用户名: 密码: 验证码:
第1:先天出汗性外胚层发育不良患者中GJB6基因突变筛查第2:AMPD1基因在体细胞系和神经细胞瘤细胞系中表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:先天性疾病是一种在出生前或出生后一个月内发生的疾病。很多先天性疾病都是遗传物质异常所导致的遗传性疾病。先天性出汗性外胚层发育不良(Hidrotic ectodermal dysplasia, HED),也称为Clouston综合症,是一种常染色体显性遗传疾病,其特点是杵状甲、脱发以及手掌和脚底角质化。先天性杵状甲(或者杵状指)是一类临床上较少见的遗传性皮肤病,由于甲床和第三指节骨部分的连接组织增生,导致指甲板扩大和手指及脚趾终端分部。目前对于杵状甲还缺少具体可行的治疗方法,但是针对其病理症状进行治疗可能会减少杵状甲表型的发生;如果在疾病发生早期进行干预还有可能逆转病情,但目前尚缺少有效的手术治疗方法。先天性脱发的临床特征为正常头皮毛发不可再生性脱落,稀疏的眉毛和睫毛以及缺少腋毛、阴毛或其他体毛。有1-2%的先天性脱发患者会出现整个头皮甚至全部体表出现无毛特征。脱发病在有家族病史的家系中更易出现,这说明遗传因素可能是脱发病发生的一个诱因。对有2个或2个以上患者的家系的研究结果表明,基因异常能提高患病风险。针对不同脱发病型可采用不同的治疗对策,如果脱发病灶较小,一些治疗可能使头发重生脱发面积变小;但是对于严重脱发的患者,注射一些糖皮质激素如氯倍他索,醋酸氟轻松及皮质类固醇或者使用药膏的治疗方法对于脱发并没有明显的效果。类固醇药物的注射经常用来治疗一些小面积的脱发及眉毛缺失,但还不能确定其具体疗效。
     先天性毛发和指甲疾病一直以来就是具有未知遗传基础的一组罕见疾病,并研究较少。有研究指出称编码缝隙连接蛋白connexin30的GJB基因突变能导致此类疾病的发生。间隙连接蛋白-6(GJB6),或connexin30(Cx30),在人体中是由GJB6基因编码的蛋白质,是间隙连接复合物之一。GJB6基因位于13号染色体长臂1区1号带和1区2号带1亚带(13q11-q12.1)之间。间隙连接蛋白(Connexins)是一组结构相关的跨膜蛋白家族,可以装配形成脊椎动物的间隙连接。间隙连接由两个半通道或连接子构成,每个半通道或连接子由六个间隙连接蛋白装配组成。间隙连接在多细胞生物体中能够直接传递细胞间信号,它们由成簇的连接子构成通道集群,能使相邻细胞间的离子、营养物质以及小的代谢产物自由通过。外胚层上皮细胞及内耳的上皮细胞表达大量的间隙连接蛋白,其在协调角质细胞的生长和表皮细胞分化中扮演重要的角色;在内耳的听觉上皮细胞中,它能够回收听觉转导过程中流失的钾离子。间隙连接在多种生化反应中有至关重要的作用,如协调心脏肌肉去极化过程,胚胎发育以及毛细血管的应答。基于此,间隙连接蛋白基因的突变可能导致机体功能及发育的异常。
     在本研究中,我们对一个来自中国人群的先天性指甲发育不良以及脱发和掌跖角化过度家系进行GJB6的突变筛查,寻找其遗传病因。我们有望通过鉴定GJB6基因的突变引入快速的分子诊断和新型药物的治疗策略,在未来,可能有助于找到治疗这种罕见遗传性疾病的方法。
     研究方法:一个患有杵状甲和脱发的中国家庭,其包括四个患者和两个正常人,被选为研究对象并签订知情同意书。通过家谱分析有力的证明了该疾病是常染色体显性遗传并且所有患病的成员是等位基因杂合突变。肝素化处理收集的外周血,用苯酚-氯仿提取基因组DNA,并十二烷基磺酸钠-蛋白酶K纯化DNA。用琼脂糖凝胶电泳检测DNA的提取质量。通过聚合酶链式反应(PCR)分别用引物:(1)5'-AGACTAGCAGGGCAGGGAGT-3'(上游)以及5’-GGAAAAAGATGCTGCTGGTG-3'(下游);(2)5’-CCTCCAGCTGATCTTCGTCT-3'(上游)以及5’-GGTTGGTATTGCCTTCTGGA-3'(下游),扩增人类GJB6基因全长序列,产生1350bp和1250bp扩增片段。扩增后用浓度为1%的琼脂糖凝胶电泳分离PCR产物,纯化PCR产物,然后在ABI-PRISM3100自动测序仪上进行双向测序,所有的测序结果进行组装、分析并用SeqMan Ⅱ程序与野生型序列进行比对。
     结果:本研究调查了一个五代的有常染色体显性遗传性家族史的杵状指和脱发家系。所有的患者都有先天性的杵状指、脱发和掌跖角化等相似的临床症状。患者杵状指症状在出生时即发现,脱发在6岁时出现。体检发现患者头发、睫毛、眉毛及其他体毛出现缺失。没有发现患者有听觉、视觉异常,牙齿异常及精神异常。实验室各检测指标正常,患者寿命正常。我们对GJB6基因进行聚合酶链式反应扩增后,用琼脂糖凝胶电泳进行分离纯化。对这六个家系成员的GJB6基因进行测序,发现了一个杂合的错义突变c.31G>A,这一变异导致了GJB6编码蛋白的第11位氨基酸从甘氨酸G变成了精氨酸R,这种变异可能使蛋白质的功能或结构发生转变从而引发了脱发和杵状指症状。这种在细胞质内存在的蛋白质CX30的氨基端的G11R的突变在4例患者中都存在。家系里的2个正常人中均未发现缺失、插入或错义突变。近年来,已发现了越来越多的连接蛋白参与的人类疾病的发生。连接蛋白的突变影响到多个器官和系统并与多种疾病的发生有关。另外,不同的连接蛋白突变能引起相同或相似的疾病。基因组研究不断地揭示与连接蛋白有关的疾病的突变,包括耳聋、皮肤病、中枢和外周神经病变、白内障以及心血管功能障碍等。GJB6基因的突变导致连接蛋白的组成和结构发生变化,它可能导致间隙连接的非正常转运活动。缝隙连接是细胞间水、离子及小分子交换的通道。它参与细胞间短程、快速的信息传递。由于这个位置上的突变在其他人群中也有过报道,所以我们没有进行后续的正常对照研究。
     结论:总结本研究的结果就是:“在GJB6基因(在蛋白质水平位G11R)中一个错义突变31G→A在中国人群的天生性HED患者中普遍存在”。为了对那些有患该病史的家族提供适当的诊断、遗传咨询和产前诊断,GJB6基因突变尤其是G11R等位基因是家族中患杵状甲和脱发所必须考虑的因素。GJB6基因的UTR区域和启动子区域也应该得到鉴定,研究突变体的调控效果和功能性分析将毫无疑问有助于了解GJB6基因表型变异性的机制,并综合先前对GJB6基因的研究,这些结果丰富了对连接蛋白功能特点的了解。然而,还需要研究突变的类型、突变的位置、组织学检查患病个体的候选基因以及鉴定世界范围内不同区域更多的患者。通过当前对HED疾病的分子生物学基础的了解,疾病起因于GJB6基因的突变,我们将引进一个新颖的对头发和指甲的各种疾病治疗的药物学或者基于基因的治疗方法,这类疾病的基因治疗方法在临床上可能不会立即实现,但是在此领域有效的研究无疑肯明了在未来能对该疾病有效管理。
