用户名: 密码: 验证码:
PINK1蛋白磷酸化修饰在帕金森病发病机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:帕金森病(Parkinson's disease, PD)是临床上常见的神经退行性疾病之一。PD的临床表现主要为静止性震颤、运动迟缓、步态异常和肌强直,PD的病因与发病机制尚无确切定论,主流研究认为这是一种与衰老、环境及遗传因素密切相关的疾病。
     PINK1基因(PTEN-induced putative kinase1)是在2004年被克隆的PARK6致病基因,属于常染色体隐性遗传早发性帕金森综合征的致病基因之一,该基因编码产生一种由581个氨基酸组成有激酶活性的线粒体蛋白,包括一个由34个氨基酸组成的线粒体定位结构域和一个由354个氨基酸组成的激酶结构域,此激酶结构域与Ca2+/钙调蛋白家族的丝氨酸/苏氨酸激酶高度同源。
     PINK1蛋白首先于2003年被证明它的激酶区域在体外实验中有自磷酸化活性,PINK1蛋白能通过自身磷酸化后,调节其自身的激酶活性;PINK1蛋白也能参与体外磷酸化,如磷酸化组蛋白H1或酪蛋白。有研究发现PINK1基因的致病突变影响了PINK1蛋白的磷酸化。但未有PINK1蛋白自身磷酸化位点体外实验的鉴定研究报道,及PINK1蛋白的自身磷酸化修饰位点改变对其体外激酶活性影响研究报道。在前期工作中我们发现了两种PINK1基因新的纯合致病突变(T313M, R492X),两者均位于激酶结构域中,从而导致其激酶功能改变,也可能对稳定PINK1蛋白的结构起重要作用,这两种致病突变的致病机理仍有待探讨。
     目的:探讨PINK1蛋白自磷酸化修饰功能及磷酸化底物功能参与帕金森病致病的机制
     方法:
     1、应用谷胱甘肽亲和层析法纯化法、体外磷酸化和质谱技术鉴定PINK1蛋白的自身磷酸化修饰位点;
     2、应用体外磷酸化和放射自显影技术明确PINK1蛋白的自磷酸化修饰位点;
     3、应用体外磷酸化和放射自显影技术检钡(?)PINK1的自磷酸化修饰位点突变、T313M、R492X突变对PINK1蛋白的激酶活性的影响;
     4、应用脂质体过表达、细胞免疫荧光化学染色的方法检测自磷酸化修饰位点对PINK1在真核细胞中的亚细胞定位的影响;
     5、应用脂质体过表达、chase-time技术研究白磷酸化位点突变对PINK1自身降解的影响:
     6、应用脂质体过表达、细胞免疫荧光化学染色的方法检钡(?)PINK1自磷酸化修饰位点突变、T313M、R492X突变PINK1对Parkin亚细胞定位的影响。
     结果:
     1、质谱结果显示一个PINK1蛋白可能的自身磷酸化位点:PINK1第465位丝氨酸残基-Ser465,通过生物信息比对可知,该氨基酸残基在绝大多数种属中高度保守。
     2、放射自显影结果示:在体外磷酸化条件下,野生型PINK1蛋白能够被自身磷酸化,而S465A突变型PINK1蛋白自身磷酸化水平较野生型降低,两者的差异具有统计学意义(P<0.05)。
     3、放射自显影结果示:在体外磷酸化条件下,野生型PINK1蛋白能够磷酸化酪蛋白(casein),而T313M、R492X、S465A突变型PINK1蛋白磷酸化底物水平较野生型降低,三种突变型PINK1蛋白分别与野生型PINK1蛋白进行两两比较的差异均具有统计学意义(P<0.05)。
     4、HEK293细胞免疫荧光化学染色结果显示:野生型PINK1蛋白分布于细胞胞质,呈典型的点状分布的线粒体定位;而S465A、S465D突变型PINK1蛋白的亚细胞定位没有明显变化,仍呈胞浆中线粒体定位。
     5、Chase-time实验结果显示:S465A、S465D突变型PINK1蛋白降解的半衰期较野生型延长,降解减慢。
     6、HEK293细胞免疫荧光化学染色结果显示:野生型PINK1蛋白和S465D突变型PINK1蛋白均促进Parkin蛋白转移到聚集的线粒体上,S465A. T313M. R492X突变型PINK1蛋白促进此过程的效率明显下降。
     结论:
     1、PINK1蛋白第465位丝氨酸残基Ser465为其体外自磷酸化的位点之一;
     2、PINK1蛋白第465位丝氨酸残基Ser465突变、PINK1致病突变T313M、R492X均能引起PINK1体外磷酸化激酶活性降低;
     3、PINK1蛋白第465位丝氨酸残基Ser465对PINK1蛋白真核细胞内亚细胞定位无影响;
     4、PINK1蛋白第465位丝氨酸残基Ser465与PINK1蛋白在真核细胞内自身稳定性相关;
     5、PINK1蛋白第465位丝氨酸残基Ser465(?)调节真核细胞内PINK1蛋白与Parkin蛋白的线粒体共定位;
     6、PINK1致病突变T313M、R492X均能引起真核细胞内PINK1蛋白与Parkin蛋白的线粒体共定位的效率降低。
Background:Parkinson's disease (PD) is one of the most common neurodegenerative disorders clinically. The clinical manifestations of PD are characterized by resting tremor, bradykinesia, gait abnormalities and muscle rigidity. The etiology and pathogenesis of PD are. not thoroughly understood, and the mainstream studies suggest that aging, environmental and genetic factors are closely related to this disease. PINKl (PTEN-induced putative kinase1) gene was cloned in2004as a PARK6-related gene, which is responsible for autosomal recessive early-onset Parkinson's syndrome. It encodes a mitochondrial kinase consisting of581amino acids. PINK1gene includes a mitochondrial targeting domain consisting of34amino acids and a kinase domain consisting of354amino acids. The kinase domain is highly homologous with serine/threonine kinase of Ca2+/calmodulin protein family.
