用户名: 密码: 验证码:
直接葡萄糖燃料电池数值模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接葡萄糖燃料电池(Direct glucose fuel cell)是直接以葡萄糖为燃料的电化学能量转化装置,不仅具有燃料电池的效率高,无污染等优点,还具有一些独特的优点:(1)燃料来源广泛,特别对于利用人体血液为燃料的医用葡萄糖燃料电池,无需考虑燃料来源问题;(2)反应条件温和,可在常温、常压、中性PH值条件下反应;(3)生物相容性好,可为植入人体的人造器官或生物传感器提供动力。
     由于现在人们对于酶燃料电池内部电化学反应过程及传质过程对电池性能的影响缺乏认识,并且燃料电池的实验代价昂贵,时间较长,所以依据燃料电池热力学、反应动力学原理对葡萄糖燃料电池的电流产生过程进行数值模拟具有重要的理论意义和工程应用价值。
     本文以葡萄糖燃料电池为研究对象,依据燃料电池热力学、反应动力学原理建立了单电池的数学模型。模型考虑了电化学过程、电荷传输、质量传输等过程。讨论了阴极过电势和阳极过电势对电池性能的影响程度,电极厚度、葡萄糖浓度和离子交换膜厚度对电池性能的影响。
The rapid development of embedded systems, micro-and nano-technology is becoming a trend In the ideal situation, these components should better be able to supply power. The body has provided the massive latent chemical energy (glucose), if actuates with the biology fuel cell the miniature blood sugar density instrumentation, may implant it to some blood vessel pipe wall on, when its extraction blood's blood sugar analysis, may through the bringing biology fuel cell, the extraction partial blood sugars, the use glucose electricity generation, on the one hand maintains own energy, on the other hand may produce the electromagnetism signal, to outside transmission about blood sugar density information, thus achieves the long time monitor blood sugar the function. The enzyme biology fuel cell is the fuel cell research key point, because its volume is small, the biological compatibility is good, may use to implanting human body's organ power supply. The biology fuel cell appeared most early in 1964, was implants in vivo the pacemaker to provide the power source, but because the battery had the electric quantity to be small but has not realized the marketability.
     Because the enzyme is now an internal fuel cell electrochemical reaction and mass transfer process and the process of the impact on battery performance and lack of knowledge and experimental fuel cell costly, long time, so based on fuel cell thermodynamics, reaction kinetics of the glucose fuel cell principle The current process of numerical simulation have an important theoretical and engineering application value.
     Modeling of fuel cell systems need to theoretical analysis, combined with the battery material and structural characteristics, the use of energy, quality, conservation of momentum equation, as well as electrochemical, thermodynamic and kinetic theory to establish cell models, in order to take full advantage of these experimental results model to verify the accuracy of model parameter derivation, both the theoretical model or empirical model of the right to establish, in the research and to improve battery performance, it can help people a better understanding of cell processes and phenomena occur, in order to optimize the electrode the structure of the battery operating conditions and provide a theoretical basis; in the design of fuel cell system is conducive to a reasonable choice of control variables and control strategy to ensure that the fuel cell to high-performance, high reliability and long life operation.
     Mathematical model of the fuel cell is divided into the following categories:
     First, analysis of the model. Analytical model does not involve the internal battery material transfer and electrochemical reaction mechanism analysis model contains many assumptions, the general model are based on flat-panel electrodes to create the corresponding governing equations, so the role model is very limited, only applies to the need for rapid qualitative simple calculation applications.
     Second, semi-empirical model. A combination of semi-empirical model of the theory of differential / algebraic equations and the empirical equation. Semi-empirical model used in the general description of physical phenomena, it will be difficult, or the study of the phenomenon is not entirely theoretical description of the occasion. Empirical model only under certain operating conditions effective, can not accurately predict the properties outside the scope of the battery; Experience in forecasting equation may have been the completion of the battery design is effective, but can not be used to predict the new design based on the performance of the battery; At the same time, the experience of the model can not be used to understand the internal battery of physical and chemical processes, but only in between input and output related.
     Third, the mechanism of the model. Mechanism model of the battery based on the internal control process of the physical and electrochemical generation of a number of differential equations, numerical method for solving the general adoption. Mechanism model can be further divided into multi-regional model and single-zone model. Multi-regional model: multi-regional model of the battery within the different regions of each are listed in the control equations were solved, the calculation of the region include: cathode and anode diffusion layer, flow field, proton exchange membrane and catalyst layer and so on. At the same time they were solving equations. Single-region model: the different models and multi-regional, regional model of a single fuel cell model attempts to calculate the entire region as a whole, all regions of the calculation equations of conservation of mass equations are used in each sub-region, the different equations and convergence is the source of the different items, all equations can be written in a unified convection - diffusion equation, and the reunification of convection - diffusion equation can be easily applied in computational fluid dynamics (CFD) software to solve.