     研究背景:孤独症是在一种开始于儿童36个月之前的通过其行为定义的综合征。自闭症的特点是在社会交往中存在普遍的缺陷,即语言和非语言沟通减少和刻板行为及狭隘的兴趣和活动。之前的研究中已报道过孤独症患者存在一些神经性病变包括海马体、杏仁核、小脑和大脑皮质的异常等。孤独症是一种遗传性疾病,但是它可能由多种基因缺陷造成。这些缺陷的基因可能与大脑发育、信号传导、转运或者细胞结构有关。有可靠的证据证明,孤独症的缺陷基因中有某些特定的基因能够造成患者的代谢异常,即酶分子的缺陷会造成异常的酶促反应速率,导致代谢底物或产物的浓度异常。尽管在孤独症病人中代谢异常者所占比例未知,但是已有许多研究证明一些代谢缺陷和孤独症有关,包括苯丙酮尿症、组氨酸血症、肌酸缺乏综合征、腺苷酸琥珀酸裂解酶缺陷症、5’-核苷酸酶高活性和嘌呤代谢紊乱等。腺苷酸琥珀酸裂解酶缺乏症是一种常染色体隐性遗传疾病,嘌呤合成异常导致体液中积累琥珀酰嘌呤;该疾病约有一半的患者具有孤独症的特征,80%伴有癫痫。
     磷酸腺苷脱氨酶(Adenosine monophosphate deaminase, AMPD)或肌腺苷酸脱氨酶,是在高等真核生物中的一种复合变构酶。单磷酸腺苷脱氨酶即AMPD1,是AMPD家族中具有肌肉组织特异性的一种酶类。AMPD1基因一共有16个外显子,在基因组中约占20kb,除了2号外显子是由12个核苷酸组成的,每个外显子大小在101至220个核苷酸之间。AMPDl基因在1号染色体短臂(p)1区3带至2区1带之间(1p13-p21)。AMPD1在小鼠中编码同工酶A,在人类中编码异构体M。在骨骼肌中,AMPD1能够催化腺苷单磷酸(AMP)的脱氨基作用,产生肌苷单磷酸(IMP)和氨(NH3)。 AMPD1也在嘌呤核苷酸循环(PNC)中起重要作用。在骨骼肌中,PNC中产生的富马酸参与三羧酸循环循环(TCA),最终导致ATP水平的上升。在我们的前期研究中,采用全基因组关联研究(GWAS)的方法来研究了孤独症易感的单核苷酸多态性位点(SNP)。在AMPD1基因相邻位点发现了一处易感SNP,这一发现表明AMPD1基因可能是孤独症易感的基因。在本研究中,我们研究了AMPD1在体细胞HEK293和神经母细胞瘤细胞SH-SY5Y中的分布。希望这个研究能够对突变或者生物工程合成蛋白在动物模型中的表达,以及其他研究中有帮助。
     研究方法:使用Trizol-氯仿-异丙醇的方法从成年小鼠肌肉组织中提取总RNA。用Oligo (dT)18引物逆转录合成cDNA,进而进行AMPD1基因的RT-PCR。 cDNA为模板进行AMPD1真核表达载体的构建。以AMPD1基因全长cDNA的扩增引物为:正向引物5'-ATCCGGAATTCAATGCCTCTATTCAAACTAACAGGTC-3', EcoRI为限制性酶切位点;反向引物5'-ATGCGGGATCCTCATTCTGTTGCTTTAAGACCCTCA-3', BamHI为限制性酶切位点。进行PCR之后,对DNA样本进行1%琼脂糖凝胶电泳;切下目的片段后用Qiagen胶回收试剂盒纯化。使用Qiagen质粒mini试剂盒抽p3Xflag载体。将mAMPD1的PCR片段和p3Xflag空载体用EcoRI和BamHI进行双酶切。酶切产物进行使用纯化,并将酶切后的PCR片段和空载体按照比例连接。连接产物转进感受态大肠杆菌后涂板。挑选单克隆在Amp+LB培养基中进行培养,碱裂解法抽提细菌质粒后,进行EcoRI和BamHI的双酶切鉴定。阳性克隆进行测序鉴定。重组的质粒p3Xflag-mAMPD1使用Lipo2000转染进HEK293和SH-SY5Y细胞系中,用免疫组化的方法使用Flag标记和内质网的标记蛋白的抗体对转染后代细胞进行荧光标记,研究AMPD1的表达的细胞分布。
     结果:在p3Xflag-mAMPD1质粒构建中,使用小鼠肌肉组织cDNA为模板进行PCR扩增mAMPDl片段。PCR产物用1%琼脂糖凝胶电泳分离,切胶纯化。p3Xflag (6.4Kb)转化进感受态细胞中,然后提取质粒。纯化的PCR产物(97. Ong/ml)以及提取的质粒(p3Xflag,237.7ng/ml)进行酶切,使用限制性内切酶EcoRI和BamHI。mAMPD1(27.lng/ml)和p3Xflag (23.4ng/ml)的酶切产物进行连接,然后转进E. coli DH5α感受态细胞进行扩增。随机选取单克隆,通过测序检查插入片段。
     转染进质粒的HEK293细胞免疫荧光染色发现AMPD1均匀的分布于胞浆不在细胞核分布。另一个细胞系,SH-SY5Y的转染及免疫荧光结果也证明AMPD1的胞浆细胞分布。
     结论:在本研究中,我们检测了AMPD1在HEK293和SH-SY5Y细胞系中的分布情况,发现AMPD1特异性地分布在胞浆中,这是我们关于孤独症相关基因的表达研究,动物以及临床研究的初步结果。
Background and Objectives:Connexins, or gap junction proteins, are a family of structurally related trans-membrane proteins that assemble to form vertebrate gap junctions. Each gap junction is composed of two hemichannels, or connexons, constructed by six connexin molecules. Gap junctions are essential for many physiological processes, such as the coordinated depolarization of cardiac muscle, proper embryonic development, and the conducted response in microvasculature. For this reason, mutations in connexin-encoding genes can lead to functional and developmental abnormalities. Gap junction beta-6protein (GJB6), also known as connexin30(Cx30) is a component of the gap junction complex. Mutation in the gap junction beta6(GJB6) gene is associated with an autosomal dominant disorder, Hidrotic Ectodermal Dysplasia (HED), characterized by congenital nail clubbing, alopecia and palmoplantar keratoderma. In this study, we have investigated the mutation in GJB6gene in a Chinese family with congenital nail clubbing and alopecia.