     The kinase domain of PINK1protein acts autophosphorylation activity in vitro, which was described in2003for the first time. The autophosphorylation of PINK1protein may regulate the phosphorylation kinase activity itself. PINK1protein also participates in phosphorylating substrates in vitro, such as histone HI or casein. Moreover, many studies show that disease-causing mutations in PINK1gene can affect the phosphorylation of PINK1protein. However, there are no reports on identification of PINK1protein autophosphorylation sites in vitro and how the PINK1protein autophosphorylation activity affects its kinase activity in vitro. In previous work, we found two PINK1gene homozygous disease-causing mutations (T313M, R492X), both of which are located in the kinase domain, resulting in the change in its kinase function and the stability of PINK1protein probably. The role of these two pathogenic mutations in the pathogenesis of PD remains an open question.
     Objective:To explore how the autophosphorylation and phosphorylation activity of PINK1protein participates in the pathogenic mechanisms involved in Parkinson's disease
     Methods:
     1、Glutathione affinity chromatography purification method, the method of phosphorylation in vitro and mass spectrometry are utilized for the identification of autophosphorylation modification sites of PINK1protein;
     2、The method of Phosphorylation in vitro and autoradiography are utilized for detecting autophosphorylation activity of autophosphorylation site-mutant PINK1protein;
     3、The method of Phosphorylation In vitro and autoradiography are utilized for detecting kinase activity of autophosphorylation site-mutant PINKland T313M, R492X-mutant PINK1;
     4、Plasmid transfection and immunofluorescence staining method are utilized for detecting subcellular localization of autophosphorylation site-mutant PINK1in eukaryotic cells;
     5、Plasmid transfection and Chase-time technology are utilized for detecting the degradation of autophosphorylation site-mutant PINK1.
     6、Plasmid transfection and immunofluorescence staining method are utilized for detecting how autophosphorylation site-mutant PINK1and T313M, R492X mutant PINK1affect subcellular localization of Parkin in eukaryotic cells.
     Results:
     1、Mass spectrometry results show that the PINK1465serine residues-Ser465may be an autophosphorylation site. The biological information shows that this amino acid residues is highly conserved in the vast majority of species;
     2、Autoradiograph shows:In vitro, wild-type PINK1protein acts autophosphorylation activity, and the autophosphorylation level of S465A mutant PINK1protein reduced compared with wild-type, the difference was statistically significant (P<0.05);
     3、Autoradiograph showed:in vitro, the wild-type PINK1protein can phosphorylate casein (casein), the phosphorylating substrate level of T313M, R492X, S465A mutant PINK1protein reduced compared with the wild-type. As the three mutant PINK1protein mentioned above compare with the wild-type PINK1protein, differences in comparison were statistically significant (P<0.05);
     4、HEK293cells by immunofluorescence staining showed that: wild-type PINK1protein located in the cytoplasm of the cell, which was typical mitochondrial localization of punctate distribution; subcellular localization of S465A, S465D mutant PINK1protein did not change significantly;
     5、Chase-time experimental results show that:the degradation half-life of S465A mutant PINK1protein prolongs compared to wild-type PINK1protein, degradation half-life of S465D mutant PINK1protein is basically the same with S465A mutant PINK1protein.
