elsevier Academic Press,2005
    [163] Jiménez A., Fabra M.J., Talens P., et al. Effect of re-crystallization on tensile, opticaland water vapour barrier properties of corn starch films containing fatty acids [J]. FoodHydrocolloids,2012,26:302-310
    [164] Osés J., Fernández-Pan I., Mendoza M., et al. Stability of the mechanical propertiesof edible films based on whey protein isolate during storage at different relativehumidity [J]. Food Hydrocolloids,2009,23:125-131
    [165] Anglès M.N., Dufresne A. Plasticized Starch/Tunicin Whiskers Nanocomposites.1.Structural Analysis [J]. Macromolecules,2000,33:8344-8353
    [166] Fabra M.J., Talens P., Chiralt A. Water sorption isotherms and phase transitions ofsodium caseinate-lipid films as affected by lipid interactions [J]. Food Hydrocolloids,2010,24:384-391
    [167] Doniach S. Changes in Biomolecular Conformation Seen by Small Angle X-rayScattering [J]. Chemical Reviews,2001,101:1763-1778
    [168] Chu B., Hsiao B.S. Small-Angle X-ray Scattering of Polymers [J]. ChemicalReviews,2001,101:1727-1761
    [169] Baldini G., Beretta S., Chirico G., et al. Salt-Induced Association of β-Lactoglobulinby Light and X-ray Scattering [J]. Macromolecules,1999,32:6128-6138
    [170] Hilger C., Stadler R. Cooperative Structure Formation by Directed NoncovalentInteractions in an Unpolar Polymer Matrix.7. Differential Scanning Calorimetry andSmall-Angle X-ray Scattering [J]. Macromolecules,1992,25:6670-6680
    [171] Chen P., Zhang L. New Evidences of Glass Transitions and Microstructures of SoyProtein Plasticized with Glycerol [J]. Macromolecular Bioscience,2005,5:237-245
    [172] Chen P., Zhang L., Cao F. Effects of Moisture on Glass Transition andMicrostructure of Glycerol-Plasticized Soy Protein [J]. Macromolecular Bioscience,2005,5:872-880
    [173] Glatter O., Kratky O. Small Angle X-ray Scattering [M]. London: Academic Press:London, UK,1982,119-196
    [174] Guinier A., Fournet G. Small-Angle Scattering of X-rays [M]. Wiley, New York,1955,268
    [175] Koberstein J.T., Morra B., Stein R.S. The determination of diffuse-boundarythickness of polymers by small angle X-ray scattering [J]. Journal of AppliedCrystallography,1980,13:34-45
    [176] Zohuriaan M.J., Shokrolahi F. Thermal studies on natural and modified gums [J].Polymer Testing,2004,23:575-579
    [177] Anglès M.N., Dufresne A. Plasticized Starch/Tunicin Whiskers NanocompositeMaterials.2. Mechanical Behavior [J]. Macromolecules,2001,34:2921-2931
    [178]瓦格纳著,陆立明编译.热分析应用基础[M].上海:东华大学出版社,2011,158
    [179] Bikiaris D., Matzinos P., Larena A., et al. Use of Silane Agents andPoly(propylene-g-maleic anhydride) Copolymer as Adhesion Promoters in GlassFiber/Polypropylene Composites [J]. Journal of Applied Polymer Science,2001,81:701-709
    [180] Manchado M.A.L., Valentini L., Biagiotti J., et al. Thermal and mechanicalproperties of single-walled carbon nanotubes–polypropylene composites prepared bymelt processing [J]. Carbon,2005,43:1499-1505
    [181] Razavi-Nouri M. Effect of Carbon Nanotubes on Dynamic Mechanical Properties,TGA, and Crystalline Structure of Polypropylene [J]. Journal of Applied PolymerScience,2012,124:2541-2549
    [182] Cran M.J., Rupika L.A.S., Sonneveld K., et al. Release of naturally derivedantimicrobial agents from LDPE films [J]. Journal of Food Science,2010,75(2):E126-E133
    [183] Dopico M.S., Lopez-Vilarino J.M., Gonzalez-Rodriguesz M.V. Determination ofantioxidant migration levels from low density polyethylene film into food simulants [J].Journal of Chromatography,2003,1018(1):53-62
    [184] Crank J.1975. The mathematics of diffusion.2nd ed. Oxford, England: Oxford Univ.Press.414
    [185] Ouattara B., Simard R.E., Piette G., et al. Diffusion of Acetic and Propionic Acidsfrom Chitosan-based Antimicrobial Packaging Films [J]. Journal of Food Science,2000,65(5):768-773
    [186] Langer R., Peppas N. Chemical and physical structure of polymers as carriers forcontrolled release of bioactive agents: a review [J]. Journal of MacromolecularScience—Reviews in Macromolecular Chemistry and Physics,1983, C23(1):61-126
    [187] Armand J.Y., Magbard F., Bouzon J., et al. Modelling of drug release in gastricliquid from spheric galenic forms with eudragit matrix [J]. International Journal ofPharmaceutics,1987,40:33-41
    [188] Stark1T.D., Choi H., Diebel P.W. Influence of plasticizer molecular weight onplasticizer retention in PVC geomembranes [J] Geosynthetics International,2005,12(1):1-12
    [189] Lim L-T., Tung M.A. Vapor pressure of allyl isothiocyanate and its transport inPVDC/PVC copolymer packaging film [J]. Journal of Food Science,1997,62:1061-1066
    [190] Choi J.H., Choi W.Y., Cha D.S., et al. Diffusivity of potassium sorbate ink-carrageenan based antimicrobial film [J]. LWT-Food Science and Technology,2005,38(4):417-423
    [191] Vojdani F., Torres J.A. Potassium sorbate permeability of polysaccharide films:chitosan, methylcellulose and hydroxypropyl methylcellulose [J]. Journal of FoodProcess Engineering,1989,12:33-48
    [192] Papadokostaki K.G, Amarantos S.G, Petropoulos J.H. Kinetics of release ofparticulate solutes incorporated in cellulosic polymer matrices as a function of solutesolubility and polymer swellability. I. Sparingly soluble solutes [J]. Journal of AppliedPolymer Science,1997,67:277-287
    [193] López-Cervantes J., Sánchez-Machado D.I., Simal-Lozano J., et al. Migration ofEthylene Terephthalate Oligomers from Roasting Bags into Olive Oil [J].Chromatographia,2003,58:321-326
    [194] Lim D.S., Kwack S.J., Kim K.B., et al. Potential Risk of Bisphenol a Migration FromPolycarbonate Containers After Heating, Boiling, and Microwaving [J]. Journal ofToxicology and Environmental Health, Part A,2009,72(21-22):1285-1291
    [195] Fan D., Ma W., Wang L., et al. Determining the effects of microwave heating on theordered structures of rice starch by NMR [J]. Carbohydrate Polymers,2013,92:1395-1401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700