用户名: 密码: 验证码:
新型毕赤酵母表面展示系统的构建及表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基因工程的发展,微生物表面展示系统已发展出噬菌体展示系统、细菌表面展示系统、酵母表面展示系统等,广泛应用在生物学研究及工业生产的许多领域,例如研究蛋白质-蛋白质之间的相互识别与相互作用、由多肽构象或蛋白质突变库中获取特定功能蛋白、生产抗体、生产口服疫苗、开发全细胞催化剂、开发生物传感器、开发细胞吸附剂等等,成为竞相研究的热点。
     但已发展的微生物表面展示系统都存在自身明显的缺陷:噬菌体展示系统展示的多肽或蛋白分子量不能太大,否则会影响噬菌体的装配与感染;革兰氏阴性菌表面展示系统表达的重组蛋白易以包涵体形式存在,展示的蛋白不仅要通过质膜层,还要在外膜上正确的整合,这可能对展示蛋白的结构和活性产生影响;革兰氏阳性菌细胞壁厚,转化效率较低,这样会影响大容量肽库的构建;两种细菌表面展示系统均缺乏翻译后修饰功能,容易使展示的真核蛋白失活;酿酒酵母中虽存在蛋白质翻译后修饰,但糖基化方式与哺乳动物不同,它对外源蛋白N-糖基化修饰形式是高甘露糖型,糖链平均为50-150甘露糖残基,并且核心寡糖末端是α-1,3-甘露糖,从而使生产的蛋白在人体中有比较强的免疫原性,过度糖基化还可能使表达的酶等功能性蛋白失活。
     毕赤酵母(Pichia pastoris)表达系统是近年来发展迅速、应用广泛的一种真核表达系统。其具有易于培养、繁殖快、具有乙醇氧化酶基因诱导型强启动子,可调控外源基因的表达、可对外源蛋白进行更接近高等生物的加工折叠和翻译后修饰、便于基因工程操作和高密度发酵等的特性,成为微生物表面展示系统极有应用前景的宿主菌。
     目前已有的毕赤酵母表面展示系统主要是利用来自酿酒酵母Flo1蛋白的N端絮凝结构域为锚定蛋白将外源蛋白展示于菌体表面,融合蛋白非共价连接于毕赤酵母细胞壁上。展示的外源蛋白通过N端与锚定蛋白融合,C端蛋白游离,这样的系统适合脂酶等活性位点在C端的功能蛋白。但对活性位点在N端的功能蛋白表达不利,限制了更广泛的应用。为丰富毕赤酵母展示系统,展示不同需要的外源蛋白,本文做了以下3部分工作:
     第一部分:Pir1型毕赤酵母表面展示系统的构建及表达研究
     Pir(Proteins with internal repeats)系列蛋白是酿酒酵母中共价连接细胞壁的甘露糖蛋白,C端无保守的GPI锚定序列,直接与细胞壁中β-1,3-葡聚糖相连。成熟肽蛋白N端有数目不等的重复序列,可被温和碱(30 mM NaOH,12h,4℃)从细胞壁抽提。外源蛋白可通过与Pir蛋白N端融合、C端融合或插入融合展示在菌体表面。目前Pir系列蛋白在酿酒酵母表面已成功展示了多种外源蛋白。
     本研究克隆了来自酿酒酵母EBY100的Pir1蛋白成熟肽基因(Pir1-a),连接入毕赤酵母分泌表达载体pPIC9K中,构建了新型毕赤酵母表面展示的通用载体pPIC9K-Pir1-a。利用α-factor信号肽将蛋白引导分泌至细胞外。通过免疫荧光分析以C端与Pir1-a蛋白融合而展示于毕赤酵母表面的增强型绿色荧光蛋白(enhanced green fluorescence protein,EGFP),证明新的毕赤酵母表面展示系统的构建是成功的。但激光荧光共聚焦显微镜(confocal laser scanning microscopy,CLSM)观察到EGFP-Pir1-a融合蛋白的展示是不规则的,分析这种不规则的展示可能与Pir1蛋白自身性质相关。进一步以Pir1成熟肽N端重复序列(Pir1-b蛋白)为锚定蛋白,构建新的毕赤酵母表面展示载体pPIC9K-Pir1-b,表面展示的模式蛋白仍采用EGFP。CLSM观察到新的融合蛋白EGFP-Pir1-b是规则的展示在重组毕赤酵母表面。Western blot证明了融合蛋白EGFP-Pir1-a与EGFP-Pir1-b可被温和碱从重组毕赤酵母细胞壁抽提,并且很少分泌到培养基中。荧光分光光度计及流式细胞仪检测发现,分别以Pir1-α和Pir1-b为锚定蛋白时,相同诱导条件下,表面展示EGFP的重组毕赤酵母菌株的荧光强度是相当的。以上结果说明酿酒酵母的Pir1蛋白可作为毕赤酵母的锚定蛋白,将外源蛋白展示于毕赤酵母表面,融合蛋白没有改变Pir1蛋白自身的锚定性质:同时说明了Pir1成熟肽蛋白中,其N端重复序列对其锚定在细胞壁起主要作用,C端序列对其在表面的不规则展示起主要作用。
     第二部分:α凝集素型毕赤酵母表面展示系统的构建及毕赤酵母表达重组蛋白纯化新方法的探讨
     α凝集素是是酿酒酵母中共价连接细胞壁的GPI(Glycosyl phosphatidylinositol)型甘露糖蛋白的一种,C端有GPI锚定序列,并通过β-1,6-葡聚糖连接至β-1,3-葡聚糖,可被β-1,3-或β-1,6-葡聚糖酶作用。外源蛋白可通过C端与α凝集素C末端融合表达而锚定在细胞表面。目前以α凝集素C末端为锚定蛋白在酿酒酵母表面已成功展示了多种外源蛋白。
     本研究克隆了来自酿酒酵母EBY100的α凝集素的C末端基因,连接入毕赤酵母分泌表达载体pPIC9K中,构建了新型毕赤酵母表面展示通用载体pPIC9K-AGα1。利用α-factor信号肽将外源蛋白引导分泌至细胞外,同时在锚定蛋白序列前增加了MluI、ApaI限制性内切酶位点及Xpress抗原序列,提供了肠激酶作用位点。通过免疫荧光分析以C端与α凝集素的C末端蛋白融合而展示于毕赤酵母表面的EGFP,证明新的毕赤酵母表面展示系统的构建是成功的。通过荧光显微镜观察及Western blot分析证明了肠激酶可将展示在重组毕赤酵母表面的EGFP与菌体分离,从而探讨了纯化毕赤酵母表达重组蛋白的新方法:外源蛋白可利用毕赤酵母的体系进行需要的折叠、翻译后修饰并分泌到胞外,通过锚定蛋白展示于菌体表面,经肠激酶作用,可从菌体表面分离下来。
     第三部分:两种毕赤酵母表面展示系统展示外源蛋白能力的比较