     Materials and Methods:We have selected patients from a Chinese family, who are suffering from HED, with four affected and two unaffected. All the affected patients had the similar clinical presentation. Physical examination revealed loss of scalp hair, eyelashes, eyebrows and body hair on other parts of the body. Genomic DNA was isolated from the peripheral blood of the individuals, and whole coding region of GJB6was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing.
     Results:Sequencing identified a heterozygous missense mutation31G→A in the GJB6gene leading the predicted amino acid change glyll-to-arg (G11R) in the cytoplasmic amino-terminus of GJB6protein of affected individuals but not in normal healthy control. Although the effect of the mutations is not fully understood, this probably causes abnormal transport activity through the gap junctions.
     Conclusions:This investigation identifies a G→A missense mutation in GJB6gene (G11R in GJB6protein), responsible for the congenital disorder characterized with HED in a Chinese family.
     Background and Objectives:Adenosine monophosphate deaminase (AMPD), also known as myoadenylate deaminase, is a complex allosteric enzyme in higher eukaryotes. AMPD1, also known as myoadenylate deaminase, is the muscle-specific form of AMPD. AMPD1catalyzes the deamination of adenosine monophosphate (AMP) to inosine monophosphate (IMP) plus ammonia (NH3) in skeletal muscle, and plays an important role in the purine nucleotide cycle. The deficiency of AMPD1in skeletal muscle causes limited capacity to form IMP, resulting in an elevation of AMP. In a previous study of our research group, the whole genome association study (WGAS) was performed to identify the risk SNP for autism, and the risk SNP was found at the locus adjacent to AMPD1, which suggests that AMPD1might be the candidate risk gene for autism. However, its biological feature is unevaluated properly. In this study, we have investigated the cellular distribution of AMPD1in somatic cell line HEK293and neuroblastoma cell line SH-SY5Y.
     Methods:RNA was isolated from mouse muscle and cDNA was synthesized. The AMPD1gene was amplified by PCR. The3Xflag-mAMPD1plasmid was constructed. The recombinant plasmid was transfected into HEK293and SH-SY5Y cell lines. Expression of AMPD1was studied to investigate cellular location in these two cell lines by immunohistochemistry.
     Results:Agarose gel electrophoresis confirmed the AMPD1and plasmids expressions, which were used to study the cellular distribution of AMPD1protein. Immunohistochemical staining showed that AMPD1is specifically localized in the cytoplasm.
     Conclusions:In this study, we have examined the distribution of AMPD1in somatic cell line HEK293and neuroblastoma cell line SH-SY5Y, and we report here that AMPD1is localized in the cytoplasm of investigated cells.
引文
[1]Pierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis for congenital heart defects:current knowledge:a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young:endorsed by the American Academy of Pediatrics [J]. Circulation,2007,115(23):3015-3038.