     In this paper, the major multi-regional model of the glucose fuel cell for one-dimensional modeling analysis of the electrochemical process of the battery, charge transfer and mass transfer processes are described, the establishment of the battery cathode and anode diffusion layer, dielectric layer and catalyst layer control equation. In the mathematical model, based on the battery with a matlab simulation analysis. Analysis of the anode and cathode potential had been potential impact on battery performance; glucose concentration on the impact of battery performance, battery performance degrees electrode thickness, as well as the impact of temperature on battery performance.
引文
[1]贾鸿飞,谢阳,王宇新.生物燃料电池[J].电池,2000,30(2):86-89.
    [2]宝玥,吴霞琴.生物燃料电池的研究进展.电化学,2004.02.
    [3]刘强,许鑫华,任光雷,王为, 2006,“酶生物燃料电池,”化学进展,第18卷第11期,2006年11月,pp.1530-1535
    [4] Fernndez J L , Mano N , Heller A , et al . Angew. Chem. Int . Ed. , 2004 , 43 : 6355—6357
    [5] Zhang Y C , Pothukuchy A , Shin W, et al . Anal . Chem. , 2004 , 76 : 4093—4097
    [6] Barton S C , Gallaway J , Atanassov P. Chem. Rev. , 2004 , 104 : 4867—4886
    [7]刘均洪,王广建.酶法生物燃料电池的饼究进展[EB/OL].中国燃料电池网,(2008-12-17[2009-01-10].http://cnfuelcell.com/tiring_room/new/hynews/2008121792942.htm.
    [8] Felix von Stetten,Sven Kerzenmacher, Roland Zengerle,“Implantable biofuel Cells”,Healthy Aims Dissemination Day 05 @ IMTEKImplantable Biofuel Cells; Folie 15
    [9] Nicolas Mano, Fei Mao, Adam Heller, 2004,“A Miniature Membrane-less Biofuel Cell Operating at +0.60 V under Physiological Conditions”, ChemBioChem 2004, 5,pp. 1703–1705
    [10]乔丽娜,周在德,肖丹,“酶生物传感器中酶的固定化技术,”化学研究与应用,第17卷,第3期,2005年6月,pp. 299 - 301.
    [11]李鑫辉,“生物医学电极和植入传感器外包装材料,”传感器技术,第18卷,第4期, 1999年, pp. 24– 26.
    [12]杨冰,高海军,张自强,“微生物燃料电池研究进展,”生命科学仪器,第5卷,1月刊,2007年1月,pp. 3– 11.
    [13]刘百祥,李青山,钟建江,张兆奎, 1998,“新型微葡萄糖酶电极的研制,”传感技术学报,第4期, 1998年12月, pp. 93– 96.
    [14]康峰,伍艳辉,李佟茗,“生物燃料电池研究进展,”电源技术,第28卷,第11期,2004年11月,pp. 723– 726
    [15]张宇,杨庆玲,毕可万,“采用填充床阳极的甲醇生物燃料电池,”生物工程学报12(3),1996年,pp.359–360
    [16]孙冬梅,蔡称心,邢巍,陆天虹,2004,“含铜氧化酶在活性炭上的固定及直接电化学,”科学通报,第49卷,第17期,2004年9月,pp. 1722– 1724
    [17]胡军,2005,“动态血糖连续测定系统,”传感器世界,2005年10月,pp. 21–24
    [18]陈亮,王惠南,钟元,“医疗植入式电子系统供电方式的研究进展,”生物医学工程研究,第25卷,第4期,2006年,pp. 285– 288
    [19]姜珺秋,2006,“废水同步生物处理与微生物燃料电池发电的可行性研究,”工学硕士学位论文,哈尔滨工业大学,2006年6月
    [20] Willner I , Katz E. Angew. Chem. Int . Ed. , 2000 , 39 : 1180—1186
    [21] Granot E , Katz E , Basnar B , et al . Chem. Mater. , 2005 , 17 (18) : 4601—4609
    [22] Katz E , Willner I , Kotlyar A B. J . Electroanal . Chem. , 1999 , 479 : 64—68
    [23] S. Kerzenmacher , R. Sumbharaju , F. von Stetten ,“A Surface Mountable Glucose Fuel Cell For Medical Implants”,The 14th International Conference on Solid-State State Sensors,Actuators and Microsystems,Lyon,France,June 10-14,2007
    [24] F. Standaert,K. Hemmes,N. woudstra. Analytical fuel cell modeling. J. Power Sources,1996,63(2):221-234.