     在成功地以来自酿酒酵母的Pir1蛋白及α凝集素C末端为锚定蛋白构建了毕赤酵母表面展示系统的基础上,以通过C端分别与两种锚定蛋白融合的EGFP为报告蛋白,通过研究诱导温度、诱导时间、诱导培养基初始pH、甲醇诱导浓度等摇瓶培养的发酵条件,探讨不同发酵条件分别对两种重组毕赤酵母菌株表面展示融合蛋白的影响。并在两者各自最适的发酵条件下对其展示外源蛋白的能力进行比较,结果发现α凝集素C末端为锚定蛋白时,其展示通过C端与其融合的外源蛋白的能力强于Pir1成熟肽蛋白。
With the application of recombinant DNA technology,cell-surface display systems have been developed in various microorganisms,such as in phage,in bacteria and especially in Saccharomyces cerevisiae.Microbial cell-surface display has been widely used in biotechnological research and industrial applications,including: identifying protein-protein interactions,displaying polypeptide libraries as selection devices,mapping functional protein epitopes,immobilizing proteins and enzymes as whole cell biocatalysts,producing antibodies and live vaccines,producing bioadsorbents for the removal of harmful chemicals and heavy metals,et al.
     There are obvious disadvantages in the present microbial cell-surface display systems.In phase-display system,when larger-sized polypeptides were fused to the major coat protein of the phage,the hybrids were not readily incorporated into the phage particle;In Gram-negative display systems,both translocation through the cytoplasmic membrane and correct integration into the outer membrane may affect the structure and function of the proteins.In Gram-positive bacteria display systems,the lower frequency of transformation restricts the creation of large combinatorial protein libraries.Both the Gram-negative display systems and Gram-positive bacteria display systems cann't fold and glycosylate the eukaryotic protein.In S.cerevisiae display system,secreted proteins are hyperglycosylated and have 50-150 mannoses per N-glycan,which may affect the activity of enzyme.In addition,S.cerevisiae core oligosaccarides have terminalα-1,3-glycan linkages which may make proteins hyper-antigenic and unsuitable for therapeutic use.
     The methylotrophic yeast,Pichia pastoris,is a single-cell eukaryote microorganism and has been successfully used to produce various recombinant heterologous proteins for both basic laboratory research and industrial manufacture. The advantages for P.pastoris to express heterologous proteins are following:it is easy to genetically manipulate and culture and can be grown to high cell densities;it can perform higher eukaryotic post-translational modifications,such as glycosylation and disulphide bond formation for the produce of soluble,correctly folded recombinant proteins;it has strong promoters which can drive the expression of interest protein.