    [2]Kuliev A, Verlinsky Y. Preimplantation diagnosis:A realistic option for assisted reproduction and genetic practice [J]. Curr Opin Obstet Gynecol,2005,17(2): 179-183.
    [3]Clouston HR. The major forms of hereditary ectodermal dysplasia [J]. CMAJ,1939, 40:1-7.
    [4]Zhang XJ, Chen JJ, Yang S, et al. A mutation in the connexin 30 gene in Chinese Han patients with hidrotic ectodermal dysplasia [J]. J Dermatol Sci,2003,32: 11-17.
    [5]Tariq M, Azeem Z, Ali G, et al. Mutation in the HPGD gene encoding NAD+ dependent 15-hydroxyprostaglandin dehydrogenase underlies isolated congenital nail clubbing (ICNC) [J]. J Med Genet,2009,46(1):14-20.
    [6]Goyal S, Griffiths AD, Omarouayache S, Mohammedi R. An improved method of studying fingernail morphometry:application to the early detection of fingernail clubbing [J]. J Am Acad Dermatol,1998,39(4 Pt 1):640-642.
    [7]Fenton AD. Nail disorders associated with general medical conditions [M]. In: Samman'the nails in disease.5th ed Oxford:Butterworth-Heinemann Ltd,1995: 113-114.
    [8]Myers KA, Farquhar DR. The rational clinical examination. Does this patient have clubbing [J]? JAMA,2001,286:341-347.
    [9]Marrie TJ, Brown N. Clubbing of the digits [J]. Am J Med,2007,120:940-941.
    [10]Shneerson JM. Digital clubbing and hypertrophic osteoarthropathy:The underlying mechanisms [J]. Br J Dis Chest,1981,75(2):113-131.
    [11]Rush PJ, Giorshev C, Shore A, Levinson H. The use of thermography in clubbing [J]. Respir Med,1992,86(3):257-259.
    [12]Ward RW, Chin R Jr, Keyes JW Jr, Haponik EF. Digital clubbing. Demonstration with positron emission tomography [J]. Chest,1995,107(4):1172-1173.
    [13]Spicknall KE, Zirwas MJ, English JC 3rd. Clubbing:an update on diagnosis, differential diagnosis, pathophysiology, and clinical relevance [J]. J Am Acad Dermatol,2005,52(6):1020-1028.
    [14]Murray JF, Schraufnagel DE. History and physical examinations [M]. In:Mason RJ, Broaddus VC, Martin TR, et al. Murray & Nadel's Textbook of Respiratory Medicine.5th ed Philadelphia, Pa:Saunders Elsevier; 2010:chap 17.
    [15]Zlotogorski A, Panteleyev AA, Aita VM, Christiano AM. Clinical and molecular diagnostic criteria of congenital atrichia with papular lesions [J]. J Invest Dermatol, 2001,117(6):1662-1665.
    [16]Chen N, Xu C, Han B, et al. G11R mutation in GJB6 gene causes hidrotic ectodermal dysplasia involving only hair and nails in a Chinese family [J]. J. Dermatol,2010,37:559-561.
    [17]Stratigos AJ, Baden HP. Unraveling the molecular mechanisms of hair and nail genodermatoses [J]. Arch Dermatol,2001,137(11):1465-1471.
    [18]Rudnicka L, Olszewska M, Rakowska A, et al. Trichoscopy:a new method for diagnosing hair loss [J]. J Drugs Dermatol,2008,7 (7):651-654.
    [19]Martinez-Mir A, Zlotogorski A, Gordon D, et al. Genome wide Scan for Linkage Reveals Evidence of Several Susceptibility Loci for Alopecia Areata [J]. Am J Hum Genet,2007,80 (2):316-328.
    [20]Sotiriadis D, Patsatsi A, Lazaridou E, et al. Topical immunotherapy with diphenylcyclopropenone in the treatment of chronic extensive alopecia areata [J]. Clin Exp Dermatol,2007,32 (1):48-51.
    [21]Richard G, Itin P, Lin JP, et al. Evidence for genetic heterogeneity in monilethrix. J Invest Dermatol [J].1996,107,812-814.
    [22]Healy E, Holmes SC, Belgaid CE, et al. A gene for monilethrix is closely linked to the type II keratin gene cluster at 12q13 [J]. Hum Mol Genet,1995,4:2399-2402.
    [23]Judge MR, Morgan C, Harper JL. A clinical and immunological study of Netherton's syndrome [J]. Br J Dermatol,1994,131:615-619.
    [24]Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5 encoding a serine protease inhibitor, cause Netherton syndrome [J]. Nat Genet,2000,25: 141-142.
    [25]Kanzler MH, Rasmussen JE. Atrichia with papular lesions [J]. Arch Dermatol,1986, 122:565-567.
    [26]Ahmad W, Faiyaz ul Haque MF, Brancolini V, et al.. Alopecia universalis associated with a mutation in the human hairless gene [J]. Science,1998,279: 720-724.
    [27]van Steensel MA, Jonkman MF, van Geel M, et al. Clouston syndrome can mimic pachyonychia congenital [J]. J Invest Dermatol,2003,121(5):1035-1038.
    [28]Munro CS. Pachonychia congenita:mutations and clinical presentations [J]. Br J Dermatol,2001,144:929-930.
    [29]Morello R, Zhou G, Dreyer SD, et al. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome [J]. Nat Genet,2001,27:205-208.
    [30]Lamartine J, Essenfelder GM, Kibar Z. Mutations in GJB6 cause hidrotic ectodermal dysplasia [J]. Nat Genet,2000,26:142-144.
    [31]Smith FJ, Morley SM, McLean WH. A novel connexin 30 mutation in Clouston syndrome [J]. J Invest Dermatol,2002,118:530-532.