     6、Immunofluorescence staining in HEK293cells showed that:the wild-type PINK1protein and S465D mutant PINK1protein can promote the transfer and aggregation of Parkin protein in mitochondria, S465A, T313M, R492X mutant PINK1protein can not promote this process.
     Conclusion:
     1、PINK1protein465serine residues Ser465is one of the autophosphorylation sites in vitro;
     2、Mutantion of PINK1protein465serine residues Ser465, PINK1pathogenic mutation T313M, R492X can reduce the kinase activity of PINK1in vitro;
     3、PINK1protein465serine residues Ser465may not influence the subcellular localization of PINK1in eukaryotic cells;
     4、PINK1protein465serine residues Ser465can influence the degradation pathway of PINK1protein in eukaryotic cells;
     5、PINK1protein465serine residues Ser465can regulate co-localization of PINK1and Parkin in mitochondria in eukaryotic cells.
     6、PINK1pathogenic mutation T313M, R492X can reduce co-localization of PINK1and Parkin in mitochondria in eukaryotic cells.
引文
[1]Zhang, Z. X.,Roman, G. C.,Hong, Z., et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai[J]. Lancet,2005,365(9459):595-7.
    [2]Rocca, W. A. Prevalence of Parkinson's disease in China[J]. Lancet Neurol,2005,4(6):328-9.
    [3]Halliday, G.,Hely, M.,Reid, W., et al. The progression of pathology in longitudinally followed patients with Parkinson's disease[J]. Acta Neuropathol,2008,115(4):409-15.
    [4]Singleton, A. B.,Farrer, M.,Johnson, J., et al. alpha-Synuclein locus triplication causes Parkinson's disease[J]. Science,2003,302(5646):841.
    [5]Polymeropoulos, M. H.,Lavedan, C.,Leroy, E., et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease[J]. Science,1997,276(5321):2045-7.
    [6]Kitada, T.,Asakawa, S.,Hattori, N., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism[J]. Nature,1998,392(6676):605-8.
    [7]Leroy, E.,Boyer, R.,Auburger, G., et al. The ubiquitin pathway in Parkinson's disease[J]. Nature,1998,395(6701):451-2.
    [8]Valente, E. M.,Abou-Sleiman, P. M.,Caputo, V., et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1[J]. Science,2004,304(5674): 1158-60.
    [9]Healy, D. G.,Abou-Sleiman, P. M.,Wood, N. W. PINK, PANK, or PARK? A clinicians' guide to familial parkinsonism[J]. Lancet Neurol,2004,3(11): 652-62.
    [10]Clark, I. E.,Dodson, M. W.,Jiang, C., et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin[J]. Nature,2006, 441(7097):1162-6.
    [11]Beilina, A.,Van Der Brug, M.,Ahmad, R., et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability[J]. Proc Natl Acad Sci U S A,2005,102(16):5703-8.
    [12]Bonifati, V.,Rizzu, P.,van Baren, M. J., et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism[J]. Science,2003, 299(5604):256-9.
    [13]Paisan-Ruiz, C.,Jain, S.,Evans, E. W., et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease[J]. Neuron,2004,44(4): 595-600.
    [14]Zimprich, A.,Biskup, S.,Leitner, P., et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology [J]. Neuron,2004,44(4): 601-7.
    [15]Ramirez, A.,Heimbach, A.,Grundemann, J., et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase[J]. Nat Genet,2006,38(10):1184-91.
    [16]Lautier, C.,Goldwurm, S.,Durr, A., et al. Mutations in the GIGYF2 (TNRC15) gene at the PARK 11 locus in familial Parkinson disease [J]. Am J Hum Genet,2008,82(4):822-33.