     P.pastoris has been studied for protein-surface display based on the anchor system from S.cerevisiae.Tanino et al.immobilized the lipase from Rhizopus oryzae with a pro-sequence on the P.pastoris cell surface using the flocculation functional domain of Flolp(FS)from S.cerevisiae as an anchor.This system was noncovalently linked to the cell wall and suitable for the enzymes possessing activities at the C terminus.It is unsuitable for the enzymes that possess activities at the N terminus, which maybe limit the application of P.pastoris as a prospective cellular host for protein-surface display.
     This article is divided into three parts.
     PartⅠ:Construction of a novel Pichia pastoris cell-surface display system based on the cell wall protein Pir1
     Pir proteins are the covalently linked cell wall proteins in S.cerevisiae,which attach directly to theβ-1,3-glucan of the cell wall.Pir proteins do not contain a C-terminal GPI sequence and they are all processed by Kex2 protease.They can be released from intact cells by very mild alkaline treatment(30 mM NaOH,12 h,4℃). All Pir proteins have one or several units of an internal repetitive sequence at the N terminus.The target proteins can be fused to Pir proteins either in the middle or at the N- or C-terminus of Pir proteins.Pir proteins have been efficient anchors for the display of target proteins on the surface of S.cerevisiae.
     A novel system based on Pir1 from S.cerevisiae was developed for cell-surface display of heterologous proteins in P.pastoris with the alpha-factor secretion signal sequence.As a model protein,enhanced green fluorescence protein(EGFP)was fused to the N-terminal of the mature peptide of Pir1(Pir1-a).The expression of fusion protein EGFP-Pir1-a was irregular throughout the P.pastoris cell surface per detection by confocal laser scanning microscopy.A truncated sequence containing only the internal repetitive sequences of Pir1-a(Pir1-b)was used as a new anchor protein in further study.The fusion protein EGFP-Pir1-b was expressed uniformly on the cell surface.The fluorescence intensity of the whole yeast was measured by spectrofluorometer.Western blot confirmed that the fusion proteins were released from cell walls after mild alkaline treatment.The results indicate that a Pir1-based system can express proteins on the surface of P.pastoris and that the fusion proteins do not affect the manner in which Pir1 attaches to the cell wall.The repetitive sequences of Pir1 are required for cell wall retention,and the C-terminal sequence contributes to the irregular distribution of fusion proteins in P.pastoris.
     PartⅡ:Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris
     α-agglutinin belongs to another covalently linked cell wall proteins in S. cerevisiae,which have a GPI anchor at their C terminus and are attached toβ-1,3-glucan of the cell wall via a shortβ-1,6-glucan.GPI proteins can be released byβ-1,3- orβ-1,6-glucanase from cell wall.The C-terminal half ofα-agglutinin has been widely used to anchor heterologous proteins on the surface of S.cerevisiae.
     A versatile vector was developed for heterologous proteins display on the cell surface of P.pastoris using the C-terminal half ofα-agglutinin from S.cerevisiae as a membrane anchor under the control of the alcohol oxidase 1 promoter(pAOX1). Multiple cloning sites and the sequence encoding the Xpress epitope (-Asp-Leu-Tyr-Asp-Asp-Asp-Asp-Lys-)were introduced into the vector for insertion of heterologous genes and selective cleavage of target proteins.EGFP was used as a model protein to check the function of this vector.The expression of EGFP on the P. pastoris surface was confirmed by confocal laser scanning microscopy.Fluorescence microscopy and western blot analysis confirmed that EGFP can be successfully cleaved from the cell surface by treating with enterokinase.This system can be applied to purify heterologous proteins expressed in P.pastoris.
     PartⅢ:Comparison of cell wall proteins of Pir1 and the C-terminal half ofα-agglutinin as anchors for heterologous protein cell-surface display
     The mature peptide of Pir1 and the C-terminal half ofα-agglutinin have been proved capable of immobilizing EGFP on the cell surface of P.pastoris.The fraction of the total amount of fusion protein localized to the cell wall varied depending on both the anchor domain used and the fermentation conditions.The expression of fusion protein under various fermentation conditions,e.g.,the induction temperature, initial pH and methanol concentration were studied.And the ability of the mature peptide of Pir1 and the C-terminal half ofα-agglutinin to anchor EGFP to the cell wall of P.pastoris was compared under each of the optimal induction condition.It was found the constructed P.pastoris strain could display more fusion protein when the C-terminal half ofα-agglutinin was used as an anchor.