    [32]Essenfelder GM, Bruzzone R, Lamartine J, et al. Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity [J]. Hum Mol Genet,2004,13:1703-1714.
    [33]Common JE, Becker D, Di WL, et al. Functional studies of human skin disease-and deafness-associated connexin 30 mutations [J]. Biochem Biophys Res Commun,2002,298:651-656.
    [34]Baris HN, Zlotogorski A, Peretz-Amit G, et al. A novel GJB6 missense mutation in hidrotic ectodermal dysplasia 2 (Clouston syndrome) broadens its genotypic basis [J]. BrJ Dermatol,2008,159(6):1373-1376.
    [35]Dahl E, Manthey D, Chen Y, et al. Molecular cloning and functional expression of mouse connexin-30, a gap junction gene highly expressed in adult brain and skin [J]. J Biol Chem,1996,271(30):17903-17910.
    [36]Kellermayer R, Keller M, Ratajczak P, et al. Bigenic connexin mutations in a patient with hidrotic ectodermal dysplasia [J]. Eur J Dermatol,2005,15(2):75-79.
    [37]Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins:a myriad of functions extending beyond assembly of gap junction channels [J]. Cell Commun Signal,2009,7:4.
    [38]Zoidl G, Dermietzel R Gap junctions in inherited human disease [J]. Pflugers Arch, 2010,460:451-466.
    [39]Pfam. Connexin (PF00029) [EB/OL]. Sanger Institute. http://pfam.sanger.ac.uk/family/PF00029. Retrieved on 2012.12.03.
    [40]Genetics Home Reference. GJB6 [EB/OL]. http://ghr.nlm.nih.gov/gene/GJB6. Reviewed on November 2006. Retrieved on 2012.11.25.
    [41]Ozdemir M, Engin B, Baysal I. Hydrotic Ectodermal Dysplasia Associated with A Rib Anomaly [J]. Turkiye Klinikleri J Dermatol,2007,17:205-209.
    [42]Taylor TD, Hayflick SJ, McKinnon W, et al Confirmation of linkage of Clouston syndrome (hidrotic ectodermal dysplasia) to 13q11-q12.1 with evidence for multiple independent mutations [J]. J Invest Dermatol,1998,111(1):83-85.
    [43]Grifa A, Wagner CA, D'Ambrosio L, et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus [J]. Nat Genet,1999,23(1):16-18.
    [44]Gardner P, Oitmaa E, Messner A, et al. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray:a new approach for newborn screening follow-up [J]. Pediatrics,2006,118(3): 985-994.
    [45]Yang JJ, Huang SH, Chou KH, et al. Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan [J]. Audio 1 Neurootol,2007,12(3):198-208.
    [46]Yuan Y, Huang D, Dai P, et al. GJB6 gene mutation analysis in Chinese nonsyndromic deaf population [J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2007,21(1):3-6.
    [47]Nemoto-Hasebe I, Akiyama M, Kudo S, et al. Novel mutation p.Gly59Arg in GJB6 encoding connexin 30 underlies palmoplantar keratoderma with pseudoainhum, knuckle pads and hearing loss [J]. Br J Dermatol,2009,161(2):452-455.
    [48]Asma A, Ashwaq A, Norzana AG, et al. The association between GJB2 mutation and GJB6 gene in non syndromic hearing loss school children [J]. Med J Malaysia,2011, 66(2):124-128.
    [49]Battelino S, Repic Lampret B, Zargi M, et al. Novel connexin 30 and connexin 26 mutational spectrums in patients with progressive sensorineural hearing loss [J]. J Laryngol Otol,2012,126(8):763-769.
    [50]Li W, Gao BD, Li LY, et al. Mutation screening and prenatal diagnosis of hidrotic ectodermal dysplasia in a Chinese family [J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2006,23(6):618-621.
    [1]Manzi B, Loizzo AL, Giana G, Curatolo P. Autism and metabolic disease [J]. J Child Neurol,2008,23:307-314.
    [2]Page T. Metabolic approaches to the treatment of autism spectrum disorders [J]. J Autism Dev Disord,2000,30:463-469.
    [3]Perez-Duenas B, Sempere A, Campistol J, et al. Novel features in the evolution of adenylosuccinate lyase deficiency [J]. Eur J Paediatr Neurol,2012,16:343-348.
    [4]Page T, Moseley C. Metabolic treatment of hyperuricosuric autism [J]. Prog Neuropsychopharmacol Biol Psychiatry,2002,26:397-400.
    [5]Rossignol DA, Bradstreet JJ. Evidence of mitochondrial dysfunction in autism and implications for treatment [J]. A J Biochem Biotechnol,2008,4:208-217.
    [6]Wang L, Mo X, Xu Y, et al. Molecular characterization and expression patterns of AMP deaminasel (AMPD1) in porcine skeletal muscle [J]. Comp Biochem Physiol B Biochem Mol Biol,2008,151(2):159-166.
    [7]Cieszczyk P, Eider J, Ostanek M, et al. Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing [J]? Int J Sports Med,2011, 32(12):987-991.
    [8]Szydlowska M, Roszkowska A. Expression patterns of AMP-deaminase isozymes in human hepatocellular carcinoma (HCC) [J]. Mol Cell Biochem,2008,318(1-2): 1-5.
    [9]Sabina RL, Morisaki T, Clarke P, et al. Characterization of the human and rat myoadenylate deaminase genes [J]. J Biol Chem,1990,265(16):9423-94 of 33.
    [10]Berghe GVD, Bontemps F, Vincent MF, Berghe FVD. The purine nucleotide cycle and its Molecular defects [J]. Prog Neurobiol,1992,3:547-561.