    [17]Strauss, K. M.,Martins, L. M.,Plun-Favreau, H., et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease[J]. Hum Mol Genet,2005,14(15):2099-111.
    [18]Tan, E. K.,Ho, P.,Tan, L., et al. PLA2G6 mutations and Parkinson's disease[J]. Ann Neurol,67(1):148.
    [19]Di Fonzo, A.,Dekker, M. C.,Montagna, P., et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome[J]. Neurology,2009,72(3):240-5.
    [20]Zhou, C.,Huang, Y.,Shao, Y., et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm[J]. Proc Natl Acad Sci U S A,2008,105(33):12022-7.
    [21]Bence, N. F.,Sampat, R. M.,Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation [J]. Science,2001,292 (5521):1552-5.
    [22]Hsu, L. J.,Sagara, Y.,Arroyo, A., et al. alpha-synuclein promotes mitochondrial deficit and oxidative stress[J]. Am J Pathol,2000,157(2):401-10.
    [23]Volles, M. J.,Lee, S. J.,Rochet, J. C., et al. Vesicle permeabilization by protofibrillar alpha-synuclein:implications for the pathogenesis and treatment of Parkinson's disease[J]. Biochemistry,2001,40(26):7812-9.
    [24]Maracchioni, A.,Totaro, A.,Angelini, D. F., et al. Mitochondrial damage modulates alternative splicing in neuronal cells:implications for neurodegeneration[J]. J Neurochem,2007,100(1):142-53.
    [25]Doostzadeh, J.,Tetrud, J. W.,Allen-Auerbach, M., et al. Novel features in a patient homozygous for the L347P mutation in the PINK1 gene[J]. Parkinsonism Relat Disord,2007,13(6):359-61.
    [26]Fiorio, M.,Valente, E. M.,Gambarin, M., et al. Subclinical sensory abnormalities in unaffected PINK1 heterozygotes[J]. J Neurol,2008,255(9): 1372-7.
    [27]Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease:a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry.1992,55(3):181-184
    [28]Greenberg AD, Aminoff MJ, Simon RP. Clinical Neurology. U.S.A:McGraw-Hill,2002.239-247
    [29]中华医学会神经病学分会运动障碍及帕金森病学组.帕金森病的诊断.中华神经科杂志2006,39(6):408-409
    [30]Schrag A, Ben-Shlomo Y, Quinn NP. Cross sectional prevalence survey of idiopathic Parkinson's disease and Parkinsonism in London. BMJ.2000, 321(7252):21-22
    [31]Quinn N, Critchley P, Marsden CD. Young onset Parkinson's disease. Mov Disord.1987,2(2):73-91
    [32]Butterfield PG, Valanis BG, Spencer PS, Lindeman CA, Nutt JG. Environmental antecedents of young-onset Parkinson's disease. Neurology. 1993,43(6):1150-1158
    [33]Schrag A, Schott JM.. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol.2006,5(4):355-363
    [34]Ishikawa A, Tsuji S. Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology.1996, 47(1):160-166
    [35]Matsumine H, Saito M, Shimoda-Matsubayashi S, et al. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet.1997,60(3):588-596
    [36]Lin, W.,Kang, U. J. Characterization of PINK1 processing, stability, and subcellular localization[J]. J Neurochem,2008,106(1):464-74.
    [37]Mills, R. D.,Sim, C. H.,Mok, S. S., et al. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1)[J]. J Neurochem,2008,105(1):18-33.
    [38]Moore, D. J. Parkin:a multifaceted ubiquitin ligase[J]. Biochem Soc Trans,2006, 34(Pt 5):749-53.
    [39]Siddall, H. K.,Warrell, C. E.,Davidson, S. M., et al. Mitochondrial PINK1--a novel cardioprotective kinase?[J]. Cardiovasc Drugs Ther,2008,22(6):507-8.
    [40]Silvestri, L.,Caputo, V.,Bellacchio, E., et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism [J]. Hum Mol Genet,2005,14(22):3477-92.
    [41]Gandhi, S.,Muqit, M. M.,Stanyer, L., et al. PINK1 protein in normal human brain and Parkinson's disease[J]. Brain,2006,129(Pt 7):1720-31.
    [42]Taymans, J. M.,Van den Haute, C.,Baekelandt, V. Distribution of PINK1 and LRRK2 in rat and mouse brain[J]. J Neurochem,2006,98(3):951-61.