    [25] F. Standaert,K. Hemmes,N. Woudstra. Analytical fuel cell modeling. Non-isothermal fuel cells.·J. Power sources,1,72:11-1.
    [26] T.E.Springer,T.A.Zawodzinski,S.Gottesfeld.Polymer electrolyte fuel cell model.J.electrochem.Soc.1991,138(8):A2334-2342
    [27] J.C.Amphlett,R.M.Baumert,R.F. Mann,B.A. Peppley,P.R. Roberge. Performance modeling of the Ballard Mark IV solid Polymer electrolyte fuel cell I. Mechanistic model development.J.Electrochem.Soc,1995,142(1):1-8.
    [28] L.Pisani, G.Murgia,M.Valentin,B.DAguanno. A new semiempirical approach to performance curves of polymer electrolyte fuel cells. J.Power Sources,2002(1-2),108:192-203.
    [29] Maggio,V.Recupero,L.pino.Modeling Polymer electrolyte fuel cells: an innovative approach. J.Power Sources,2001(2),101:275-286.
    [30] Kuver,Inverstigationg of the methanol crossover and single electrode performance during PEMDMFC operation [J].J Power Source,1998,74(2):77-80.
    [31] Stetten F V, Kerzenmacher S, Lorenz A, et al. One-compartment, direct glucose fuel cell for powering long-term medical implants [A]. Micro Electro Mechanical Systems-19th IEEE InternationalConference[C]. 2006. 934-937.
    [32]池其金,谢董绍俊.酶直接电化学与第三代生物传感器[J].分析化学,1994,22(10):1065-1072.
    [33]傅永锋.临床大样本下血液黏度与血液电阻率的关系[J].青岛大学学报,2000年9月,15(3):33-36.
    [34]李曦,曹广益,朱新坚,苗青.燃料电池的机理模型及控制建模的研究[J].化学研究与应用,2005年4月,17(2):190-193
    [35] S.R.Sanms,S.Wasmus,and R.F.Savinell,Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments,J.Electrochem.Soc.1996(143):1225-1232
    [36] Wang J.T.,wainright J.S.,Savinell R.F.,Lit M.,A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte,Journal of Applied Electrochemistry,1996,26,751-756
    [37] Scott K,Taama,W Performance of a direct methanol fuel cell[J].Journal of Applied Electrochemistry,1999,28:289-29
    [38]查全性,电极过程动力学导论[M].科学出版社,2002,6,第三版,P14
    [39] A.J.Bard and L.R.Faulkner.Electrochemical Methods,2nd ed.Wiley,New York,2001.
    [40] Handbook of Chemistry and Physics,62nd ed.CRC Press,Boca Raton,FL,1981.
    [41]沙宪政,Gough David A.植入式葡萄糖传感器的模拟分析[J].传感器技术,2003年,22(2):14-20.
    [42] Fernndez J L, Mano N,Heller A,et al.Angew. Chem.Int.Ed.,2004,43:6355-6357.
    [43] Barton S C,Callaway J,Atanassov P. Chem.Rev.,2004,104:4867-4886.
    [44] Tsujimura S,Tatsumi B,Ogawa J,rt al.Electroanal.Chem.,2001,496:69-75
    [45] Heller A.Physical Chemistry Chemical Physics,2004,6(2):209-216
    [46] Mano N,Heller A. J. Electrochem. Soc.,2003,150:A1136-A1144
    [47] Pardo Yissar V,Katz E,Willner I,et al.Faraday Discuss,2000,356-360
    [48] Simon E,Halliwell C M,Toh C S.Bioelctrochemistry,2002,55:13-15
    [49]韩保祥,毕可万.采用葡萄糖氧化酶的生物燃料电池的研究[J].生物工程学报,1992,8(2):203-206
    [50]李伟,李幼荣,潘宁。再生丝素固定的酶免疫传感器及其应用前景的研究[J].生物技术通报,2002,1:22-27.
    [51] Kim H J,Park H S,Hyun M S,et al.A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciens[J].Enzyme Microb Technol,2002,30:145-152
    [52] Katz E ,Willner I,Kotlyar A B.A non-compatmentalized glucose biofuel cell by bioengineered electrode surface[J].J Electroanal O2Chem,1999,479:64-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700