    [11]Vijay J, Vinay B, Hemalatha B. Crosstalk between purine nucleotide metabolism and mitochondrial pathways in Plasmodium falciparum [J]. Current Science,2012, 102:757-766.
    [12]Tarnopolsky MA, Parise G, Gibala MJ, et al. Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans [J]. J Physiol,2001,533(Pt 3):881-889.
    [13]Morisaki H, Morisaki T. AMPD genes and urate metabolism [J]. Nihon Rinsho, 2008,66(4):771-777.
    [14]Sims B, Powers RE, Sabina RL, Theibert AB. Elevated adenosine monophosphate deaminase activity in Alzheimer's disease brain [J]. Neurobiol Aging,1998,19(5): 385-391.
    [15]Cieszczyk P, Eider J, Ostanek M, et al. Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing [J]? Int J Sports Med,2011, 32(12):987-991.
    [16]Fishbein WN, Armbrustmacher VW, Griffin JL. Myoadenylate deaminase deficiency:a new disease of muscle [J]. Science,1978,200(4341):545-548.
    [17]Norman B, Nygren AT, Nowak J, Sabina RL. The effect of AMPD 1 genotype on blood flow response to sprint exercise [J]. Eur J Appl Physiol,2008,103(2): 173-80.
    [18]Genetta T, Morisaki H, Morisaki T, Holmes EW. A novel bipartite intronic splicing enhancer promotes the inclusion of a mini-exon in the AMP deaminase 1 gene [J]. J Biol Chem,2001,276(27):25589-25597.
    [19]Gross M, Rotzer E, Kolle P, et al. A G468-T AMPD1 mutant allele contributes to the high incidence of myoadenylate deaminase deficiency in the Caucasian population [J]. Neuromuscul Disord,2002,12(6):558-565.
    [20]Morisaki H, Morisaki T, Newby LK, Holmes EW. Alternative splicing:a mechanism for phenotypic rescue of a common inherited defect [J]. J Clin Invest, 1993,91(5):2275-2280.
    [21]Morisaki H, Higuchi I, Abe M, et al. First missense mutations (R388W and R425H) of AMPD1 accompanied with myopathy found in a Japanese patient [J]. Hum Mutat,2000,16(6):467-472.
    [22]Abe M, Higuchi I, Morisaki H, et al. Myoadenylate deaminase deficiency with progressive muscle weakness and atrophy caused by new missense mutations in AMPD1 gene:case report in a Japanese patient [J]. Neuromuscul Disord,2000, 10(7):472-477.
    [23]Bottini N, De Luca D, Saccucci P, et al. Autism:evidence of association with adenosine deaminase genetic polymorphism [J]. Neurogen,2001,3:111-113.
    [24]Folstein SE, Rosen-Sheidley B. Genetics of autism:complex aetiology for a heterogeneous disorder [J]. Nat Rev Genet,2001,2(12):943-955.
    [25]Beaudet AL. Autism:highly heritable but not inherited [J]. Nat Med,2007,13(5): 534-536.
    [26]Myers SM, Johnson CP, Council on Children with Disabilities. Management of children with autism spectrum disorders [J]. Pediatrics,2007,120(5):1162-1182.
    [27]Volkmar F, Chawarska K, Klin A. Autism in infancy and early childhood [J]. Annu Rev Psychol,2005,56:315-336.
    [28]Kanner, L. Autistic disturbances of affective contact [J]. Nervous Child,1943,2: 217-250.
    [29]Wing L, Potter D. The epidemiology of autistic spectrum disorders:is the prevalence rising [J]? Ment Retard Dev Disabil Res Rev,2002,8(3):151-161.
    [30]Fombonne E. Epidemiology of pervasive developmental disorders [J]. Pediatr Res, 2009,65(6):591-598.
    [31]Landa RJ. Diagnosis of autism spectrum disorders in the first 3 years of life [J]. Nat Clin Pract Neurol,2008,4(3):138-147.
    [32]Baird G, Cass H, Slonims V. Diagnosis of autism [J]. BMJ,2003,327(7413): 488-493.
    [33]Rapin I. Appropriate investigations for clinical care versus research in children with autism [J]. Brain Dev,1999,21(3):152-156.
    [34]Dover CJ, Le Couteur A. How to diagnose autism [J]. Arch Dis Child,2007,92(6): 540-545.
    [1]Folstein SE, Rosen-Sheidley B. Genetics of autism:complex aetiology for a heterogeneous disorder [J]. Nat Rev Genet,2001,2(12):943-955.
    [2]Beaudet AL. Autism:highly heritable but not inherited [J]. Nat Med,2007,13(5): 534-536.
    [3]Klauck SM. Genetics of autism spectrum disorder [J]. Eur J Hum Genet,2006,14(6): 714-720.
    [4]Kanner, L. Autistic disturbances of affective contact [J]. Nervous Child,1943,2: 217-250.
    [5]Myers SM, Johnson CP, Council on Children with Disabilities. Management of children with autism spectrum disorders [J]. Pediatrics,2007,120(5):1162-1182.
    [6]Volkmar F, Chawarska K, Klin A. Autism in infancy and early childhood [J]. Annu Rev Psychol,2005,56:315-336.
    [7]Stefanatos GA. Regression in autistic spectrum disorders [J]. Neuropsychol Rev,2008, 18(4):305-319.
    [8]Pickett E, Pullara O, O'Grady J, Gordon B. Speech acquisition in older nonverbal individuals with autism:a review of features, methods, and prognosis [J]. Cogn Behav Neurol,2009,22(1):1-21.
    [9]Newschaffer CJ, Croen LA, Daniels J, et al. The epidemiology of autism spectrum disorders [J]. Annu Rev Public Health,2007,28:235-258.