    [43]Wang D, Qian L, Xiong H, et al. Antioxidants protect PIKN1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad SciUS A,2006,103(36): 13520-13525.
    [44]PetitA, KawaraiT, PaitelE, et al. Wild-typePINKl prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutation. J Biol Chem,2005,280(40):34025-34032.
    [45]Pridgeon JW, Olzmann JA, Chin LS, et al. PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial ChaperoneTRAPl. Plos Bio,2007, 5(7):1494-1503.
    [46]Park, J.,Lee, S. B.,Lee, S., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin[J]. Nature,2006,441(7097): 1157-61.
    [47]Kim Y, Park J, Kim S, et al. PINK1 controls mitochondriallocalization of Parkin through direct phosphorylation.Biochem Biophys Res Commun,2008, 377(3):975-80
    [48]Park J, Lee G, Chung J. The PINK1-Parkin pathway isinvolved in the regulation of mitochondrial remodeling process.Biochem Biophys Res Commun,2009, 378(3):518-23
    [49]Geisler S, Holmstr MKM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol,2010,12(2):119-31
    [50]Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependentrecruitment of Parkin to mitochondria in mitophagy. ProcNatl Acad Sci USA,2010,107(1): 378-83
    [51]Xiong H, Wang D, Chen L, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation, parkin, PINK1, and DJ-1 form a ubiquitinE3 ligase complex promoting unfolded protein degradation. J Clin Invest,2009,119(3):650-60
    [52]Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoSBiol,2010,8(1):e1000298
    [53]Narendra D, Tanaka A, Suen DF, et al. Parkin is recruitedselectively to impaired mitochondria and promotes theirautophagy. J Cell Biol,2008,183(5):757-9[7]Rothfuss O, Fischer H, Hasegawa T, et al.
    [54]Tang, B.,Xiong, H.,Sun, P., et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease[J]. Hum Mol Genet,2006, 15(11):1816-25.
    [55]Weihofen, A.,Ostaszewski, B.,Minami, Y., et al. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1 [J]. Hum Mol Genet,2008,17(4):602-16.
    [56]Plun-Favreau, H.,Klupsch, K.,Moisoi, N., et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1 [J]. Nat Cell Biol,2007,9(11):1243-52.
    [57]Nakajima, A., Kataoka, K., Hong, M., Sakaguchi, M. and Huh, N.H. (2003) BRPK, a novel protein kinase showing increased expression in mouse cancer cell lines with higher metastatic potential.Cancer Lett.
    [58]Abou-Sleiman PM, Muqit MM, McDonald NQ, Yang YX, Gandhi S, Healy DG, Harvey K, Harvey RJ, Deas E, Bhatia K, Quinn N, Lees A, Latchman DS, Wood NW. A heterozygous effect for PINK1 mutations in Parkinson's disease? Ann Neurol,2006; 60(4):414-419
    [59]Sim CH, Lio DS, Mok SS,et al. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet.2006,15(21):3251-3262
    [60]张玉虎,唐北沙,郭纪锋,等.常染色体隐性遗传早发性帕金森综合征6型PINK1基因的突变分析.中华医学杂志.2005,85(22):1538-1541
    [61]严新翔,张玉虎,郭纪锋,等.常染色体隐性遗传早发性帕金森综合征致病基因的突变分析.中华神经科杂志.2005,38(6):351-354
    [62]Matenia D, Hempp C, Timm T,et al.Microtubule ainity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease efects on mitochondrial transport. Journal of Biological Chemistry, vol.287, no.11,pp.8174-8186,2012.
    [63]王雪晶,郭纪锋,唐北沙等.帕金森病相关蛋白Parkin与PINK1的相互作用研究.生物化学与生物物理进展2010;09
    [64]Okatsu K, Oka T, Iguchi M, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun.2012;3:1016
    [65]Deas, E.,Plun-Favreau, H.,Wood, N. W. PINK1 function in health and disease[J]. EMBO Mol Med,2009,1(3):152-65.
    [66]McBride, H. M. Parkin mitochondria in the autophagosome[J]. J Cell Biol,2008, 183(5):757-9.
    [67]Thomas, K. J.,Cookson, M. R. The role of PTEN-induced kinase 1 in mitochondrial dysfunction and dynamics[J]. Int J Biochem Cell Biol,2009, 41(10):2025-35.