引文
1. Abe H, Ohba M, Shimma Y, et al. (2004) Yeast cells harboring human alpha-1,3-fucosyltransferase at the cell surface engineered using Pir, a cell wall-anchored protein. FEMS Yeast Res 4:417-425
    2. Abe H, Shimma Y and Jigami Y (2003) In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13:87-95
    3. Agterberg M, Adriaanse H and Tommassen J (1987) Use of outer membrane protein PhoE as a carrier for the transport of a foreign antigenic determinant to the cell surface of Escherichia coli K-12. Gene 59:145-150
    4. Agterberg M and Tommassen J (1991) Outer membrane protein PhoE as a carrier for the exposure of foreign antigenic determinants at the bacterial cell surface. Antonie Van Leeuwenhoek 59:249-262
    5. Albano CR, Randers-Eichhorn L, Bentley WE, et al. (1998) Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnol Prog 14:351-354
    6. Andres I, Gallardo O, Parascandola P, et al. (2005) Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP-7 xylanase A in Saccharomyces cerevisiae. Biotechnol Bioeng 89:690-697
    7. Audouy SA, van Selm S, van Roosmalen ML, et al. (2007) Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 25:2497-2506
    8. Bae W, Chen W, Mulchandani A, et al. (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518-524
    9. Bae W, Mulchandani A and Chen W (2002) Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88:223-227
    10. Benhar I, Azriel R, Nahary L, et al. (2000) Highly efficient selection of phage antibodies mediated by display of antigen as Lpp-OmpA' fusions on live bacteria. J Mol Biol 301:893-904
    11. Bessette PH, Rice JJ and Daugherty PS (2004) Rapid isolation of high-affinity protein binding peptides using bacterial display.Protein Eng Des Sel 17:731-739
    12.Bidlingmaier S and Liu B(2006)Construction and application of a yeast surface-displayed human cDNA library to identify post-translational modification-dependent protein-protein interactions.Mol Cell Proteomics 5:533-540
    13.Bingle WH,Nomellini JF and Smit J(1997)Cell-surface display of a Pseudomonas aeruginosa strain K pilin peptide within the paracrystalline S-layer of Caulobacter crescentus.Mol Microbiol 26:277-288
    14.Boder ET,Bill JR,Nields AW,et al.(2005)Yeast surface display of a noncovalent MHC class Ⅱ heterodimer complexed with antigenic peptide.Biotechnol Bioeng 92:485-491
    15.Boder ET,Midelfort KS and Wittrup KD(2000)Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.Proc Natl Acad Sci U S A 97:10701-10705
    16.Boder ET and Wittrup KD(1997)Yeast surface display for screening combinatorial polypeptide libraries.Nat Biotechnol 15:553-557
    17.Bosma T,Kanninga R,Neef J,et al.(2006)Novel surface display system for proteins on non-genetically modified gram-positive bacteria.Appl Environ Microbiol 72:880-889
    18.Breinig F and Sehmitt MJ(2002)Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae.Appl Microbiol Biotechnol 58:637-644
    19.Cabilly S(1999)The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries.Mol Biotechnol 12:143-148
    20.Cappellaro C,Hauser K,Mrsa V,et al.(1991)Saccharomyces cerevisiae a-and alpha-agglutinin:characterization of their molecular interaction.Embo J 10:4081-4088
    21.Castillo L,Martinez AI,Garcera A,et al.(2003)Functional analysis of the cysteine residues and the repetitive sequence of Saccharomyces cerevisiae Pir4/Cis3:the repetitive sequence is needed for binding to the cell wall beta- 1,3-glucan.Yeast 20:973-983
    22.Cereghino JL and Cregg JM(2000)Heterologous protein expression in the methylotrophic yeast Pichia pastoris.FEMS Microbiol Rev 24:45-66
    23. Cha HJ, Dalai NG and Bentley WE (2004) In vivo monitoring of intracellular expression of human interleukin-2 using green fluorescent protein fusion partner in Pichia pastoris. Biotechnol Lett 26:1157-1162
    24. Chalfie M, Tu Y, Euskirchen G, et al. (1994) Green fluorescent protein as a marker for gene expression. Science 263:802-805
    25. Chang H and Lo SJ (2000) Modification with a phosphorylation tag of PKA in the TraT-based display vector of Escherichia coli. J Biotechnol 78:115-122
    26. Chang HJ, Sheu SY and Lo SJ (1999) Expression of foreign antigens on the surface of Escherichia coli by fusion to the outer membrane protein traT. J Biomed Sci 6:64-70
    27. Chao G, Cochran JR and Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539-550
    28. Charbit A, Boulain JC, Ryter A, et al. (1986) Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. Embo J 5:3029-3037
    29. Chen HL, Yen CC, Tsai TC, et al. (2006) Production and characterization of human extracellular superoxide dismutase in the methylotrophic yeast Pichia pastoris.J Agric Food Chem 54:8041-8047
    30. Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, et al. (2005) Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target 13:89-98
    31. Curvers S, Brixius P, Klauser T, et al. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol Prog 17:495-502