    [10]Wing L, Potter D. The epidemiology of autistic spectrum disorders:is the prevalence rising [J]? Ment Retard Dev Disabil Res Rev,2002,8(3):151-161.
    [11]Fombonne E. Epidemiology of pervasive developmental disorders [J]. Pediatr Res, 2009,65(6):591-598.
    [12]Landa RJ. Diagnosis of autism spectrum disorders in the first 3 years of life [J]. Nat Clin Pract Neurol,2008,4(3):138-147.
    [13]Baird G, Cass H, Slonims V. Diagnosis of autism [J]. BMJ,2003,327(7413):488-493.
    [14]Rapin I. Appropriate investigations for clinical care versus research in children with autism [J]. Brain Dev,1999,21(3):152-156.
    [15]Dover CJ, Le Couteur A. How to diagnose autism [J]. Arch Dis Child,2007,92(6): 540-545.
    [16]Baird G, Charman T, Baron-Cohen S, et al. A screening instrument for autism at 18 months of age:a 6-year follow-up study [J]. J Am Acad Child Adolesc Psychiatry, 2000,39(6):694-702.
    [17]He It M, Kelley E, Kinsbourne M, et al. Can children with autism recover? if so, how [J]? Neuropsychol Rev,2008,18(4):339-366.
    [18]Howlin P. Practitioner review:psychological and educational treatments for autism [J]. J Child Psychol Psychiatry,1998,39(3):307-322.
    [19]Montes G, Halterman JS. Child care problems and employment among families with preschool-aged children with autism in the United States [J]. Pediatrics,2008,122(1): e202-208.
    [20]Rapin I, Tuchman RF. Autism:definition, neurobiology, screening, diagnosis [J]. Pediatr Clin North Am,2008,55(5):1129-1146.
    [21]Shastry BS. Molecular genetics of autism spectrum disorders [J]. J Hum Genet,2003, 48(10):495-501.
    [22]Nomura J, Takumi T. Animal models of psychiatric disorders that reflect human copy number variation [J]. Neural Plast,2012,2012:589524.
    [23]Cook EH, Scherer SW. Copy-number variations associated with neuropsychiatric conditions [J]. Nature,2008,455(7215):919-923.
    [24]Courchesne E, Pierce K, Schumann CM, et al. Mapping early brain development in autism [J]. Neuron,2007,56(2):399-413.
    [25]Chomiak T, Hu B. Alterations of neocortical development and maturation in autism: Insight from valproic acid exposure and animal models of autism [J]. Neurotoxicol Teratol,2012 Aug 28. [Epub ahead of print]
    [26]Walsh CA, Morrow EM, Rubenstein JL. Autism and brain development [J]. Cell, 2008,135(3):396-400.
    [27]Levy SE, Hyman SL. Complementary and alternative medicine treatments for children with autism spectrum disorders [J]. Child Adolesc Psychiatr Clin N Am,2008,17(4): 803-820.
    [28]Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders [J]. Trends Neurosci,2009, 32(7):402-412.
    [29]Shepherd S, Deaner R, Platt M. Social status gates social attention in monkeys [J]. Curr Biol,2006,16(4):R119-120.
    [30]Smile S, Anagnostou E. New models for considering the role of medication in the treatment and elucidation of the etiology of autism [J]. Curr Psychiatry Rep,2012, 14(6):726-731.
    [31]Meyza KZ, Defensor EB, Jensen AL, et al. The BTBR T(+)tf/J mouse model for autism spectrum disorders-in search of biomarkers [J]. Behav Brain Res,2012 Aug 9. [Epub ahead of print]
    [32]Adolphs R. The social brain:Neural basis of social knowledge [J]. In Annual Review of Psychology,2009,60:693-716.
    [33]Allison T, Puce A, McCarthy G. Social perception from visual cues:role of the STS region [J]. Trends Cog Sci,2000,4:267-278.
    [34]Watson KK, Platt ML. Of mice and monkeys:using non-human primate models to bridge mouse-and human-based investigations of autism spectrum disorders [J]. J Neurodev Disord,2012,4(1):21.
    [35]Crawley JN. Designing mouse behavioral tasks relevant to autistic-like behaviors [J]. Ment Retard Dev Disabil Res Rev,2004,10:248-258.
    [36]Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders [J]. Nat Neurosci,2010,13:1161-1169.
    [37]Dantzer R, Kelley KW. Autistic children:a neuroimmune perspective [J]. Brain Behav Immun,2008,22:804-805.
    [38]Pardo CA, Eberhart CG. The neurobiology of autism [J]. Brain Pathol.2007; 17: 434-447.
    [39]Silverman JL, Babineau BA, Oliver CF, et al. Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse model of autism [J]. Neuropharmacology,2012 Aug 8. [Epub ahead of print]
    [40]Ey E, Leblond CS, Bourgeron T. Behavioral profiles of mouse models for autism spectrum disorders [J]. Autism Res,2011,4(1):5-16.
    [41]Patterson PH. Modeling autistic features in animals [J]. Pediatr Res,2011,69(5 Pt 2): 34-40.
    [42]Roullet FI, Wollaston L, Decatanzaro D, Foster JA. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid [J]. Neuroscience,2010,170(2):514-522.
    [43]Lukose R, Schmidt E, Wolski TP Jr, et al. Malformation of the superior olivary complex in an animal model of autism [J]. Brain Res,2011,1398:102-112.
    [44]Bambini-Junior V, Rodrigues L, Behr GA, et al. Animal model of autism induced by prenatal exposure to valproate:behavioral changes and liver parameters [J]. Brain Res, 2011,1408:8-16.
    [45]Kim KC, Kim P, Go HS, et al. The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats [J]. Toxicol Lett,2011,201(2):137-142.