    [68]Yang, Y.,Lu, B. Mitochondrial morphogenesis, distribution, and Parkinson disease:insights from PINK1[J]. J Neuropathol Exp Neurol,2009,68(9): 953-63.
    [69]Yonashiro, R.,Ishido, S.,Kyo, S., et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics[J]. EMBO J,2006,25(15): 3618-26.
    [70]Cookson, M. R.,Dauer, W.,Dawson, T., et al. The roles of kinases in familial Parkinson's disease[J]. J Neurosci,2007,27(44):11865-8.
    [71]Giasson, B. I. Mitochondrial injury:a hot spot for parkinsonism and Parkinson's disease?[J]. Sci Aging Knowledge Environ,2004,2004(48):pe42.
    [72]Schapira, A. H. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia[J]. Biochim Biophys Acta,1999,1410(2):159-70.
    [73]Shiba, K.,Arai, T.,Sato, S., et al. Parkin stabilizes PINK1 through direct interaction[J]. Biochem Biophys Res Commun,2009,383(3):331-5.
    [74]Um, J. W.,Stichel-Gunkel, C.,Lubbert, H., et al. Molecular interaction between parkin and PINK1 in mammalian neuronal cells[J]. Mol Cell Neurosci,2009, 40(4):421-32.
    [1]Nicholls D G.Mitochondrial ion ciruits. Essays in Biochem-istry, Vol.47, pp.25-35,2010.
    [2]Novak I.Mitophagy:a complex mechanism of mitochondrial removal. Antioxidants & Redox Signaling,vol.17,no.5,pp.794-802,2012.
    [3]Cal T., Ottolini D., Brini M. Mitochondrial Ca2+and neurodegeneration, Cell Calcium,vol.52,no.l,pp.73-85,2012.
    [4]Gandhi S,Abramov A Y.Mechanism of oxidative stress in Neurodegeneration.Oxidative Medicine and Cellular Longevity, vol.2012, Article ID 428010, 11pages,2012.
    [5]Nakamura T, Lipton S A.Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases.Cell Death & Diferentiation, vol.18, no.9, pp.1478-1486,2011.
    [6]Feng L R,Maguire-Zeiss K A.Gene therapy in parkin-sons disease:rationale and current status.CNS Drugs,vol.24,no.3,pp.177-192,2010.
    [7]Corti O,Lesage S,Brice A.What genetics tells us about The causes and mechanisms of Parkinson's disease.Physiological Reviews,vol.91,no.4, pp.1161-1218,2011.
    [8]Deas E,Plun-Favreau H,Gandhi S,et al.PINKl cleavage at position A103 by the mitochondrial protease PARL.Human Molecular Genetics,vol.20,no.5,pp.867-879,2011.
    [9]Greene A W, Grenier K, Aguileta M A,et al.Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment.EMBO Reports,vol.13,no.4,pp.378-385,2012.
    [10]Rochet J C,Hay B A,Guo M.Molecularinsights into Parkinson's disease. Progress in Molecular Biology and Translational Science,vol.107,pp. 125-188,2012.
    [11]Kumar K R,Djarmati-Westenberger A,Grunewald A.Genetics of Parkinson's disease.Seminars in Neurology,vol.31,no.5,pp.433-440,2011.
    [12]Taymans J M,Van Den Haute C,Baekelandt V.Distribution of PINK1 and LRRK2 in rat and mouse brain.Journal of Neurochemistry,vol.98,no.3, pp.951-961,2006.
    [13]Blackinton J G,Anvret A,Beilina A,et al.Expression of PINK1 mRNA in human and rodent brain and in Parkinson's disease.Brain Research,vol. 1184,no.1,pp.10-16,2007.
    [14]Silvestri L, Caputo V,Bellacchio E,et al.Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Human Molecular Genetics,vol.14,no.22, pp.3477-3492,2005.
    [15]Muqit M M K,Abou-Sleiman P M,Saurin A T,et al.Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress.Journal of Neurochemistry,vol.98,no.l,pp.156-169,2006.
    [16]Weihofen A,Homas K J,Ostaszewski B L,Cookson M R,et al.Pinkl forms a multiprotein complex with miro and milton, linking Pinkl function to mitochondrial traicking.Biochemistry,vol.48,no.9,pp.2045-2052,2009.