    32. Daly R and Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119-138
    33. Daugherty PS, Chen G, Olsen MJ, et al. (1998) Antibody affinity maturation using bacterial surface display. Protein Eng 11:825-832
    34. De Groot PW, Ram AF and Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657-675
    35.De Wulf P,Brambilla L,Vanoni M,et al.(2000)Real-time flow cytometric quantification of GFP expression and Gfp-fluorescence generation in Saccharomyces cerevisiae.J Microbiol Methods 42:57-64
    36.Desvaux M,Dumas E,Chafsey I,et al.(2006)Protein cell surface display in Gram-positive bacteria:from single protein to macromolecular protein structure.FEMS Microbiol Lett 256:1-15
    37.Dhillon JK,Drew PD and Porter AJ(1999)Bacterial surface display of an anti-pollutant antibody fragment.Lett Appl Microbiol 28:350-354
    38.Dundr M,McNally JG,Cohen J,et al.(2002)Quantitation of GFP-fusion proteins in single living cells.J Struct Biol 140:92-99
    39.Francisco JA,Earhart CF and Georgiou G(1992)Transport and anchoring of beta-lactamase to the external surface of Escherichia coli.Proc Natl Acad Sci U S A 89:2713-2717
    40.Francisco JA,Stathopoulos C,Warren RA,et al.(1993)Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains.Biotechnology(N Y)11:491-495
    41.Freudl R,Maclntyre S,Degen M,et al.(1986)Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12.J Mol Biol 188:491-494
    42.Fuh G and Sidhu SS(2000)Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein.FEBS Lett 480:231-234
    43.Fujita Y,Takahashi S,Ueda M,et al.(2002)Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes.Appl Environ Microbiol 68:5136-5141
    44.Fukuda N,Ishii J,Shibasaki S,et al.(2007)High-efficiency recovery of target cells using improved yeast display system for detection of protein-protein interactions.Appl Microbiol Biotechnol 76:151-158
    45.Gai SA and Wittrup KD(2007)Yeast surface display for protein engineering and characterization.Curr Opin Struct Biol 17:467-473
    46.Gemmill TR and Trimble RB(1999)Overview of N- and O-linked oligosaccharide structures found in various yeast species.Biochim Biophys Acta 1426:227-237
    47.Greenwood J,Willis AE and Perham RN(1991)Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 220:821-827
    48. Gunneriusson E, Samuelson P, Uhlen M, et al. (1996) Surface display of a functional single-chain Fv antibody on staphylococci. J Bacteriol 178:1341-1346
    49. Haddad D, Liljeqvist S, Kumar S, et al. (1995) Surface display compared to periplasmic expression of a malarial antigen in Salmonella typhimurium and its implications for immunogenicity. FEMS Immunol Med Microbiol 12:175-186
    50. Hedegaard L and Klemm P (1989) Type 1 fimbriae of Escherichia coli as carriers of heterologous antigenic sequences. Gene 85:115-124
    51. Ilk N, Vollenkle C, Egelseer EM, et al. (2002) Molecular characterization of the S-layer gene, sbpA, of Bacillus sphaericus CCM 2177 and production of a functional S-layer fusion protein with the ability to recrystallize in a defined orientation while presenting the fused allergen. Appl Environ Microbiol 68:3251-3260
    52. Jahic M, Gustavsson M, Jansen AK, et al. (2003) Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J Biotechnol 102:45-53
    53. Jeong H, Yoo S and Kim E (2001) Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein. Enzyme Microb Technol 28:155-160
    54. Jiang ZB, Song HT, Gupta N, et al. (2007) Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris. Protein Expr Purif 56:35-39
    55. Jin M, Song G, Carman CV, et al. (2006) Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity. Proc Natl Acad Sci U S A 103:5758-5763
    56. Jose J, Kramer J, Klauser T, et al. (1996) Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Gene 178:107-110
    57. Jung HC, Kwon SJ and Pan JG (2006) Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis.BMC Biotechnol 6:23
    58.Jung HC,Lebeault JM and Pan JG(1998)Surface display of Zymornonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae.Nat Biotechnol 16:576-580
    59.Jung HC,Park JH,Park SH,et al.(1998)Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein.Enzyme Microb Technol 22:348-354
    60.Kang SM,Rhee JK,Kim EJ,et al.(2003)Bacterial cell surface display for epitope mapping of hepatitis C virus core antigen.FEMS Microbiol Lett 226:347-353
    61.Kato M,Fuchimoto J,Tanino T,et al.(2007)Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B(mCALB)by a yeast molecular display system and its practical properties.Appl Microbiol Biotechnol 75:549-555
    62.Kato M,Maeda H,Kawakami M,et al.(2005)Construction of a selective cleavage system for a protein displayed on the cell surface of yeast.Appl Microbiol Biotechnol 69:423-427
    63.Kieke MC,Cho BK,Boder ET,et al.(1997)Isolation of anti-T cell receptor scFv mutants by yeast surface display.Protein Eng 10:1303-1310
    64.Kieke MC,Shusta EV,Boder ET,et al.(1999)Selection of functional T cell receptor mutants from a yeast surface-display library.Proc Natl Acad Sci U S A 96:5651-5656