    [46]Mychasiuk R, Richards S, Nakahashi A, et al. Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy [J]. Dev Neurosci,2012,34(2-3): 268-276.
    [47]Go HS, Kim KC, Choi CS, et al. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway [J]. Neuropharmacology,2012,63(6):1028-1041.
    [48]Zhang Y, Sun Y, Wang F, et al. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress [J]. Neurochem Res,2012,37(7):1409-1419.
    [49]Shultz SR, Macfabe DF, Martin S, et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat:further development of a rodent model of autism [J]. Behav Brain Res,2009,200(1):33-41.
    [50]MacFabe DF, Cain NE, Boon F, et al. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats:Relevance to autism spectrum disorder [J]. Behav Brain Res,2011,217(1):47-54.
    [51]E1-Ansary AK, Ben Bacha A, Kotb M. Etiology of autistic features:the persisting neurotoxic effects of propionic acid [J]. J Neuroinflam,2012,9:74.
    [52]Baudouin SJ, Gaudias J, Gerharz S, et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism [J]. Science,2012,338(6103): 128-132.
    [53]Chadman KK, Gong S, Scattoni ML, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice [J]. Autism Res,2008,1(3):147-158.
    [54]Hunter JW, Mullen GP, McManus JR, et al. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity [J]. Dis Model Mech,2010,3(5-6):366-376.
    [55]Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism [J]. Autism Res,2011,4(5):368-376.
    [56]Fischer J, Hammerschmidt K. Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders:insights into the evolution of vocal communication [J]. Genes Brain Behav,2011,10(1):17-27.
    [57]Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit [J]. Genes Brain Behav,2009,8(4):416-425.
    [58]Etherton MR, Blaiss CA, Powell CM, Sudhof TC. Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments [J]. Proc Natl Acad Sci U S A,2009,106(42):17998-18003.
    [59]Silverman JL, Turner SM, Barkan CL, et al. Sociability and motor functions in Shankl mutant mice [J]. Brain Res,2011,1380:120-137.
    [60]Won H, Lee HR, Gee HY, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function [J]. Nature,2012,486(7402): 261-265.
    [61]Bangash MA, Park JM, Melnikova T, et al. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism [J]. Cell,2011,145(5):758-772.
    [62]Deutsch SI, Pepe GJ, Burket JA, et al. D-cycloserine improves sociability and spontaneous stereotypic behaviors in 4-week old mice [J]. Brain Res,2012,1439: 96-107.
    [63]Johnson RA, Lam M, Punzo AM, et al.7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome [J]. J Appl Physiol,2012,112(5): 704-710.
    [64]Derecki NC, Cronk JC, Lu Z, et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome [J]. Nature,2012,484(7392):105-109.
    [65]Pearson BL, Defensor EB, Pobbe RL, et al. Mecp2 truncation in male mice promotes affiliative social behavior [J]. Behav Genet,2012,2(2):299-312.
    [66]Bowers JM, Konopka G. The role of the FOXP family of transcription factors in ASD. Dis Markers,2012 Aug 31. [Epub ahead of print]
    [67]Fujita E, Tanabe Y, Momoi MY, Momoi T. Cntnap2 expression in the cerebellum of Foxp2(R552H) mice, with a mutation related to speech-language disorder [J]. Neurosci Lett,2012,506(2):277-280.
    [68]Jana NR. Understanding the pathogenesis of Angelman syndrome through animal models [J]. Neural Plast,2012,2012:710943.
    [69]Jiang YH, Pan Y, Zhu L, et al. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3 [J]. PLoS One,2010,5(8):e12278.
    [70]Reith RM, Way S, McKenna J 3rd, et al. Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration [J]. Neurobiol Dis,2011,43(1): 113-122.
    [71]Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tscl mutant mice [J]. Nature,2012,488(7413):647-651.
    [72]Zeng LH, Rensing NR, Zhang B, et al. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tscl inactivation in a mouse model of tuberous sclerosis complex [J]. Hum Mol Genet,2011,20(3):445-454.
    [73]Carson RP, Van Nielen DL, Winzenburger PA, Ess KC. Neuronal and glia abnormalities in Tscl-deficient forebrain and partial rescue by rapamycin [J]. Neurobiol Dis,2012,45(1):369-380.
    [74]Budziszewska B, Lason W, Steczkowska M, Gergont A. Value of the experiment for developmental neurology [J]. Przegl Lek,2009,66(11):958-962.
    [75]Halladay AK, Amaral D, Aschner M, et al. Animal models of autism spectrum disorders:information for neurotoxicologists [J]. Neurotoxicol,2009,30(5):811-821.
    [76]Flint J, Shifman S. Animal models of psychiatric disease [J]. Curr Opin Genet Dev, 2008,18(3):235-240.
    [77]Cinque C, Pondiki S, Oddi D, et al. Modeling socially anhedonic syndromes:genetic and pharmacological manipulation of opioid neurotransmission in mice [J]. Transl Psychiatry,2012,2:e155.
    [78]Machado CJ, Bliss-Moreau E, Platt ML, Amaral DG. Social and nonsocial content differentially modulates visual attention and autonomic arousal in Rhesus macaques [J]. PLoS One,2011,6(10):e26598.
    [79]Israel S, Lerer E, Shalev I, et al. Molecular genetic studies of the arginine vasopressin la receptor (AVPRla) and the oxytocin receptor (OXTR) in human behaviour:from autism to altruism with some notes in between [J]. Prog Brain Res,2008,170: 435-449.
    [80]Piedimonte LR, Wailes IK, Weiner HL. Tuberous sclerosis complex:molecular pathogenesis and animal models [J]. Neurosurg Focus,2006,20(1):E4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700