    [17]Jin S M,Lazarou M,Wang C,et al.Mitochondria lmembrane potential regulates PINK1 import and proteolytic destabilization by PARL.Journal of Cell Biology,vol.191,no.5,pp.933-942,2010.
    [18]Pilsland A, Winklhofer K F.Parkin,PINKl and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathologica,vol.123,no.2,pp.173-188,2012.
    [19]Pridgeon J W,Olzmann J A,Chin L S,et al.PINKl protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1.PLOS Biology,vol.5,no.7,articlee172,2007.
    [20]Plun-Favreau H,Klupsch K, Moisoi N,et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nature Cell Biology,vol.9,no.11,pp.1243-1252,2007.
    [21]Desideri E, Martins L M.Mitochondrial stress signalling:HTRA2 and Parkinson's disease.International Journal of Cell Biology,vol.2012, Article ID 607929,6pages,2012.
    [22]Behbahani H, Pavlov P F, Wiehager B,et al.Association of Omi/HtrA2 with y-secretase in mitochondria.Neurochemistry International,vol.57, no.6, pp.668-675,2010.
    [23]Strauss K M, Martins L M, Plun-Favreau H,et al.Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.Human Molecular Genetics,vol.14,no.15,pp.2099-2111,2005.
    [24]Yamamoto A, Cremona M L, Rothman J E.Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. Journal of Cell Biology,vol.172,no.5, pp.719-731,2006.
    [25]Michiorri S, Gelmetti V, Giarda E,et al.The Parkinson-associated protein PINK1 interacts with Beclinl and promotes autophagy. Cell Death and Diferentiation,vol.17,no.6,pp.962-974,2010.
    [26]Sekine S, Kanamaru Y,Koike M,et al.Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. Journal of Biological Chemistry,vol.287,no.41,pp.34635-34645,2012.
    [27]Gautier C A, Kitada T, Shen J.Loss of PINK 1 causes mitochondrial functional defects and increased sensitivity to oxidativestress. Proceedings of the National Academy of Sciences of the United States of America, vol.105, no.32, pp.11364-11369,2008.
    [28]Wang H L, Chou A H, Wuetal A S.PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons.Biochimica et Biophysica Acta, vol. 1812, no.6,pp.674-684,2011.
    [29]Gardner P R, Fridovich I.Quinolinate synthetase:theoxygen-sensitive site of de novo NAD(P)+biosynthesis. Archives of Biochemistry and Biophysics, vol.284, no.1,pp.106-111,1991.
    [30]Gardner P R, Costantino G, Szab'o C,et al. Nitric oxide sensitivity of the aconitasesJournal of Biological.Chemistry, vol.272, no.40, pp.25071-25076, 1997.
    [31]Wang X, Winter D, Ashrai Qet al.PINKl and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell,vol.147,no.4,pp.893-906,2011.
    [32]Wang H L, Chou A H, Yehetal T H. PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c.Neurobiology of Disease,vol.28, no.2, pp.216-226,2007.
    [33]Cherra S J, Chu C T.Autophagy in neuroprotection and neurodegeneration:a question of balance.Future Neurol-ogy, vol.3, no.3,pp.309-323,2008.
    [34]Cherra S J, Dagda R K, Chu C T.Review:autophagy and neurodegeneration: survival at a cost. Neuropathology and applied neurobiology,vol.36, no.2,pp.125-132,2010.
    [35]Dagda R K, Cherra S J, Kulich S M,et al. Loss of PINK 1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission.Journal of Biological Chemistry,vol.284,no.20,pp.13843-13855,2009.
    [36]Shi G, Lee J R, Grimes D A,et al.Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Human Molecular Genetics, vol.20, no.10, pp.1966-1974,2011.
    [37]Chu C T.A pivotal role for PINK1 and autophagy in mito-chondrial quality control:implications for Parkinson disease.Human Molecular Genetics, vol.19,no.1,pp.R28-R37,2010.
    [38]Dagda R K, Chu C T.Mitochondrial quality control:insights on how Parkinson's disease related genes PINK1,parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. Journal of Bioenergetics and Biomembranes,vol.41, no.6, pp.473-479,2009.
    [39]Xiong H, Wang D, Chenetal L.Parkin,PINKl,and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation.Journal of Clinical Investigation,vol.119,no.3,pp.650-660,2009.