    65.Kim SY,Sohn JH,Pyun YR,et al.(2007)In vitro evolution of lipase B from Candida antarctica using surface display in hansenula polyraorpha.J Microbiol Biotechnol 17:1308-1315
    66.Kim YS,Bhandari R,Cochran JR,et al.(2006)Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast.Proteins 62:1026-1035
    67.Kjaergaard K,Schembri MA and Klemm P(2001)Novel Zn(2+)-chelating peptides selected from a fimbria-displayed random peptide library.Appl Environ Microbiol 67:5467-5473
    68.Kondo A and Ueda M(2004)Yeast cell-surface display--applications of molecular display.Appl Microbiol Biotechnol 64:28-40
    69.Kornacker MG and Pugsley AP(1990)The normally periplasmic enzyme beta-lactamase is specifically and efficiently translocated through the Escherichia coli outer membrane when it is fused to the cell-surface enzyme pullulanase. Mol Microbiol 4:1101 -1109
    70. Kotrba P, Doleckova L, de Lorenzo V, et al. (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092-1098
    71. Kramer U, Rizos K, Apfel H, et al. (2003) Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains. Infect Immun 71:1944-1952
    72. Kumita JR, Johnson RJ, Alcocer MJ, et al. (2006) Impact of the native-state stability of human lysozyme variants on protein secretion by Pichia pastoris. Febs J 273:711-720
    73. Kuroda K, Shibasaki S, Ueda M, et al. (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697-701
    74. Kuroda K and Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458-463
    75. Kuroda K, Ueda M, Shibasaki S, et al. (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259-264
    76. Lam JS, Mansour MK, Specht CA, et al. (2005) A model vaccine exploiting fungal mannosylation to increase antigen immunogenicity. J Immunol 175:7496-7503
    77. Lang H, Maki M, Rantakari A, et al. (2000) Characterization of adhesive epitopes with the OmpS display system. Eur J Biochem 267:163-170
    78. Lattemann CT, Maurer J, Gerland E, et al. (2000) Autodisplay: functional display of active beta-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. J Bacteriol 182:3726-3733
    79. Lee JS, Shin KS, Pan JG, et al. (2000) Surface-displayed viral antigens on Salmonella carrier vaccine. Nat Biotechnol 18:645-648
    80. Lee SH, Choi JI, Han MJ, et al. (2005) Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnol Bioeng 90:223-230
    81. Lee SH, Lee SY and Park BC (2005) Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Appl Environ Microbiol 71:8581-8586
    82. Lee SY, Choi JH and Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45-52
    83. Li Z, Xiong F, Lin Q, et al. (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21:43 8-445
    84. Lin Y, Tsumuraya T, Wakabayashi T, et al. (2003) Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol 62:226-232
    85. Lindholm A, Smeds A and Palva A (2004) Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70:2061-2071
    86. Lipke PN and Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180-194
    87. Lipovsek D, Antipov E, Armstrong KA, et al. (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14:1176-1185
    88. Lipovsek D, Lippow SM, Hackel BJ, et al. (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type Ⅲ domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024-1041
    89. Lu Z, Murray KS, Van Cleave V, et al. (1995) Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y) 13:366-372
    90. Macauley-Patrick S, Fazenda ML, McNeil B, et al. (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249-270
    91. Martineau P, Charbit A, Leclerc C, et al. (1991) A genetic system to elicit and monitor antipeptide antibodies without peptide synthesis. Biotechnology (N Y) 9:170-172
    92.Marvin DA(1998)Filamentous phage structure,infection and assembly.Curr Opin Struct Biol 8:150-158
    93.Matsumoto T,Fukuda H,Ueda M,et al.(2002)Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flolp flocculation functional domain.Appl Environ Microbiol 68:4517-4522
    94.Maurer J,Jose J and Meyer TF(1997)Autodisplay:one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli.J Bacteriol 179:794-804
    95.Medaglini D,Pozzi G,King TP,et al.(1995)Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium Streptococcus gordonii after oral colonization.Proc Natl Acad Sci U S A 92:6868-6872
    96.Mesnage S,Weber-Levy M,Haustant M,et al.(1999)Cell surface-exposed tetanus toxin fragment C produced by recombinant Bacillus anthracis protects against tetanus toxin.Infect Immun 67:4847-4850
    97.Montijn RC,van Rinsum J,van Schagen FA,et al.(1994)Glucomannoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side chain.J Biol Chem 269:19338-19342
    98.Mrsa V,Seidl T,Gentzsch M,et al.(1997)Specific labelling of cell wall proteins by biotinylation.Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae.Yeast 13:1145-1154