    [40]Kim Y, Park J, Kim S,et al.PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Bio-chemical and Biophysical Research Communications, vol.377,no.3,pp.975-980,2008.
    [41]Narendra D, Tanaka A, Suen D F,et al.Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.Journal of Cell Biology,vol.183,no.5,pp.795-803,2008.
    [42]Narendra D P, Youle R J.Targeting mitochondrial dys-function:role for PINK1 and parkin in mitochondrial quality control. Antioxidants and Redox Signaling, vol.14, no.10, pp.1929-1938,2011.
    [43]Kathrin Lutz A, Exner N, Fett M E,et al.Loss of parkin or PINK1 function increases Drpl-dependent mitochondrial fragmentation. Journal of Biological Chemistry,vol.284,no.34,pp.22938-22951,2009.
    [44]Sandebring A, homas K J, Beilinaetal A.Mitochondrial alterations in PINK1 deicient cells are inluenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE,vol.4, no.5, Article ID e5701,2009.
    [45]Narendra D, Walker J E, Youle R.Mitochondrialquality control mediated by PINK1 and Parkin:links to Parkinsonism. Cold Spring Harbor Perspectives in Biology,vol.4,no.11,2012
    [46]Gegg M E, Schapira A H V.PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2:implications for Parkinson disease pathogenesis.Autophagy,vol.7,no.2, pp.243-245,2011.
    [47]Meissner C, Lorenz H, Weihofen A, et al. The mitochondrial intramembrane protease PARL cleaves human Pinkl to regulate Pinkl traicking. Journal of Neurochemistry,vol.117,no.5,pp.856-867,2011.
    [48]Okatsu K, Oka T, Iguchietal M.PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communications,vol.3,article1016,2012.
    [49]Cooksonand M R, Bandmann O.Parkinson's disease:insights from pathways.Human Molecular Genetics,vol.19,no.l,pp.R21-R27,2010.
    [50]Gu G J, Wu D, Lund H,et al.Elevated MARK2-dependent phosphorylation of Tau in Alzheimer's disease, analyzed via proximity ligation. Journal of Alzheimer's Disease,vol.33,no.3, pp.699-713,2012.
    [51]Matenia D, Hempp C, Timm T,et al.Microtubule ainity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease efects on mitochondrial transport. Journal of Biological Chemistry, vol.287, no.11,pp.8174-8186,2012.
    [52]Plun-Favreau H, Klupsch K, Moisoi N,et al.The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINKl. Nature Cell Biology,vol.9,no.11,pp.1243-1252,2007.
    [53]Plun-Favreau H, Gandhi S, Wood-Kaczmar A,et al. What have PINK1 and HtrA2 genes told us about the role of mitochondria in Parkinson's disease. Annals of the New York Academy of Sciences,vol.1147, pp.30-36,2008.
    [54]Tain L S, Chowdhury R B, Tao R N,et al.Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death and Diferentiation,vol.16, no.8, pp.1118-1125,2009.
    [55]Yun J, Cao J H, Dodson M W,et al. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the pink1/parkin pathway in vivo.JournalofNeuroscience,vol.28,no.53, pp.14500-14510,2008.
    [56]Whitworth A J, Pallanck L J. The PINK1/Parkin pathway:a mitochondrial quality control system. Journal of Bioenergetics and Biomembranes, vol.41, no.6, pp.499-503,2009.
    [57]Whitworth A J, Lee J R, Ho V M W,et al.Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pinkl and Parkin. DMM Disease Models and Mechanisms,vol.l,no.2-3,pp.168-174,2008.
    [58]Gautier C A, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidativestress. Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp. 11364-11369,2008.
    [59]Billia F, Hauck L, Konecny F,et al. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proceedings of the National Academy of Sciences of the United States of America, vol.108,no.23,pp.9572-9577, 2011.
    [60]Liu W, Acin-Perez R, Geghman K D,et al.Pinkl regulates the oxidative phosphorylation machinery via mitochondrial ission.Proceedings of the National Academy of Sciences of the United States of America, vol.108, no.31,pp.12920-12924,2011.
    [61]Koh H, Chung J.PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity.Molecules and Cells,vol.34, no.l, pp.7-13, 2012.
    [62]Santos D, Cardoso S M.Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion,vol.12,no.4, pp.428-437,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700