    99.Mrsa V and Tanner W(1999)Role of NaOH-extractable cell wall proteins Ccw5p,Ccw6p,Ccw7p and Ccw8p(members of the Pir protein family)in stability of the Saccharomyces cerevisiae cell wall.Yeast 15:813-820
    100.Nakamura Y,Shibasaki S,Ueda M,et al.(2001)Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain.Appl Microbiol Biotechnol 57:500-505
    101.Nomellini JF,Duncan G,Dorocicz IR,et al.(2007)S-layer-mediated display of the immunoglobulin G-binding domain of streptococcal protein G on the surface of Caulobacter crescentus:development of an immunoactive reagent.Appl Environ Microbiol 73:3245-3253
    102.Ohya T,Ohyama M and Kobayashi K(2005)Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnol Bioeng 90:876-887
    103. Omoya K, Kato Z, Matsukuma E, et al. (2004) Systematic optimization of active protein expression using GFP as a folding reporter. Protein Expr Purif 36:327-332
    104. Pallesen L, Poulsen LK, Christiansen G, et al. (1995) Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences. Microbiology 141 (Pt 11):2839-2848
    105. Parekh R, Forrester K and Wittrup D (1995) Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Protein Expr Purif 6:537-545
    106. Paschke M (2006) Phage display systems and their applications. Appl Microbiol Biotechnol 70:2-11
    107. Petty NK, Evans TJ, Fineran PC, et al. (2007) Biotechnological exploitation of bacteriophage research. Trends Biotechnol 25:7-15
    108. Poquet I, Ehrlich SD and Grass A (1998) An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis. J Bacteriol 180:1904-1912
    109. Prasher DC, Eckenrode VK, Ward WW, et al. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229-233
    110. Raha AR, Varma NR, Yusoff K, et al. (2005) Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 68:75-81
    111. Ramasamy R, Yasawardena S, Zomer A, et al. (2006) Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 24:3900-3908
    112. Rao BM, Driver I, Lauffenburger DA, et al. (2005) High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth. Biochemistry 44:10696-10701
    113. Ren R, Jiang Z, Liu M, et al. (2007) Display of adenoregulin with a novel Pichia pastoris cell surface display system. Mol Biotechnol 35:103-108
    114. Richins RD, Kaneva I, Mulchandani A, et al. (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984-987
    115. Rizos K, Lattemann CT, Bumann D, et al. (2003) Autodisplay: efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains. Infect Immun 71:6320-6328
    116. Rosochacki SJ and Matejczyk M (2002) Green fluorescent protein as a molecular marker in microbiology. Acta Microbiol Pol 51:205-216
    117. Roy A, Lu CF, Marykwas DL, et al. (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196-4206
    118. Russo P, Kalkkinen N, Sareneva H, et al. (1992) A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci U S A 89:3671-3675
    119. Samuelson P, Gunneriusson E, Nygren PA, et al. (2002) Display of proteins on bacteria. J Biotechnol 96:129-154
    120. Samuelson P, Hansson M, Ahlborg N, et al. (1995) Cell surface display of recombinant proteins on Staphylococcus carnosus. J Bacteriol 177:1470-1476
    121. Samuelson P, Wernerus H, Svedberg M, et al. (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243-1248
    122. Sarramegna V, Demange P, Milon A, et al. (2002) Optimizing functional versus total expression of the human mu-opioid receptor in Pichia pastoris. Protein Expr Purif 24:212-220
    123. Sato N, Matsumoto T, Ueda M, et al. (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60:469-474
    124. Schembri MA and Klemm P (1998) Heterobinary adhesins based on the Escherichia coli FimH fimbrial protein. Appl Environ Microbiol 64:1628-1633
    125. Schorr J, Knapp B, Hundt E, et al. (1991) Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine 9:675-681
    126. Schreuder MP, Mooren AT, Toschka HY, et al. (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115-120
    127. Shi H and Wen Su W (2001) Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb Technol 28:25-34
    128. Shi X, Karkut T, Chamankhah M, et al. (2003) Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 28:321-330
    129. Shibasaki S, Ueda M, Ye K, et al. (2001) Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Appl Microbiol Biotechnol 57:528-533
    130. Shimazu M, Nguyen A, Mulchandani A, et al. (2003) Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnol Prog 19:1612-1614
    131. Shimma Y and Jigami Y (2004) Expression of human glycosyltransferase genes in yeast as a tool for enzymatic synthesis of sugar chain. Glycoconj J 21:75-78
    132. Shimma Y, Saito F, Oosawa F, et al. (2006) Construction of a library of human glycosyltransferases immobilized in the cell wall of Saccharomyces cerevisiae. Appl Environ Microbiol 72:7003-7012
    133. Shimojyo R, Furukawa H, Fukuda H, et al. (2003) Preparation of yeast strains displaying IgG binding domain ZZ and enhanced green fluorescent protein for novel antigen detection systems. J Biosci Bioeng 96:493-495
    134. Shimomura O, Johnson FH and Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223-239
    135. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315-1317
    136. Sousa C, Kotrba P, Ruml T, et al. (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280-2284
    137. Steidler L, Remaut E and Fiers W (1993) LamB as a carrier molecule for the functional exposition of IgG-binding domains of the Staphylococcus aureus protein A at the surface of Escherichia coli K12. Mol Gen Genet 236:187-192
    138. Steidler L, Viaene J, Fiers W, et al. (1998) Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A. Appl Environ Microbiol 64:342-345
    139. Stentebjerg-Olesen B, Pallesen L, Jensen LB, et al. (1997) Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae:effects of insert position and host background.Microbiology 143(Pt 6):2027-2038
    140.Stover CK,Bansal GP,Hanson MS,et al.(1993)Protective immunity elicited by recombinant bacille Calmette-Guerin(BCG)expressing outer surface protein A(OspA)lipoprotein:a candidate Lyme disease vaccine.J Exp Med 178:197-209
    141.Strauss A and Gotz F(1996)In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus.Mol Microbiol 21:491-500
    142.Subramanian S and Srienc F(1996)Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein.J Biotechnol 49:137-151
    143.Sumita T,Yoko-o T,Shimma Y,et al.(2005)Comparison of cell wall localization among Pir family proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pirlp.Eukaryot Cell 4:1872-1881
    144.Suzuki T,Lett MC and Sasakawa C(1995)Extracellular transport of VirG protein in Shigella.J Biol Chem 270:30874-30880
    145.Takayama K,Suye S,Kuroda K,et al.(2006)Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae.Biotechnol Prog 22:939-943
    146.Tanino T,Fukuda H and Kondo A(2006)Construction of a Pichia pastoris cell-surface display system using Flolp anchor system.Biotechnol Prog 22:989-993
    147.Teparic R,Stuparevic I and Mrsa V(2007)Binding assay for incorporation of alkali-extractable proteins in the Saccharomyces cerevisiae cell wall.Yeast 24:259-266
    148.Teunissen AW,Holub E,van der Hucht J,et al.(1993)Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae.Yeast 9:423-427
    149.Tian F,Tsao ML and Schultz PG(2004)A phage display system with unnatural amino acids.J Am Chem Soc 126:15962-15963
    150.Ton-That H,Marraffini LA and Schneewind O(2004)Protein sorting to the cell wall envelope of Gram-positive bacteria.Biochim Biophys Acta 1694:269-278
    151.Van der Vaart JM,te Biesebeke R,Chapman JW,et al.(1997)Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.Appl Environ Microbiol 63:615-620
    152.Vassileva A,Chugh DA,Swaminathan S,et al.(2001)Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter.J Biotechnol 88:21-35
    153.Wan HM,Chang BY and Lin SC(2002)Anchorage of cyclodextrin glucanotransferase on the outer membrane of Escherichia coli.Biotechnol Bioeng 79:457-464
    154.Wang XX and Shusta EV(2005)The use of scFv-displaying yeast in mammalian cell surface selections.J Immunol Methods 304:30-42
    155.Wang Z,Qi Q and Wang PG(2006)Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiae for improved cyclodextrin production.Appl Environ Microbiol 72:1873-1877
    156.Watari J,Takata Y,Ogawa M,et al.(1994)Molecular cloning and analysis of the yeast flocculation gene FLO1.Yeast 10:211-225
    157.Wernerus H,Lehtio J,Teeri T,et al.(2001)Generation of metal-binding staphylococci through surface display of combinatorially engineered cellulose-binding domains.Appl Environ Microbiol 67:4678-4684
    158.Whittaker MM and Whittaker JW(2000)Expression of recombinant galactose oxidase by Pichia pastoris.Protein Expr Purif 20:105-111
    159.Wong RS,Wirtz RA and Hancock RE(1995)Pseudomonas aeruginosa outer membrane protein OprF as an expression vector for foreign epitopes:the effects of positioning and length on the antigenicity of the epitope.Gene 158:55-60
    160.Xu Z and Lee SY(1999)Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif.Appl Environ Microbiol 65:5142-5147
    161.Yang C,Cai N,Dong M,et al.(2008)Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates.Biotechnol Bioeng 99:30-37
    162.Yip CL,Welch SK,Klebl F,et al.(1994)Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins.Proc Natl Acad Sci U S A 91:2723-2727
    163.Zhang G,Gurtu V and Kain SR(1996)An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells.Biochem Biophys Res Commun 227:707-711
    164.Zhang HC,Bi JY,Chen C,et al.(2006)Immobilization of UDP-galactose 4-epimerase from Escherichia coli on the yeast cell surface.Biosci Biotechnol Biochem 70:2303-2306
    165.Zhang Y and Yang B(2006)In vivo optimizing of intracellular production of heterologous protein in Pichia pastoris by fluorescent scanning.Anal Biochem 357:232-239
    166.Zou W,Ueda M and Tanaka A(2002)Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library.Appl Microbiol Biotechnol 58:806-812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700